一元n次方程的求根公式a

合集下载

谁先推出三次方程的求根公式

谁先推出三次方程的求根公式

谁先推出三次方程的求根公式解代数方程是古典代数学中基本的组成部分。

我们知道:形如n n-1ax+ax +…+a=0(a ≠0)的一元n次方程,必定有n个根,这就是著名0 1 n 0的代数基本定理。

这是德国大数学家高斯在1799年第一次给出证明的。

然而,高斯的证明以及其他的一些证明方法纯属非构造性的。

也就是说高斯仅仅肯定了根的存在,而并未给出具体求根的方法。

因此,在高斯的前后,人们对解方程的方法曾作了长期的艰苦探索。

早在数千年以前,古代巴比伦人曾研究过这样一个有趣的问题:求出一个未知数,使它与它的倒数之和等于已知数。

这个问题如果用现代的记号来表述的话,也就是需要求出这样的x,使xx = 1,x + x = b。

毫无疑问,从这2样的两个方程中就可以得出关于x的一个二次方程式,即x-bx+1=0。

据说,b b 2古代巴比伦人解决这个问题的过程是先分别求出与(),再求出2 2 b b b ( )2 2 2 2古代巴比伦人早就会用配方法来解一元二次方程了。

二次方程的求解有了很完美的代数方法,人们可以很方便地根据求根公式求出它们的全部根。

人们自然会想到三次、四次以至高次的代数方程是否会有类似的求根公式,即能不能把一个方程的根用该方程的系数经过有限次的使用加、减、乘、除、开方运算得到代数式来表示呢?3阿拉伯人奥玛尔·海牙姆曾利用圆锥曲线对特殊的三次方程如x+Bx+c=0提出了几何解法,但是这种方法只能得到表示未知数的线段长度,而不是理想的求根公式。

1494年,著名的数学家柏沙尔曾断言:一般的三次方程是不可能求解的。

这个论断既代表了当时一般人的认识,又刺激了人们对寻找三次方程求根公式的强烈兴趣,以至于使寻找三次方程的公式解法成了当时数学界十分时髦的课题。

在寻求三次方程求根公式的研究中,16世纪意大利数学家作出了很大贡献。

当时,意大利有一所欧洲最大也是最著名的大学——波罗尼亚大学。

波罗尼亚大学教授齐波·德尔·菲洛在1514~1515年期间,把三次方程全部简 3 3 3化为三种简单类型:x+px=q,x=px+q,x+q=px,其中p、q均为正数。

一元n次方程的解法

一元n次方程的解法

分类号O151.1编号2012010634毕业论文题目学院姓名专业学号研究类型指导教师提交日期原创性声明本人郑重声明:本人所呈交的论文是在指导教师的指导下独立进行研究所取得的成果。

学位论文中凡是引用他人已经发表或未经发表的成果、数据、观点等均已明确注明出处。

除文中已经注明引用的内容外,不包含任何其他个人或集体已经发表或撰写过的科研成果。

本声明的法律责任由本人承担。

论文作者签名:年月日论文指导教师签名:一元n次方程的解法摘要:讨论了几类特殊五次以上的代数方程的根式解,并且介绍了方程的一种新的求根方法,通过求其相应矩阵的特征值来解方程.关键字: 高次方程;根;倒数方程;二项方程;特征值Special-ary n-equation SolutionAbstract This paper discussed the radical solution of algebraic equations about some special classes of more than five times, and introduced a new equation of roots, by solving the corresponding matrix eigenvalue to solve equations.Keywords higher degree equation, root, reciprocal equation, two equations, eigenvalue目 录0引言 .............................................................. 1 1二,三,四次方程根的情况: . (1)1.1二次方程求根公式 ............................................. 1 2.1三次方程求根公式 ............................................. 2 3.1.四次方程求根公式 ............................................ 3 2 几类特殊高次方程的解法.. (4)1.2 解方程0=-A x n............................................. 4 2.2解方程02=++c bu au n n ........................................ 4 3.2 解方程0221=++++++--a bx cx cx bx ax n n n ......................5 4.2求解方程()101n-10n n n f x a x a x a x a -=++++=()00≠a.............. 6 5.2求解方程0012211=+++++--a x a x a x a x a n n n n ()0≠n a ............. 7 3 利用a Mathematic 软件解方程 . (9)1.3求解步骤: .................................................... 92.3例题展示..................................................... 9 4 小结............................................................. 13 参考文献........................................................... 14 致谢 (15)一元n 次方程的解法0引言方程根式解得问题就是如何把方程的根用公式表示出来.二,三,四次方程的根的表达式以及根与系数之间的关系都已经很成熟.但求五次及更高次方程的根式解法,数学家们经历了一个非常艰难的过程.第一个证明“高于四次方程不能用根号求解”的是挪威数学家阿贝尔.对于一般的高于五次的方程没有一般的根式解法.因此,数学家们转而研究特殊的高次方程,他们能用方程系数的代数式来表示.代数学基本定理[]1 每个次数1≥的复系数多项式在复数域中有一根. 定义1 形如0)(122110=+++++=---n n n n n a x a x a x a x a x f 的方程称为在一个数域S 上的一个未知数的n 次代数方程,)(x f 称为一元n 次多项式,式中n 为正整数,0a ,1a ,2a ,...,1-n a ,n a 都是属于数域S 的常数,称为方程的系数.定义2 若存在一个常数C,使0)(=c f ,则称C 为多项式)(x f 或方程0)(=x f 的根.1 二,三,四次方程根的情况: 1.1 二次方程求根公式1.1.1 一般形式 02=++c bx ax )0(≠a 1.1.2 根的表达式 aacb b x 2422,1-±-=1.1.3 根与系数的关系 a b x x -=+21 a cx x =211.1.4 判别式 ac b 42-=∆当0>∆,方程有两个不相等的实根; 当0=∆,方程有两个相等的实根;当0<∆,方程有两个复根.1.2 三次方程求根公式1.2.1 一般形式023=+++d cx bx ax )0(≠a (1) 求解过程: 对(1)式除以a,并设aby x 3-=.则(1)式可以化成如下形式, 03=++q py y (2) (1),(2)式有相同的根,因此求解方程(1)的根可以转化为求解方程(2)的根. 对于方程(2)的三个根有:3323321322322⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛--+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+-=p q q p q q y33233222322322⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛--+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+-=p q q p q q y ωω33223323322322⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛--+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+-=p q q p q q y ωω其中 231i +-=ω,2312i --=ω. 再把321,,y y y 带入aby x 2-=解出321,,x x x . 例1 解方程0223223=++-x x x .解 对方程0223223=++-x x x 两边同除以2,再设21+=y x ,方程化为,054433=++y y ,45,43=-=q p代人以上公式解得:i y i y y -=+=-=21,21,1321 因此解得:i x i x x -=+=-=1,1,21321.1.2.2 根与系数的关系a b x x x -=++321,a c x x x -=++321111, a dx x x -=3211.2.3 方程(2)的判别式3232⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=∆p q当0>∆时,方程有一个实根和两个复根;当0=∆时,方程有三个实根;0==q p 时,有一个三重零根;03232≠⎪⎭⎫⎝⎛-=⎪⎭⎫ ⎝⎛p q 时,三个实根中有两个相等;当0<∆时,有三个不等的实根.1.3 四次方程求根公式1.3.1 一般形式0234=++++e dx cx bx ax (0≠a ) (3) 给(3)式两边同除以a,原方程可以转化成首项系数为1的四次方程;而方程0234=++++e dx cx bx x 的四个根与下面两个方程的四个根完全相同.()()048248048248222222=⎪⎪⎭⎫ ⎝⎛-+--+-+-+=⎪⎪⎭⎫ ⎝⎛-+-++-+++c b y d by y x c b y b x c b y d by y x c b y b x其中y 是三次方程()()0482482223=--+-+-d b c e y e bd cy y 的任一实根. 在方程0234=++++a bx cx bx ax 中,设xx y 1+=,则原方程可化为二次方程,可解出四个根为2424,3,2,1-±=y y x , 其中a a ac b b y 28422+-±-= 若四次方程为024=++e cx ax ,则设2x y =,原方程可化为二次方程02=++e cy ay ,可解出四个根为aaec c x 2424,3,2,1-±-±=阿贝尔定理]2[ 五次以及更高次的代数方程没有一般的代数解法.由代数数基本定理可知,任何方程在复数域中至少有一根.以下我们来讨论几类特殊一元高次方程的解法.2 几类特殊高次方程的解法定义3 形如0=-A x n 的方程称为二项方程.2.1 解方程0=-A x n解题过程: 把A 写成()θθsin cos i r A +=,则方程0=-A x n 的n 个根是⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+=n k n i n k nr x n k πθπθ2sin 2cos ()1,,2,1-=n k几何说明: 复平面上与数()θθsin cos i r +的n 次方根对应的点是一个正n 边形的顶点,这些顶点在以原点为中心,以n r 为半径的圆上,而这个n 边形的顶点之一有辐角nθ.定义4 形如02=++c bu au n n 的方程称为三项方程,其中a,b,c,n 都不等于0,n 为整数.2.2 解方程02=++c bu au n n 解题过程: l 令x u n =,代入以上方程得02=++c bx ax ,由此解出x,则0=-x u n 是一个二项方程,从而再解出u,方程的解.例 2031124=+-u u 解 令 x u =21,代入方程得 0342=+-x x ,求解此方程得 3,121==x x ,从而有112=u ,或312=u,解这两方程,得出原方程的解为31,31,1,14321-==-==u u u u .定义5 形如0221=++++++--a bx cx cx bx ax n n n 的方程称为倒数方程(其中k n x -和k x 项 的系数相同).2.3 解方程0221=++++++--a bx cx cx bx ax n n n2.3.1 方程求解过程:a) 解偶次()k n 2=倒数方程,对方程两边除以k x ,再令xx z 1+=,则原方程可化为z 的k 次方程,解此方程,得z 值,然后对应x 的值可由二次方程012=+-zx x 求出.b) 解奇次()12+=k n 倒数方程归结到解偶次倒数方程,奇数次倒数方程必有一个根为11-=x ,因此,先把原方程除以1x +化成偶数次方程再求解.例 3 求方程0251313522345=++--+x x x x x 的根.解 由于11-=x 是原方程的一个根,因此把原方程除以1+x ,得到四次倒数023*******=++-+x x x x再对其除以2x ,然后合并整理得:016131222=-⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+x x x x令 x x z 1+=,则22112222-=-⎪⎭⎫⎝⎛+=+z x x x x 从而上式变为:()0163222=---z z ,即 020322=-+z z ,解得25,421=-=z z 因而有确定x 得两个方程:025201422=+-=++x x x x 和,由这两个方程解得:21,2,32,325432==--=+-=x x x x . 定义6 对于一般的方程()101n-10n n n f x a x a x a x a -=++++=()00≠a假定1,1,2,,,kk a q k n a -==则原方程可解.2.4求解方程()101n-10n n n f x a x a x a x a -=++++=()00≠a求解过程: 对于101n-10n n n a x a x a x a -++++=,利用0n n a a q =,则此方程为1100000n n n n a x a qx a q x a q --++++=方程两边同除以0a ,得 110n n n n x qx q x q --++++= (4)对(4)同乘以x q得, 10n n x q q+-=, 即11n n xq ++=,解得:x =n k n k i n k q x k ,,2,1,012sin 12cos =⎪⎭⎫ ⎝⎛+++=ππ. 去掉增根.q x =得到原方程的解.,,2,112sin 12cos n k n k i n k q x k =⎪⎭⎫ ⎝⎛+++=ππ特别的,当1=q 时.,,2,112sin 12cosn k n k i n k x k =+++=ππ 例4 解方程 032168422345=+++++x x x x x .解 方程的系数成等比数列,且公比2=q ,直接利用以上公式求解,由.,,2,112sin 12cos n k n k i n k q x k =⎪⎭⎫ ⎝⎛+++=ππ得()ii x ii x i x ii x ii x 3135sin 35cos 23134sin 34cos 22sin cos 23132sin 32cos 2313sin 3cos 254321-=⎪⎭⎫ ⎝⎛+=--=⎪⎭⎫ ⎝⎛+=-=+=+-=⎪⎭⎫ ⎝⎛+=+=⎪⎭⎫ ⎝⎛+=ππππππππππ定义7对于一般的方程0012211=+++++--a x a x a x a x a n n n n ()0≠n a假定,,,2,1,1n k q a a k k==-则此方程也可解. 2.5 求解方程0012211=+++++--a x a x a x a x a n n n n ()0≠n a求解过程: 对于0012211=+++++--a x a x a x a x a n n n n ,由于n n q a a 0=,代入以下方程0012211=+++++--a x a x a x a x a n n n n得 0002201100=+++++--a qx a x q a x q a x q a n n n n 两边同除以0a ,得到012211=+++++--qx x q x q x q n n n n (5)再给(3)两边同乘以qx ,得到0223311=+++++++qx x q x q x q x q n n n n (6)()()56-得,0111=-++n n x q即()11=+n qx则 .,,2,1,0,12sin 12cos11n k n k i n k qx n =+++==+ππ.,2,1,0,12sin 12cos 1n k n k i n k q x k =⎪⎭⎫⎝⎛+++=ππ去掉增根qx 1=,则原方程的解为 .,2,1,12sin 12cos 1n k n k i n k q x k =⎪⎭⎫⎝⎛+++=ππ例 5 0124816322345=+++++x x x x x解 方程的系数成等比数列,且公比2=q ,直接利用以上公式求解,由.,2,1,12sin 12cos 1n k n k i n k q x k =⎪⎭⎫⎝⎛+++=ππ可得,()()()()()ii x ii x i x ii x ii x 314135sin 35cos 21314134sin 34cos 2121sin cos 21314132sin 32cos 2131413sin 3cos 2154321-=⎪⎭⎫ ⎝⎛+=--=⎪⎭⎫ ⎝⎛+=-=+=+-=⎪⎭⎫ ⎝⎛+=+=⎪⎭⎫ ⎝⎛+=ππππππππππ定理2]3[设()n n n n a x a x a x x f ++++=--111 是数域P 上的任意多项式,那么方程()0=x f 的根与矩阵A 的特征根相同,其中A 的形式如下:⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛----=-0000100000100001121n n aa a a A 证 设矩阵A 对应的特征矩阵为⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛---+=--λλλλλ00010000100010121n n aa a a A E 则按第一列展开λλλλλ000100010001121 nn a a a a A E ---+=-- ()()()()()()()()nn n n n n n n n n n n n nn n na a a a a a a a a a a a +++++=--+--++++=----+---++-----+----+----+-λλλλλλλλλλλλλλλλ122111121221111211111100010000011000010*******0010000010100001令x =λ,以上定理得证.因此,把求方程()0=x f 的根转化为求矩阵A 的特征值的问题,关于求矩阵的特征值问题,可以用a Mathematic 软件求得.3 利用a Mathematic 软件解方程 3.1 求解步骤:第一步:写出方程所对应的矩阵A ;第二步:打开a Mathematic 软件,输入命令Eigenvalues[A]; 第三步:求得矩阵A 得特征值; 第四步:得到原方程的解.3.2 例题展示例 6 0223223=++-x x x解 取⎪⎪⎪⎪⎪⎭⎫⎝⎛--=0011010123A求矩阵A 的特征值,打开a Mathematic 软件,输入()A s Eigenvalue 命令,运行得出结果.运行过程:原方程的解为: i x i x x -=+=-=1,1,21321例 7 求解方程0251313522345=++--+x x x x x .解 取⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛---=0000110002501002130010213000125A求矩阵A 的特征值,打开a Mathematic 软件,输入()A s Eigenvalue 命令,运行得出结果.运行过程:即原方程的解: 32,21,1,2,3254321+-==-==--=x x x x x .例8 解方程 032168422345=+++++x x x x x .解 取⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-----=000032100016010080010400012A求矩阵A 的特征值,打开a Mathematic 软件,输入()A s Eigenvalue 命令,运行得出结果. 运行过程:原方程的解:.31,31,31,31,254321i x i x i x i x x -=+=--=+-=-=例 9 解方程0124816322345=+++++x x x x x .解 取⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-----=00003211000161010081001041000121A求矩阵A 的特征值,打开a Mathematic 软件,输入()A s Eigenvalue 命令,运行得出结果. 运行过程:原方程的解:()()()()ix ix i x i x x 31413141314131412154321-=+=--=+-=-=4 小结通过以上方程的求解过程可以看出,求解一个高次方程的根非常困难,利用Mathematic软件,可以简化计算过程,提高计算的准确度和效率,同时,也可以利a用aMathematic软件检验所求得方程根的正确性,因此,利用这种求解高次方程的方法给求解高次方程带来了极大地方便.参考文献:[1]王萼芳,石生明.高等代数[M].第三版.高等教育出版社:2003.7:27[2]安敏,彭亚绵,杨爱民.数学中特殊高次方程的解法研究[J].高校讲台.2007.12:134-135[3]罗芳.求解高次实系数代数方程的Excel算法[J].雁北师范学院学报.2004.20(5):60-61[4]张景晓.四类高次代数方程的升幂解法[J].聊城大学学报.2003.16(3):20-22[5]张景晓,董立华,连秀国.系数成等比数列的一元高次方程的求解[J].河北理工教学研究.2003.2:5-7[6]张景晓,连秀国,王俊青.一类实系数高次方程的求解[J].数学通报.2003.8:42-43[7]张栋恩,许晓革.高等数学实验[M].高等教育出版社.2004.7致谢:在天水师范学院的四年学习过程中,我得到了数学系各位领导,老师及班主任的悉心帮助和支持,使得我不仅学到了许多知识,也使我在大学这个社会群体中得到了很好的锻炼和发展.同时也为我顺利的走向工作岗位打下了坚实的基础.在此,谨向他们表示我衷心的感谢.本论文在选题及写作过程中得到了老师的悉心指导,老师多次询问写作进程,并为我指点迷津,帮我开拓思路,热枕鼓励.老师一丝不苟的作风,严谨治学的态度,踏踏实实的指导精神,不仅授我以论文,而且教会了我做学问的可贵的精神,使我受益终生.为此,我表示我最真心的感谢!在整个论文的写作过程中,得到了许多老师和同学的帮助,才使我的毕业论文得以顺利完成.在此对他们表示最诚挚的感谢.最后,我要特别感谢我的指导老师老师,感谢您对我毕业论文的悉心指导.我想真心地说声:老师,您辛苦了!。

一元二次方程的解法求根公式的使用技巧

一元二次方程的解法求根公式的使用技巧

一元二次方程的解法求根公式的使用技巧一元二次方程的解法是数学中的基础知识,在解决实际问题时起到了重要的作用。

其中,求根公式是一种常见的解法,它可以帮助我们快速求解一元二次方程的根。

本文将介绍一元二次方程的求根公式的使用技巧。

一、一元二次方程的形式一元二次方程通常具有以下形式:ax^2 + bx + c = 0其中,a、b、c为实数,并且a ≠ 0。

根据这个方程的形式,我们可以使用求根公式来求解方程的根。

二、一元二次方程的求根公式一元二次方程的求根公式如下:x = (-b ± √(b^2 - 4ac)) / (2a)其中,±表示两个根,√表示开方运算。

这个公式中的分子部分可以分为两个部分,分别是-b和√(b^2 - 4ac)。

根据这个公式,我们可以通过将方程中的系数代入公式中,快速求得方程的根。

三、使用技巧在使用一元二次方程的求根公式时,有一些技巧可以帮助我们更加高效地求解方程的根。

1. 化简方程在应用求根公式之前,我们可以先对方程进行化简。

例如,如果方程的系数存在公因子,我们可以将其提取出来,以简化计算过程。

2. 辨别方程的根的性质根据一元二次方程的判别式Δ=b^2-4ac的值,我们可以判断方程的根的性质。

- 当Δ>0时,方程有两个不相等的实数根;- 当Δ=0时,方程有两个相等的实数根;- 当Δ<0时,方程没有实数根,但存在两个共轭复数根。

通过辨别方程的根的性质,我们可以在求根过程中有所侧重,提高求解的效率。

3. 使用解根公式的步骤使用一元二次方程的求根公式时,可以按照以下步骤进行:Step 1: 计算判别式Δ的值。

Δ = b^2 - 4acStep 2: 根据Δ的值进行分类讨论。

- 当Δ>0时,应用求根公式计算两个不相等的实数根;- 当Δ=0时,应用求根公式计算两个相等的实数根;- 当Δ<0时,应用求根公式计算两个共轭复数根。

Step 3: 将方程系数代入求根公式,计算出根的近似值。

初中数学 如何判断一元二次方程的正根

初中数学  如何判断一元二次方程的正根

初中数学如何判断一元二次方程的正根判断一元二次方程的正根涉及到求根公式和判别式的使用。

下面我将详细介绍如何判断一元二次方程的正根。

一元二次方程的一般形式为ax² + bx + c = 0,其中a、b、c为已知系数且a ≠ 0。

1. 求根公式:根据求根公式,一元二次方程的解可以表示为x = (-b ± √Δ) / (2a),其中Δ为判别式,Δ = b² - 4ac。

2. 判别式的作用:判别式Δ的值可以决定方程的根的性质和类型。

a) 当Δ > 0时,方程有两个不相等的实数解。

这意味着方程的图像与x轴有两个交点,即有两个根。

其中一个根为正数,另一个根为负数。

b) 当Δ = 0时,方程有两个相等的实数解。

这意味着方程的图像与x轴有一个交点,即有一个根。

这个根可以是正数、零或负数。

c) 当Δ < 0时,方程没有实数解,只有两个共轭复数解。

这意味着方程的图像与x轴没有交点,即没有实数根。

因此,没有正根。

3. 判断正根的方法:要判断一元二次方程是否有正根,我们需要根据判别式Δ的大小来确定。

a) 当Δ > 0时,方程有两个不相等的实数解。

我们可以使用求根公式计算出这两个解,然后比较它们的大小。

如果一个解大于零,另一个解小于零,则方程有正根。

b) 当Δ = 0时,方程有两个相等的实数解。

这意味着方程的根可以是正数、零或负数,所以可能存在正根。

c) 当Δ < 0时,方程没有实数解,因此没有正根。

需要注意的是,求根公式给出的解是实数解,而判断正根需要将解代入方程中验证。

如果解满足方程且大于零,则是正根。

总结起来,判断一元二次方程的正根需要使用求根公式计算解,并根据判别式的大小和解的正负关系来确定。

当判别式Δ > 0时,方程有两个不相等的实数解,如果一个解大于零,另一个解小于零,则存在正根;当Δ = 0时,方程有两个相等的实数解,可能存在正根;当Δ < 0时,方程没有实数解,因此没有正根。

求根公式-

求根公式-

第一讲 走进追问求根公式形如02=++c bx ax (0≠a )的方程叫一元二次方程,配方法、公式法、因式分解法是解一元二次方程的基本方法.而公式法是解一元二次方程的最普遍、最具有一般性的方法. 求根公式aac b b x 2422,1-±-=内涵丰富:它包含了初中阶段已学过的全部代数运算;它回答了一元二次方程的诸如怎样求实根、实根的个数、何时有实根等基本问题;它展示了数学的简洁美.降次转化是解方程的基本思想,有些条件中含有(或可转化为)一元二次方程相关的问题,直接求解可能给解题带来许多不便,往往不是去解这个二次方程,而是对方程进行适当的变形来代换,从而使问题易于解决.解题时常用到变形降次、整体代入、构造零值多项式等技巧与方法. 【例题求解】【例1】满足1)1(22=--+n n n 的整数n 有 个. 思路点拨 从指数运算律、±1的特征人手,将问题转化为解方程.【例2】设1x 、2x 是二次方程032=-+x x 的两个根,那么1942231+-x x 的值等于( )A . 一4B .8C .6D .0思路点拨 求出1x 、2x 的值再代入计算,则计算繁难,解题的关键是利用根的定义及变形,使多项式降次,如1213x x -=,2223x x -=.【例3】 解关于x 的方程02)1(2=+--a ax x a .思路点拨 因不知晓原方程的类型,故需分01=-a 及01≠-a 两种情况讨论. 【例4】设方程04122=---x x ,求满足该方程的所有根之和.思路点拨 通过讨论,脱去绝对值符号,把绝对值方程转化为一般的一元二次方程求解. 【例5】 已知实数a 、b 、c 、d 互不相等,且x ad d c c b b a =+=+=+=+1111, 试求x 的值. 思路点拨 运用连等式,通过迭代把b 、c 、d 用a 的代数式表示,由解方程求得x 的值.注: 一元二次方程常见的变形形式有:(1)把方程02=++c bx ax (0≠a )直接作零值多项式代换;(2)把方程02=++c bx ax (0≠a )变形为c bx ax --=2,代换后降次;(3)把方程02=++c bx ax (0≠a )变形为c bx ax -=+2或bx c ax -=+2,代换后使之转化关系或整体地消去x .解合字母系数方程02=++c bx ax 时,在未指明方程类型时,应分0=a 及0≠a 两种情况讨论;解绝对值方程需脱去绝对值符号,并用到绝对值一些性质,如222x x x ==.A 组1.已知a 、b 是实数,且0262=-++b a ,那么关于x 的方程1)2(22-=++a x b x a 的根为 . (2001年北京市海淀区中考题)2.已知0232=--x x ,那么代数式11)1(23-+--x x x 的值是 .(2001年四川省中考题)3.若142=++y xy x ,282=++x xy y ,则y x +的值为 .(2001年TI 杯全国初中数学竞赛题)4.若两个方程02=++b ax x 和02=++a bx x 只有一个公共根,则( ) A .b a = B .0=+b a C .1=+b a D .1-=+b a(第十六届江苏省竞赛题) 5.当分式4312++-x x 有意义时,x 的取值范围是( )A .1-<xB .4>xC .41<<-xD .1-≠x 且4≠x(2002年重庆市竞赛题) 6.方程011)1(=+-++x x x x 的实根的个数是( ) A .0 B .1 C .2 D .3 7.解下列关于x 的方程:(1)03)12()1(2=-+-+-m x m x m ; (2)210x x --=; (3)x x x 26542-=-+.8.已知0222=--x x ,求代数式)1)(3()3)(3()1(2--+-++-x x x x x 的值.(2003年上海市中考题)9.是否存在某个实数m ,使得方程022=++mx x 和022=++m x x 有且只有一个公共的实根?如果存在,求出这个实数m 及两方程的公共实根;如果不存在,请说明理由.注: 解公共根问题的基本策略是:当方程的根有简单形式表示时,利用公共根相等求解,当方程的根不便于求出时,可设出公共根,设而不求,通过消去二次项寻找解题突破口.B 组10.若0152=+-x x ,则1539222+++-x x x = .11.已知m 、n 是有理数,方程02=++n mx x 有一个根是25-,则n m +的值为 .12.已知a 是方程020002=--x x 的一个正根。

数学的魅力_8. 一元n次方程求根公式

数学的魅力_8. 一元n次方程求根公式
数学家, 最年轻的Fields 奖获得者, 第一位Abel奖 获得者.
Abel:
一元五次以上的代数方程一般来说是 不存在求根公式的. 什么时候存在求根公式呢?
超级天才的出现:
Évariste Galois
Évariste Galois(10.25. 1811-5. 31. 1832)
法国的天才数学家: 莫扎特的天赋, 贝多芬的激情, 拜伦的浪漫. 出生于巴黎南郊小镇, 父亲: 中学校长, 镇长. 母亲: 熟读拉丁文并精通古典文学.
1815年: 进入教会学校读中学.
1817年: 阿贝尔一生的转折点.
数学老师: 好酒如命, 脾气粗暴, 体 罚致死学生被解职, 由比Abel大七 岁的年青教师Holmboe代替.
Holmboe : 最大的贡献, 发掘了Abel的数学才能,
成为Abel的朋友并给予帮助.
Holmboe私下给Abel讲授高等数学, 介绍阅读 Poisson、Gauss以及Lagrange的著作, Abel很快
1789年, 攻占巴士底狱 1794年, 巴黎高师成立 1795年,
巴黎综合理工学院建校
革命狂潮曾指向科学家:
“共和国不需要科学家” “近代化学之父” 拉瓦锡
数学家, 哲学家, 孔多塞
“于断头台就义 欧拉停止了计算和生命”
结果: 院士们变得畏缩, 老态龙钟
Napoléon Bonaparte(1769-1821)
628年:
印度数学家Brahmagupta给 出求根公式
一元三次方程求根
中国唐朝数学家王孝通在626年前后所著的 《缉古算经》中建立了25个三次多项式方 程和提出三次方程实根的数值解法. 波斯数学家欧玛尔·海亚姆(1048-1123)利用圆 锥截面与圆相交的方法构建了三次方程的解法. 他说明了怎样几何方法利用三角法表得到答案.

一元n次多项式根的展开公式及其求根算法_郑一

一元n次多项式根的展开公式及其求根算法_郑一

收稿日期:2002-08-27。

郑一,副教授,主研领域:数学应用。

一元n 次多项式根的展开公式及其求根算法郑 一(青岛建筑工程学院 青岛266520)摘 要 本文获得了一元n 次复系数多项式根的展开公式,给出了求出方程的任意精确根的一个新的算法。

利用该算法,可以用求根公式得到任意精度的初始值,用一个公式可以计算出全部的根。

关键词 多项式 根 展开式 算法AN EX PANS ION OF ROOTS AND AN ALGORITHMOF FINDING ROOTS OF A POLYN OMIAL OF DEGREE nZheng Yi(Qingdao Ins titute of Arc hitecture and Engi nee ring ,Qingdao 266520)A bstract In this paper ,the expansion of all roots of a polynomial of n degree with complex coefficients is obtained .One new algorithm of calcu -lating accurately any root of a algebraic equation is proved .We can use this algorithm to compute the initial value as accurately as we like .We can compute all roots of a polynomial eq uation by one formula of finding roots .Keywords Polynomial Root E xpansion Algorith m1 引 言由于矩阵特征值、微分方程等许多实际问题的求解往往归结为特征方程———一元n 次复系数多项式的求根问题。

求根计算公式的原理

求根计算公式的原理

求根计算公式的原理求根计算公式是数学中非常重要的一种计算方法,它可以用来解决各种方程的根的问题。

在数学中,方程的根是指能够使方程成立的数值,例如对于一元二次方程ax^2+bx+c=0,它的根就是能够使得该方程成立的x的数值。

而求根计算公式就是用来计算这些根的方法。

求根计算公式的原理主要是基于数学分析和代数学的理论。

在数学分析中,我们知道对于一个连续函数,如果它在某个区间内取得了正负值,那么在这个区间内一定存在一个根。

而求根计算公式就是利用这个性质来计算方程的根的。

具体来说,对于一元二次方程ax^2+bx+c=0,我们可以利用求根公式来计算它的根。

求根公式可以表示为x=(-b±√(b^2-4ac))/(2a),其中±表示两个根,分别对应着加号和减号。

这个公式的推导过程比较复杂,主要是基于一些代数学的理论,但是它的原理可以用简单的语言来解释。

首先,我们知道对于一元二次方程ax^2+bx+c=0,它的根可以表示为x=p+qi,其中p和q分别是实数部分和虚数部分。

然后我们可以通过一些代数运算,将方程化简为一个关于p和q的方程,然后利用一些数学分析的方法,可以得到p和q的表达式,最终得到了求根公式。

除了一元二次方程,求根计算公式还可以应用于其他类型的方程,例如一元一次方程、一元三次方程等。

对于一元一次方程ax+b=0,它的根可以直接通过求根公式x=-b/a来计算。

而对于一元三次方程ax^3+bx^2+cx+d=0,它的根可以通过一些复杂的代数运算和数学分析来得到求根公式。

求根计算公式的原理不仅仅适用于代数方程,它还可以应用于微积分中的方程。

例如对于微积分中的方程f(x)=0,我们可以通过一些数值计算的方法,利用求根公式来计算出方程的根。

这在工程、物理学等应用中非常常见,因为很多实际问题都可以用方程来描述,而求根计算公式可以帮助我们解决这些问题。

除了数值计算,求根计算公式还可以应用于符号计算。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一元
n 次方程的求根公式(一)
寻玉殿
当n 为不小于5的奇数时,一元n 次实系数方程
12
32
2
24
36
120
n n n n n
n x nAx
t A x
t A x
t A
x B -----++++++=
有解,且必有一根为x =
+。

其中自然数i 满足3
21n i -≤≤,对于不同的奇数n ,i t
是特定的常数。

特别的(1)当5n =时, 15
t = 原方程化为
53
2550
x Ax A x B +++=
则此方程必有一根为 x =
+。

(2)当7n =时,114t = 27t
= 原方程化为
752337
1470
x Ax A x A x B ++++=
则此方程必有一根为
x =
+。

(3)当9n =时,1
27t = 230t = 39t =原方程化为
97253349273090
x Ax A x A x A x B +++++=
则此方程必有一根为x =
+。

(4)当11n =时,144t = 277t = 355t = 411t = 原方程化为
119273543511447755110
x Ax A x A x A x A x B ++++++=
则此方程必有一根为
x =
+。

等等!
对于不同的奇数n ,有着相对应之特定的i t 值,就决定了这套5至n 次
系列高次方程的存在形式及数学模型。

而对于n为偶数时,只要设
2
y x
,依然可以采用此套求根公式!
所以这一套高次方程的模型不一而足,穷尽n次。

此方程的原雏产生于1995年,当时我就其中n等于5时一例在《中学生
数理化》刊物投过稿件,但没有被采纳,所以搞得此方程泥牛入海,一直搁浅至今。

当时虽然没有完善到n次,但足以奠定并拓开了我日后的探索之路。

本来欲将此高次方程向数学学会申报定理,但由于“黑规矩”肆无忌惮的盗稿窃稿,本人一直心有余悸,畏葸犹豫。

几十年的经验总结及对此方程的不断更进完善,方形成这套较令人乐观的数学模型。

今天,偶见互联网上已经有涉及此
5次方程课题的文志!唯恐被他人误为抄袭之嫌,所以,挑灯不寐,连夜及时将我这套高次方程的数学模型整理打印出炉,大白于天下,作为我申报定理的一个-“前哨站”,希望互联网有一片正大光明的天地为我们莘莘学子的科学探索之路打开通途。

作者寻玉殿
2017年5月3日星期三整理完毕。

相关文档
最新文档