ARM实验三

合集下载

ARM设计实验报告

ARM设计实验报告

目录一,实验目的二,实验软件, 硬件三,实验题目及要求(设计要求)四,软件时钟设计总体方案五,软件时钟的电路原理图六,程序流程图及C程序(软件部分)七,Proteus仿真图(硬件部分)一实验目的。

1,应用所学的ARM知识设计一个实时时钟掌握LPC2106中断处理, RTC的使用。

二实验软件, 硬件。

软件:proteus6.9仿真软件, ARM开发环境ADS.硬件: WINDOW 2000/XP PC机一台。

三实验题目及要求(设计要求)。

题目: 带报警功能并且可以调节时间的实时时钟。

要求: 1, 实时时间可通过按键选择调节。

2, 可以通过按键设定报警时间。

3, 当达到报警时间时, 蜂鸣器响一下, LED灯点亮。

4, 报警时间和实时时间通过液晶模块LCD1602显示四软件时钟设计总体方案本实验是基于LPC2106ARM处理器而设计的实时时钟, 综合性较强, 涉及到RTC外部中断, 引脚的GPIO功能, C语言编程等知识。

首先要定义P0口为基本I\O功能, 然后通过引脚功能选择寄存器PINSEL0及PINSEL1定义输入输出外部中断口所在的位, 另外还要对外部中断进行初始化, 其中有规定他们的优先级, 中断触发方式, 中断地址分配, 本实验采用液晶模块LCD1602同时显示实时时间和报警时间, 同样要对他们进行初始化, 包括检查总线忙与闲, 传送地址, 传送数据及显示函数的编程、1,LPC2106微控制器自带有一个实时时钟RTC带日历和时钟功能, 要使用它也要进行一下的基本操作:2,设置RTC基准时钟分频器3,初始化RTC的时钟值如, YEAR,MONTH,HOUR等4,启动RTC即CCR的CLKEN位职位5,读取完整时间寄存器值或等待中断。

陈述完以上的模块初始化后, 下面简要说明一下程序的流程先调用以上各个模块的初始化函数lcd_int(),RTCint()然后开启RTC时钟, 并调用LCD显示函数SendTimetRtc(),如果没用中断发生就判断实时时间是否与以设定的报警时间相同, 如果相同就马上接通蜂鸣器报警并且点亮LED灯。

ARM实训报告汇总

ARM实训报告汇总

实训一、绘出STM32开发板的MCU外围硬件连接图学生:吴磊郑黄庆阿不力孜指导老师:王宜结电子工程学院电子信息工程一、实训目的1.握STM32开发板的封装和引脚2.能够测量开发板外围器件与STM32芯片的实际连接,并画出电路图二、实训内容1.画出开发板上MCU与发光二极管DS0、DS1的连接示意图2.画出开发板上MCU与按键KEY0、KEY1、KRY2、KEYM的连接示意图3.画出开发板上MCU与24C02芯片的连接示意图4.画出开发板上MCU与W25X16芯片的连接示意图5.画出开发板上MCU与温度传感器18B20的连接示意图6.画出开发板上MCU与2.8寸液晶的连接示意图7.画出开发板上MCU与红外接收头的连接示意图8.画出开发板上MCU与PL2302芯片的连接示意图三、实训过程1、MCU图1图1中上部的BOOT1用于设置STM32的启动方式,其对应启动模式如下表所示:表1我们用串口下载代码,则配置BOOT0为1,BOOT1为0即可,如果想让STM32一按复位键就开始跑代码,则需要配置BOOT0为0,BOOT1随便设置都可以。

2、LED图2其中PWR是系统电源指示灯,为蓝色。

LED0和LED1分别接在PA8和PD2上,PA8还可以通过TIM1的通道1的PWM输出来控制DS0的亮度。

为了方便大家判断,我们选择了DS0为红色,DS1为绿色的LED灯。

3、按键图3KEY0、KEY1和KEY2用作普通按键输入,分别连接在PA13、PA15和PA14上。

WK_UP 按键连接到PA0(STM32的WKUP引脚),它除了可以用作普通输入按键外,还可以用作STM32的唤醒输入。

4、EEPROMALIENTEK MiniSTM32自带了24C02的EEPROM芯片,该芯片的容量为2Kbit,也就是256个字节。

图4这里我们把A0~A2均接地,对24C02来说也就是把地址位设置成了0了。

5、SPI FLASHALIENTEK MiniSTM32开发板载有SPI FLASH芯片W25X16,该芯片的容量为2M字节。

北航ARM9实验报告:实验3uCOS-II实验

北航ARM9实验报告:实验3uCOS-II实验

北航ARM9实验报告:实验3uCOS-II实验北航 ARM9 实验报告:实验 3uCOSII 实验一、实验目的本次实验的主要目的是深入了解和掌握 uCOSII 实时操作系统在ARM9 平台上的移植和应用。

通过实际操作,熟悉 uCOSII 的任务管理、内存管理、中断处理等核心机制,提高对实时操作系统的理解和应用能力,为后续的嵌入式系统开发打下坚实的基础。

二、实验环境1、硬件环境:ARM9 开发板、PC 机。

2、软件环境:Keil MDK 集成开发环境、uCOSII 源代码。

三、实验原理uCOSII 是一个可裁剪、可剥夺型的多任务实时内核,具有执行效率高、占用空间小、实时性能优良和可扩展性强等特点。

其基本原理包括任务管理、任务调度、时间管理、内存管理和中断管理等。

任务管理:uCOSII 中的任务是一个独立的执行流,每个任务都有自己的堆栈空间和任务控制块(TCB)。

任务可以处于就绪、运行、等待、挂起等状态。

任务调度:采用基于优先级的抢占式调度算法,始终让优先级最高的就绪任务运行。

时间管理:通过系统时钟节拍来实现任务的延时和定时功能。

内存管理:提供了简单的内存分区管理和内存块管理机制。

中断管理:支持中断嵌套,在中断服务程序中可以进行任务切换。

四、实验步骤1、建立工程在 Keil MDK 中创建一个新的工程,选择对应的 ARM9 芯片型号,并配置相关的编译选项。

2、导入 uCOSII 源代码将 uCOSII 的源代码导入到工程中,并对相关的文件进行配置,如设置任务堆栈大小、系统时钟节拍频率等。

3、编写任务函数根据实验要求,编写多个任务函数,每个任务实现不同的功能。

4、创建任务在主函数中使用 uCOSII 提供的 API 函数创建任务,并设置任务的优先级。

5、启动操作系统调用 uCOSII 的启动函数,使操作系统开始运行,进行任务调度。

6、调试与测试通过单步调试、查看变量值和输出信息等方式,对系统的运行情况进行调试和测试,确保任务的执行符合预期。

ARM嵌入式实验报告

ARM嵌入式实验报告

实验一ARM 汇编指令使用实验——基本数学/ 逻辑运算一、实验目的1. 初步学会使用ARM ADS / Embest IDE for ARM 开发环境及ARM 软件模拟器。

2. 通过实验掌握数据传送和基本数学/ 逻辑运算的ARM 汇编指令的使用方法。

二、实验设备1. 硬件:PC机。

2. 软件:ADS 1.2 / Embest IDE 200X 集成开发环境。

三、实验内容1 .熟悉ADS 1.2 / Embest IDE 200X 开发环境的使用,使用LDR/STR和MOV等指令访问寄存器或存储单元,实现数据的加法运算。

具体实验程序如下:/* armasm1a.s */• EQU X, 45 /*定义变量X,并赋值为45*/.EQU Y, 64 /*定义变量Y,并赋值为64*/.EQU STACK_TOP, 0X1000 /* 定义栈顶0X1000*/.GLOBAL _START.TEXT_START: /* 程序代码开始标志*/MOV SP, #STACK_TOPMOV R0, #X/*X 的值放入R0*/STR R0, [SP]/*R0 的值保存到堆栈*/MOV R0, #Y/*Y 的值放入R0*/LDR R1, [SP]/* 取堆栈中的数到R1*/STRR0, [SP] STOP: B STOP/* 程序结束,进入死循环 */.END等指令,完成基本数学 / 逻辑运算。

具体实验程序如下:/* armasm1b.s */ .EQU X, 45 /*定义变量X ,并赋值为45*/ .EQU Y, 64 /*定义变量Y ,并赋值为64*/ .EQU 乙87/*定义变量Z ,并赋值为87*/.GLOBAL _START .TEXT_START: /* 程序代码开始标志 */MOV R0, #X/*X 的值放入 R0*/MOV R0, R0, LSL #8 /*R0 的值乘以 2 的 8 次方 */ MOV R1, #Y/*Y 的值放入 R1*/ADD R2, R0, R1, LSR #1 /*R1 的值除以 2 再加上 R0 后的值放入 R2*/MOV SP, #0X1000 STR R2, [SP] MOV R0, #Z/*Z 的值放入 R0*/ AND R0, R0, #0XFF /* 取 R0 的低八位 */ MOV R1, #Y/*Y 的值放入 R1*/ADD R2, R0, R1, LSR #1 /*R1 的值除以 2 再加上 R0 后的值放入 R2*/ADDR0, R0, R1 2.使用 ADD/SUB/LSL/LSR/AND/ORR .EQU STACK_TOP, 0X1000 /* 定义栈顶 0X1000*/1.新建工程。

ARM培训实验指导书(第一版)

ARM培训实验指导书(第一版)

NXP 大学计划指定民大实验教材ARM与嵌入式技术版本:2008年1月第一版目录实验一熟悉Embest IDE集成开发环境 (1)实验二ARM汇编指令实验(1) (4)实验三ARM汇编指令实验(2) (9)实验三存储器实验.................................................................................... 错误!未定义书签。

实验四I/O接口实验............................................................................... 错误!未定义书签。

实验五中断实验........................................................................................ 错误!未定义书签。

实验六串口通信实验................................................................................ 错误!未定义书签。

实验七数码管(LED)显示实验 ............................................................ 错误!未定义书签。

实验八RTC及数码管显示实验(设计性实验).................................... 错误!未定义书签。

实验九液晶显示实验................................................................................ 错误!未定义书签。

实验十键盘控制实验................................................................................ 错误!未定义书签。

嵌入式系统ARM实验报告

嵌入式系统ARM实验报告

南京邮电大学通信与信息工程学院实验报告实验名称:实验一基于ADS开发环境的设计实验二嵌入式Linux交叉开发环境的建立实验三嵌入式Linux环境下的程序设计课程名称嵌入式系统B班级学号B********姓名马俊民开课时间2015/2016学年第1学期实验一基于ADS开发环境的程序设计一、实验目的1、学习ADS开发环境的使用;2、学习和掌握ADS环境下的汇编语言及C语言程序设计;3、学习和掌握汇编语言及C语言的混合编程方法。

二、实验内容1、编写和调试汇编语言程序;2、编写和调试C语言程序;3、编写和调试汇编语言及C语言的混合程序;4、编写程序测试多寄存器传送指令的用法。

三、实验原理ADS全称为ARM Developer Suite,是ARM公司推出的新一代ARM集成开发工具。

现在常用的ADS版本是ADS1.2,它取代了早期的ADS1.1和ADS1.0。

ADS用于无操作系统的ARM系统开发,是对裸机(可理解成一个高级单片机)的开发。

ADS具有极佳的测试环境和良好的侦错功能,它可使硬件开发工作者更深入地从底层去理解ARM处理器的工作原理和操作方法,为日后自行设计打基础,为BootLoader的编写和调试打基础。

1.ADS软件的组成ADS由命令行开发工具、ARM运行时库、GUI开发环境(CodeWarrior和AXD)、实用程序、支持软件等组成。

2.GUI开发环境ADS GUI开发环境包含CodeWarrior和AXD两种,其中Code Warrior是集成开发工具,而AXD是调试工具。

使用汇编语言进行编程简单、方便,适用于初始化硬件代码、启动代码等。

汇编语言具有一些相同的基本特征:1.一条指令一行。

2.使用标号(label)给内存单元提供名称,从第一列开始书写。

3.指令必须从第二列或能区分标号的地方开始书写。

4.注释必须跟在指定的注释字符后面,一直书写到行尾。

在ARM汇编程序中,每个段必须以AREA作为段的开始,以碰到下一个AREA 作为该段的结束,段名必须唯一。

5_ARM实验报告

5_ARM实验报告

5_ARM实验报告[实验报告]实验名称:5_ARM实验实验目的:1.了解ARM架构的特点和基本原理;2.掌握ARM指令集和编程模式;3.学会使用ARM开发工具进行编程和调试;4.实现一个简单的ARM程序并运行。

实验器材:1.ARM开发板;2.电脑;B数据线。

实验步骤:1.搭建开发环境根据实验指导书的步骤,将开发板与电脑连接,安装开发工具和驱动程序。

2.学习ARM指令集和编程模式通过阅读教材和参考资料,了解ARM指令集的基本原理和常用指令。

同时,学习ARM的编程模式,包括程序的加载、运行和调试等。

3.编写ARM程序根据实验要求,编写一个简单的ARM程序。

这个程序可以是一个简单的计算器,或者是一个LED灯的控制程序等。

编写程序时需要注意使用合适的指令和编程模式。

4.编译和烧录程序使用ARM开发工具,将编写好的程序进行编译和烧录。

编译过程会生成一个可执行的二进制文件,烧录过程会将这个二进制文件加载到开发板上。

5.调试并运行程序通过ARM开发工具进行调试,检查程序中可能存在的错误,并进行修正。

调试过程中需要注意程序的执行流程和变量的值等。

调试完成后,运行程序并观察其运行结果。

实验结果与分析:在实验中,我成功地搭建了ARM的开发环境,学习了ARM指令集和编程模式,并编写了一个简单的ARM程序。

经过编译和烧录,我成功地将程序加载到开发板上,并通过调试和运行,验证了程序的正确性。

实验中遇到的问题和解决方法:在编写程序的过程中,我遇到了一些语法错误和逻辑问题。

通过阅读资料、查找文档和与同学的讨论,我解决了这些问题。

在调试的过程中,我还遇到了一些程序运行速度过慢的问题。

通过优化代码和使用合适的编译选项,我解决了这个问题。

实验总结:通过这次实验,我对ARM架构有了更深入的了解,掌握了ARM指令集和编程模式的基本原理和使用方法。

通过编写和调试一个简单的ARM程序,我提高了自己的编程能力和解决问题的能力。

实验还让我明白了实际应用中ARM的重要性,以及它对于现代计算机系统的作用。

arm程序设计实验报告

arm程序设计实验报告

arm程序设计实验报告ARM程序设计实验报告一、引言ARM(Advanced RISC Machine)是一种精简指令集计算机(RISC)架构。

在本次实验中,我们将学习和实践ARM程序设计的基本知识和技巧。

本报告将介绍实验的目标、步骤和结果,并对所学内容进行总结和思考。

二、实验目标本次实验的主要目标是通过编写ARM汇编程序,实现简单的功能。

具体来说,我们将学习如何使用ARM汇编语言编写程序,了解寄存器、指令和内存的基本概念,以及如何进行程序的调试和优化。

三、实验步骤1. 环境准备:安装ARM开发工具链,并配置开发环境。

2. 编写程序:根据实验要求,编写ARM汇编程序,实现指定的功能。

3. 调试与测试:使用模拟器或硬件平台,调试和测试编写的程序,确保程序的正确性和稳定性。

4. 优化改进:根据实验结果和性能要求,对程序进行优化改进,提高程序的效率和可靠性。

四、实验结果在本次实验中,我们成功完成了以下任务:1. 实现了一个简单的计算器程序,可以进行加减乘除运算,并输出结果。

2. 编写了一个字符串反转程序,可以将输入的字符串逆序输出。

3. 设计了一个简单的游戏程序,用户需要通过按键控制角色移动,避开障碍物。

通过以上实验,我们掌握了ARM汇编语言的基本语法和指令,了解了寄存器和内存的使用方法,以及如何进行程序的调试和优化。

同时,我们还学习了如何与外部设备进行交互,实现更复杂的功能。

五、实验总结通过本次实验,我们深入了解了ARM程序设计的基本原理和技巧。

ARM架构的精简指令集使得程序设计更加高效和灵活,适用于各种嵌入式系统和移动设备。

同时,ARM处理器的低功耗特性也使得其在无线通信、物联网等领域有着广泛的应用前景。

然而,ARM程序设计也存在一些挑战和难点。

首先,由于ARM汇编语言与高级语言相比,语法更为底层和复杂,需要更加深入地理解计算机硬件结构。

其次,ARM处理器的架构和指令集不同于传统的x86架构,需要重新学习和适应。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

教师评阅意见:
签名:年月日实验成绩:
一.实验目的
通过实验了解使用ADS 1.2 编写C 语言程序,并进行调试。

二.实验设备
(1)硬件:PC 机一台
(2)软件:Windows98/XP/2000 系统,ADS 1.2 集成开发环境
三.实验内容
编写一个汇编程序文件和一个C 程序文件。

汇编程序的功能是初始化堆栈指针和初始化C 程序的运行环境,然后调跳转到C 程序运行,这就是一个简单的启动程序。

C 程序使用加法运算来计算1+2+3+...+(N-1)+N 的值(N>0)。

四.实验预习要求
(1)仔细阅读参考文献[1]第4 章ARM 指令系统的内容。

(2)仔细阅读产品光盘附带文档《ADS 集成开发环境及仿真器应用》或其它相关资料,了解ADS 工程编辑和AXD 调试的内容。

(本实验使用软件仿真)。

五.实验步骤
(1)启动ADS 1.2,使用ARM Executable Image 工程模板建立一个工程ProgramC。

(2)建立源文件Startup.S 和Test.c,编写实验程序,然后添加到工程中。

(3)设置工程链接地址RO Base 为0x40000000,RW Base 为0x40003000。

设置调试入口地址Image entry point 为0x40000000。

(4)设置位于开始位置的起始代码段,如图2.14 所示。

(5)编译链接工程,选择【Project】->【Debug】,启动AXD 进行软件仿真调试。

(6)在Startup.S 的“B Main”处设置断点,然后全速动行程序。

(7)程序在断点处停止。

单步运行程序,判断程序是否跳转到C 程序中运行。

(8)选择【Processor Views】->【Variables】)打开变量观察窗口,观察全局变量的值,
单步/全速运行程序,判断程序的运算结果是否正确。

六.实验参考程序
C 语言实验的参考程序见程序清单2.8。

汇编启动代码见程序清单2.6。

程序清单2.8 C 语言实验参考程序
#define uint8 unsigned char
#define uint32 unsigned int
#define N 100
uint32 sum;
// 使用加法运算来计算1+2+3+...+(N-1)+N 的值。

(N>0)
void Main(void)
{ uint32 i;
sum = 0;
for(i=0; i<=N; i++)
{ sum += i;
}
while(1);
}
程序清单2.9 简单的启动代码
; 启动文件。

初始化C 程序的运行环境,然后进入C 程序代码。

IMPORT |Image$$RO$$Limit|
IMPORT |Image$$RW$$Base|
IMPORT |Image$$ZI$$Base|
IMPORT |Image$$ZI$$Limit|
IMPORT Main ; 声明C 程序中的Main()函数
AREA Start,CODE,READONLY ; 声明代码段Start
ENTRY ; 标识程序入口
CODE32 ; 声明32 位ARM 指令
Reset LDR SP,=0x40003F00
; 初始化C 程序的运行环境
LDR R0,=|Image$$RO$$Limit|
LDR R1,=|Image$$RW$$Base|
LDR R3,=|Image$$ZI$$Base|
CMP R0,R1
BEQ LOOP1
LOOP0 CMP R1,R3
LDRCC R2,[R0],#4
STRCC R2,[R1],#4
BCC LOOP0
LOOP1 LDR R1,=|Image$$ZI$$Limit|
MOV R2,#0
LOOP2 CMP R3,R1
STRCC R2,[R3],#4
BCC LOOP2
B Main ; 跳转到
C 程序代码Main()函数
END
七.思考
(1)在实验参考程序中,Startup.S 文件的作用是什么?如果没有Startup.S 文件,C 程序会运行出错吗?
答:Startup.S文件的作用是为上述的汇编语句提供编译的环境。

如果没有这个文件,则C语言程序的运行不会出错,因为C语言程序的运行是独立的。

(2)实验程序中的Main()函数名是否可以更改为其它名字?(提示:Main 只是一个标号)
答:可以,因为Main只是一个标号,不过在程序中的每一处有关Main()的地方都必须改过来,否则就会出现错误。

八.心得体会。

相关文档
最新文档