ARM实验指导

合集下载

ARM开发板使用手册

ARM开发板使用手册

ARM开发板使用手册PHILIP LPC2132ARM7TDMI第一章介绍LPC2132开发板是专门为arm 初学者开发的实验板,用户可以做基础的arm实验,也可以做基于ucos-ii的操作系统实验。

本系统的实验源代码全部开放,用户可以在此基础上开发产品,减少重复劳动。

由于LPC2132体积很小,并且功能强大,因此特别适合需要复杂智能控制的场合,其运行速度高于早期的80486计算机,而体积只有指甲大。

我们已经将LPC2132产品成功应用在干扰比较强的工业场合,经过6个月的运行,各项指标符合要求。

因此我们特别推荐这一款开发板作为ARM初学者入门。

由于此款开发板体积很小,非常适合直接应用在工业以及民用智能控制器的场合。

LPC2132 CPU介绍LPC2131/2132/2138 是基于一个支持实时仿真和跟踪的16/32 位ARM7TDMI-STM CPU,并带有32kB、64kB 和512kB 嵌入的高速Flash 存储器。

128 位宽度的存储器接口和独特的加速结构使32 位代码能够在最大时钟速率下运行。

对代码规模有严格控制的应用可使用16 位Thumb 模式将代码规模降低超过30%,而性能的损失却很小。

较小的封装和很低的功耗使LPC2131/2132/2138 特别适用于访问控制和POS 机等小型应用中;由于内置了宽范围的串行通信接口和8/16/32kB 的片内SRAM,它们也非常适合于通信网关、协议转换器、软件modem、语音识别、低端成像,为这些应用提供大规模的缓冲区和强大的处理功能。

多个32 位定时器、1个或2 个10 位8 路的ADC、10 位DAC、PWM 通道、47 个GPIO 以及多达9 个边沿或电平触发的外部中断使它们特别适用于工业控制应用以及医疗系统。

主要特性●●16/32 位ARM7TDMI-S 核,超小LQFP64 封装。

●●8/16/32kB 的片内静态RAM 和32/64/512kB 的片内Flash 程序存储器。

Cortex-M4实验指导书-TM4C1294

Cortex-M4实验指导书-TM4C1294

Cortex-M4实验指导书陈朋 编写浙江工业大学信息工程学院2014.9前言本系列实验适用于单片机初学者。

通过系列实验的训练,学习者可以对单片机程序开发的过程有初步了解,能使用集成开发环境Code Composer Studio进行简单的单片机系统应用开发。

如果想精通单片机,仅仅靠这些实验是不够的,需要在更多的项目实践中训练提高。

实验内容按照由浅入深的顺序组织。

其中实验一和实验二为CCS环境的熟悉与基本使用,实验三至实验六为验证性实验,实验七至实验十二为设计性实验,实验十三为综合性实验。

教师可以根据课时进行全部实验或者选做其中部分。

指导书中所使用的实验扩展板是浙江工业大学设计的,核心板为TI公司制造的,型号为EK-TM4C1294XL。

开发软件环境为Code Composer Studio IDE 6.0以上。

实验注意事项1、实验前请做好预习,熟悉实验任务,了解所用仪器的使用方法和注意事项。

2、实验过程中,设备接通电源前,必须确认接线无误。

如实验中需更改接线,必须切断相关设备的电源后才能操作。

3、做实验时若发生异常现象(例如,元件发烫、有异味或冒烟等),应立即关断电源,保持现场,报告指导老师。

排除故障后,须经指导老师同意,才能继续实验。

4、实验操作完成后请关闭仪器设备电源,并将仪器设备按放回规定位置。

报告指导老师,经同意后可以离开。

5、实验后按照实验要求提交电子稿或者纸质实验报告。

抄袭者不得分。

目录前 言 (i)实验注意事项 (ii)目 录 (iii)实验一 GPIO接口实验 (4)实验二 矩阵按键操作实验 (14)实验三 PWM呼吸灯实验 (18)实验四 中断实验 (23)实验五 I2C编程及应用 (26)实验六 ADC操作实验 (32)实验七 并行ADC与DAC (36)实验八 三轴加速度传感器实验 (42)实验九 MicroSD卡操作实验 (49)实验十 TFT液晶显示实验 (55)实验十一 TFT LCD触摸控制实验 (62)实验十二 红外遥控接收编程实验 (67)实验十三 综合操作实验 (70)附录A TM4C1294管脚定义 (71)附录B EK‐TM4C1294XL核心板原理图 (75)附录C AY‐SCMP Kit开发板原理图 (81)附录D AY‐SCMP Kit开发板模块接口资源 (91)实验一GPIO接口实验一、实验目的1.掌握Code Composer Studio 6.0(以下简称CCS)的安装和配置步骤过程。

ARM初学入门

ARM初学入门

经过一段时间对ARM的学习,在这里跟大家说一些前期的学习经验,另外仅以一个例子说明一下ADS的开发过程,因为这也是初学,可能有的地方说的不太好,望大家谅解,另外可以找其它参考资料来学习。

第一部分:ARM前期学习经验个人认为,要想学好ARM应该首先对ARM的整体框架(包括ARM体系结构,ARM开发过程,及ARM程序框架及执行过程等)有一个了解。

这里这就不多说了,这些东西我也只是刚刚开始学习,还没有很好的掌握,就只说一些个人想法吧。

呵呵,因为时间比较紧张,本来说是一个星期搞定ARM,至少拿着书本可以一点点的做着,可是经过上一个星期,到最后,哇,真的快疯了。

刚开始拿到实验箱,以为和NIOS一样,多跑一些DEMO应该就差不多会玩了,没想到一开始就碰到一个大问题,ARM实验箱里边带了几本教材和实验指导书,拿着实验指导书做了几个DEMO就做不下去了,因为前两个DEMO还比较简单,就只是用汇编语言写了几条对ARM寄存器操作的语句,学过汇编语言的很快就可以理解了。

可是往后就不一样了,因为刚开始学,不太了解ARM程序的框架,实在是看不懂了,为什么每个全程里边都有用到44b.h ,44blib.h ,44blib.c还有一个44binit.s文件?前边三个还容易理解,玩过单片机的很容易就能看出来44b.h 里边定义了一些在S3C44B0X内部的寄存器,44blib.h和44blib.c定义了一些有关初始化的函数,而44binit.s呢?看不懂,到这里我的ARM程序就没法往下做了,只有在网上再找资料,看这个函数到底是干什么用的,原来这就是以前经常听说的“bootloader”或着说是“启动代码”,或着说是“ARM的引导程序”,就是处理器在启动的时候执行的一段代码,主要任务是初始化处理器模式,设置堆栈,初始化变量等等.由于以上的操作均与处理器体系结构和系统配置密切相关,所以一般由汇编来编写(关于这方面的内容大家可以查看相关资料)。

嵌入式ADS实验指导书

嵌入式ADS实验指导书

实验一嵌入式微处理器系统的开发环境一、实验环境PC机一台软件: ADS 1.2集成开发环境一套二、实验目的1.了解嵌入式系统及其特点;2.熟悉嵌入式系统的开发环境和基本配置并能编写简单的汇编程序三、实验内容1.嵌入式系统的开发环境、基本配置2.使用汇编指令完成简单的加法实验四、实验步骤(1)在D:\新建一个目录,目录名为experiment。

(2)点击 WINDOWS 操作系统的“开始|程序|ARM Developer Suite v1.2 |Code Warrior for ARM Developer Suite”启动Metrowerks Code Warrior,或双击“ADS 1.2”快捷方式启动。

启动ADS 1.2 如图1-1所示:图1-1启动ADS1.2(3) 在CodeWarrior 中新建一个工程的方法有两种,可以在工具栏中单击“New”按钮,也可以在“File”菜单中选择“New…”菜单。

这样就会打开一个如图1-2 所示的对话框。

选择【File】->【New…】,使用ARM Executable Image工程模板建立一个工程,名称为ADS,目录为D:\experiment。

图1-2 新建文件在这个对话框中为用户提供了7 种可选择的工程类型:1)ARM Executabl Image:用于由ARM 指令的代码生成一个ELF 格式的可执行映像文件;2)ARM Object Library:用于由ARM 指令的代码生成一个armar 格式的目标文件库;3)Empty Project:用于创建一个不包含任何库或源文件的工程;4)Make Wizard:用于将Visual C 的nmake 或GNU make 文件转入到CodeWarrior IDE 工程文件;5)Thumb ARM Executable Image:用于由ARM 指令和Thumb 指令的混和代码生成一个可执行的ELF 格式的映像文件;6)Thumb Executable image:用于由Thumb 指令创建一个可执行的ELF 格式的映像文件;7)Thumb Object Library:用于由Thumb 指令的代码生成一个armar 格式的目标文件库。

ARM入门教程.pdf

ARM入门教程.pdf

目录第1章 ARM微处理器概述 51.1 ARM-Advanced RISC Machines 51.2 ARM微处理器的应用领域及特点 51.2.1 ARM微处理器的应用领域 51.2.2 ARM微处理器的特点 61.3 ARM微处理器系列 61.3.1 ARM7微处理器系列 61.3.2 ARM9微处理器系列 71.3.3 ARM9E微处理器系列 71.3.4 ARM10E微处理器系列 71.3.5 SecurCore微处理器系列 81.3.6 StrongARM微处理器系列 81.3.7 Xscale处理器 81.4 ARM微处理器结构 81.4.1 RISC体系结构 81.4.2 ARM微处理器的寄存器结构 91.4.3 ARM微处理器的指令结构 91.5 ARM微处理器的应用选型 101.6 本章小节10第2章 ARM微处理器的编程模型 112.1 ARM微处理器的工作状态 112.2 ARM体系结构的存储器格式 112.3 指令长度及数据类型 122.4 处理器模式 122.5 寄存器组织 132.5.1 ARM状态下的寄存器组织 132.5.2 Thumb状态下的寄存器组织 152.5.3 程序状态寄存器 162.6 异常(Exceptions) 182.6.1 ARM体系结构所支持的异常类型 182.6.2 对异常的响应 182.6.3 从异常返回 192.6.4 各类异常的具体描述 192.6.5 异常进入/退出小节 202.6.6 异常向量(Exception Vectors) 202.6.7 异常优先级(Exception Priorities) 212.6.8 应用程序中的异常处理 212.7 本章小节21第3章 ARM微处理器的指令系统 223.1 ARM微处理器的指令集概述 223.1.1 ARM微处理器的指令的分类与格式 223.1.2 指令的条件域 233.2 ARM指令的寻址方式 233.2.1 立即寻址 243.2.2 寄存器寻址 243.2.2 寄存器间接寻址 243.2.3 基址变址寻址 243.2.4 多寄存器寻址 253.2.5 相对寻址 253.2.6 堆栈寻址 253.3 ARM指令集 253.3.1 跳转指令 253.3.2 数据处理指令 263.3.3 乘法指令与乘加指令 303.3.4 程序状态寄存器访问指令 323.3.5 加载/存储指令 323.3.6 批量数据加载/存储指令 343.3.7 数据交换指令 353.3.8 移位指令(操作) 353.3.9 协处理器指令 363.3.10 异常产生指令 383.4 Thumb指令及应用 383.5 本章小节39第4章 ARM程序设计基础 404.1 ARM汇编器所支持的伪指令 404.1.1 符号定义(Symbol Definition)伪指令 404.1.2 数据定义(Data Definition)伪指令 414.1.3 汇编控制(Assembly Control)伪指令 434.1.4 其他常用的伪指令 454.2 汇编语言的语句格式 484.2.1 在汇编语言程序中常用的符号 494.2.2 汇编语言程序中的表达式和运算符 494.3 汇编语言的程序结构 524.3.1 汇编语言的程序结构 524.3.2 汇编语言的子程序调用 524.3.3 汇编语言程序示例 534.3.4 汇编语言与C/C++的混合编程 554.4 本章小节56第5章应用系统设计与调试 575.1 系统设计概述 575.2 S3C4510B概述 585.2.1 S3C4510B及片内外围简介 585.2.2 S3C4510B的引脚分布及信号描述 615.2.3 CPU内核概述及特殊功能寄存器(Special Registers) 675.2.4 S3C4510B的系统管理器(System Manager) 725.3 系统的硬件选型与单元电路设计 825.3.1 S3C4510B芯片及引脚分析 825.3.2 电源电路 835.3.3 晶振电路与复位电路 835.3.4 Flash存储器接口电路 855.3.5 SDRAM接口电路 895.3.6 串行接口电路 935.3.7 IIC接口电路 945.3.8 JTAG接口电路 955.3.9 10M/100M以太网接口电路 965.3.10 通用I/O接口电路 1005.4 硬件系统的调试 1015.4.1 电源、晶振及复位电路 1015.4.2 S3C4510B及JTAG接口电路 1025.4.3 SDRAM接口电路的调试 1035.4.4 Flash接口电路的调试 1055.4.5 10M/100M以太网接口电路 1055.5 印刷电路板的设计注意事项 1055.5.1 电源质量与分配 1055.5.2 同类型信号线的分布 1065.6 本章小节 106 第6章部件工作原理与编程示例 1076.1 嵌入式系统的程序设计方法 1076.2 部件工作原理与编程示例 1086.2.1 通用I/O口工作原理与编程示例 1086.2.2 串行通讯工作原理与编程示例 1116.2.3 中断控制器工作原理与编程示例 1206.2.4 定时器工作原理与编程示例 1236.2.5 GDMA工作原理与编程示例 1276.2.6 IIC总线控制器工作原理 1336.2.7 以太网控制器工作原理 138主要特性139MAC功能模块 140 带缓冲DMA接口(Buffered DMA Interface) 144以太网控制器特殊功能寄存器(Ethernet Controller Special Registers) 147MAC寄存器(Media Access Control(MAC)Register) 154以太网控制器的操作(Ethernet Controller Operation) 160发送一个帧(Transmitting a Frame) 162接收一个帧(Receiving a Frame) 1626.2.8 Flash存储器工作原理与编程示例 1626.3 BootLoader简介 1676.4 本章小节 167 第7章嵌入式uClinux及其应用开发 1687.1 嵌入式uClinux系统概况 1687.2 开发工具GNU的使用 1707.2.1 GCC编译器 1707.2.2 GNU Make 1727.2.3 使用GDB调试程序 1777.3 建立uClinux开发环境 1807.3.1 建立交叉编译器 1817.3.2 uClinux针对硬件的改动 1847.3.3 编译uClinux内核 1857.3.4 内核的加载运行 1877.4 在uClinux下开发应用程序 1887.4.1 串行通信 1907.4.2 socket编程 1957.4 .3 添加用户应用程序到uClinux 2027.4.4 通过网络添加应用程序到目标系统 2057.5 本章小结 207 第8章ARM ADS集成开发环境的使用 2098.1 ADS集成开发环境组成介绍 2098.1.1 命令行开发工具 2098.1.2 ARM运行时库 2188.1.3 GUI开发环境(Code Warrior和AXD) 2198.1.4 实用程序 2218.1.5 支持的软件 2218.2 使用ADS创建工程 2228.2.1 建立一个工程 2228.2.2 编译和链接工程 2258.2.3 使用命令行工具编译应用程序 2298.3 用AXD进行代码调试 2308.4 本章小结 233第1章 ARM微处理器概述本章简介ARM微处理器的一些基本概念、应用领域及特点,引导读者进入ARM技术的殿堂。

嵌入式系统原理与应用实验指导书(合稿+习题)

嵌入式系统原理与应用实验指导书(合稿+习题)

嵌入式系统原理与应用实验指导书南航金城学院2013.2目录目录 (1)第一部分试验箱硬件结构 (2)第二部分实验 (11)实验一ADS1.2集成开发环境练习 (11)实验二汇编指令实验1 (17)实验三汇编指令实验2 (20)实验四汇编指令实验3 (23)实验五ARM微控制器工作模式实验 (28)实验六 C语言程序实验 (33)实验七 C语言调用汇编程序实验 (36)实验八GPIO输出控制实验 (39)实验九GPIO输入实验 (46)实验十外部中断实验 (50)实验十一UART通讯实验 (56)实验十二I2C接口实验 (64)实验十三定时器实验 (75)实验十四PWM DAC实验 (81)实验十五ADC实验 (87)实验十六RTC实验 (94)实验十七步进电机控制实验 (101)实验十八直流电机控制实验 (105)附录1 DeviceARM2410 专用工程模板 ..................................................... 错误!未定义书签。

第一部分试验箱硬件结构MagicARM2410教学实验开发平台是一款可使用μC/OS-II、Linux和WinCE操作系统、支持QT、MiniGUI图形系统、集众多功能于一身的ARM9教学实验开发平台。

采用Samsung公司的ARM920T内核的S3C2410A微处理器,扩展有充足的存储资源和众多典型的嵌入式系统接口。

MagicARM2410实验箱参考如图1.1所示。

图1.1 MagicARM2410实验箱外观图MagicARM2410实验箱功能框图如图1.2所示。

图1.2 MagicARM2410实验箱功能框图1.1 S3C2410A芯片简介S3C2410A是Samsung公司推出的16/32位RISC处理器(ARM920T内核),适用于手持设备、POS机、数字多媒体播放设备等等,具有低价格、低功耗、高性能等特点。

基于STM32的嵌入式软件开发基础-实验指导书(经典)

基于STM32的嵌入式软件开发基础-实验指导书(经典)

基于STM32的嵌⼊式软件开发基础-实验指导书(经典)实验⼀基于STM32的嵌⼊式软件开发基础实验⼀、实验⽬的1 、掌握嵌⼊式软件开发流程2 、学会使⽤嵌⼊式软件开发⼯具3 、学会使⽤⽆限循环架构开发简单的嵌⼊式应⽤程序4 、学会使⽤单步⁄全速运⾏、设置断点和观察变量⁄寄存器等⽅法调试嵌⼊式应⽤程序5 、掌握通⽤数字输⼊输出(GPIO)和系统定时器(SysTick)的软件开发⽅法6 、理解发光⼆极管(LED)和按键(Push Button)的驱动原理7 、掌握常⽤的延时(Delay)实现技巧⼆、实验环境1 、硬件:ALIENTEK STM32F103嵌⼊式开发板2 、软件:REALVIEW MDK或IAR EWARM三、实验内容1 、LED点亮实验:使⽤GPIO的相关知识,设计基于⽆限循环架构的嵌⼊式应⽤程序,点亮开发板上绿⾊LED和红⾊LED;2 、流⽔灯实验⼀:使⽤GPIO和延时循环,设计基于⽆限循环架构的嵌⼊式应⽤程序,使开发板上的绿⾊LED和红⾊LED先后轮流闪烁;3 、按键控制LED实验:使⽤GPIO的相关知识,设计基于⽆限循环架构的嵌⼊式应⽤程序,实现以下功能:1 )当按下WK_UP按键时,开发板上的绿⾊LED点亮;当释放WK_UP按键时,开发板上的绿⾊LED熄灭;2 )当按下KEY1按键时,开发板上的红⾊LED点亮;当释放KEY1按键时,开发板上的红⾊LED熄灭;3 )当同时按下WK_UP和KEY1按键时,开发板上的红⾊LED和黄⾊LED同时点亮;当同时释放WK_UP和KEY1按键时,开发板上的红⾊LED和黄⾊LED同时熄灭;4 、流⽔灯实验⼆:使⽤GPIO和SysTick的相关知识,设计基于⽆限循环架构的嵌⼊式应⽤程序,使开发板上的绿⾊LED和红⾊LED先后轮流闪烁,每个LED点亮和熄灭的时间各为1s,并在程序中定义⼀个8位⽆符号变量来记录红⾊LED闪烁的次数;调试程序,在REALVIEW MDK或IAR EWARM的调试界⾯中,通过在程序中设置断点,并打开变量观察窗⼝,加⼊对应的变量,全速运⾏,随着红⾊LED的闪烁,跟踪⽤来记录红⾊LED闪烁次数的8位⽆符号变量的变化情况;四、硬件设计1 、发光⼆极管(LED )与嵌⼊式微控制器(STM32F103)的接⼝电路2 、按键与嵌⼊式微控制器(STM32F103)的接⼝电路五、软件设计1 、LED 点亮实验程序:程序(略)2 、流⽔灯实验⼀程序:程序(略)3 、按键控制LED 实验程序:程序(略)4 、流⽔灯实验⼆程序:程序(略)六、实验结果1 、LED 点亮实验结果:⽤⽂字或图⽚描述该程序运⾏的结果2 、流⽔灯实验⼀结果:⽤⽂字或图⽚描述该程序运⾏的结果3 、按键控制LED 实验结果:⽤⽂字或图⽚描述该程序运⾏的结果4 、流⽔灯实验⼆结果:⽤⽂字或图⽚描述该程序运⾏的结果(调试界⾯中断点设置和变量观察窗⼝的截图) PA8 PD2PA15 PA13实验⼆基于STM32的嵌⼊式软件开发⾼级实验⼀、实验⽬的1 、了解中断控制器(NVIC)的内部结构和⼯作原理2 、深⼊理解中断机制,学会编写中断服务函数3 、学会使⽤中断服务函数开发基于前后台架构的较复杂的嵌⼊式应⽤程序4 、掌握串⾏通信的原理,掌握通⽤同步串⾏收发器(USART)的软件开发⽅法5 、熟悉模数转换的过程和性能指标,掌握模数转换器(ADC)的软件开发⽅法⼆、实验环境1 、硬件:ALIENTEK STM32F103嵌⼊式开发板2 、软件:REALVIEW MDK或IAR EWARM三、实验内容1 、LED闪烁实验:使⽤NVIC(含SYSTICK)和GPIO的相关知识,编写中断服务函数,并开发基于前后台架构的嵌⼊式应⽤程序,使开发板上绿⾊LED每1s闪烁⼀次;2 、串⼝输出实验:使⽤USART的相关知识,设计基于⽆限循环架构的嵌⼊式应⽤程序,通过USART1向PC 的串⼝发送“Hello World!”,其中USART1和串⼝的波特率设置为115200bps,数据格式设置为8位数据位、⽆奇偶校验位、1位停⽌位和⽆数据流控制;在PC上运⾏串⼝调试助⼿,找到对应的COM⼝并作设置波特率和数据格式后打开,再运⾏开发板上的程序,观察串⼝调试助⼿中接收区的数据,验证程序的运⾏结果;3 、MCU温度检测实验:使⽤NVIC(含SYSTICK)、USART和ADC的相关知识编写程序,编写中断服务函数,并开发基于前后台架构的嵌⼊式应⽤程序,每隔1s通过⽚内温度传感器和模数转换器(ADC)检测MCU的温度并通过USART1将其输出到PC的串⼝上;在PC上运⾏串⼝调试助⼿,找到对应的COM⼝并作相应设置后打开,再运⾏开发板上的程序,观察PC上串⼝调试助⼿中接收区的数据变化情况,验证程序的运⾏结果;四、硬件设计1 、发光⼆极管(LED)与嵌⼊式微控制器(STM32F103)的接⼝电路PA8PD22 、按键与嵌⼊式微控制器(STM32F103)的接⼝电路3 、嵌⼊式微控制器(STM32F103)的温度传感器和ADC 的模块图五、软件设计1 、LED 闪烁实验:程序(包括主函数源⽂件和中断服务函数源⽂件)2 、串⼝输出实验:程序(略)3 、MCU 温度检测实验:程序(包括主函数源⽂件和中断服务函数源⽂件)六、实验结果 1 、LED 闪烁实验:⽤⽂字或图⽚描述该程序运⾏的结果2 、串⼝输出实验:⽤⽂字或图⽚描述该程序运⾏的结果(程序运⾏中PC 上串⼝调试助⼿的截图) 3 、MCU 温度检测实验:⽤⽂字或图⽚描述该程序运⾏的结果(程序运⾏中PC 上串⼝调试助⼿的截图)PA15。

嵌入式系统(STM32微处理器)实训指导书

嵌入式系统(STM32微处理器)实训指导书

嵌入式系统(STM32微控制器)实训指导书意法半导体公司的STM32微控制器具有32位字长的CPU,使用精简指令系统(RISC)。

精简指令系统的指令字长固定,译码方便,相对于复杂指令系统(CISC),精简指令系统的处理效率更高。

具有32位字长CPU的STM32系列微控制器的处理能力远高于8位和16位单片机,同时集成了与32位CPU相适应的强大外设(如双通道ADC、多功能定时器、7通道DMA、SPI等),能够完成过去一般单片机所无法达到控制功能。

现在,已经形成了以8位单片机为主流的低端产品和以32位微控制器为主流的高端产品两大市场。

对于自动化领域的从业人员,了解32位微控制器的结构、特点,掌握其使用方法,是很有必要的。

一、关于学习方法此前,我们已经学习过《C语言程序设计》、《微机原理》、《单片机原理及应用》等相关课程。

这些课程的学习是系统的、完整的、全面的,是有老师讲授的。

这种学习方法,适合在学校学习一些重要的基础理论课程。

在工作中,我们常常会遇到新的东西,需要以已有的知识作为基础,去解决问题、完成任务。

这就需要不同于前述的另一种学习方法。

这种方法是建立在自学基础上的,以解决实际问题为目的,允许通过局部的、模仿性的手段,来实现既定目标。

这种方法在工程实践中的应用是非常普遍的。

“白猫黑猫,能抓住老鼠就是好猫”。

能解决问题的方法就是好方法。

本次实训采取的方法是:将参考资料发给同学,同学自学其中需要的部分。

在指导教师引导下,体验各个控制项目、理解各组成部分,再以原控制软件为基础进行修改和移植,获得要达到的控制效果。

在本次实训中,我们使用的微控制器型号为STM32F103RB。

STM32F103RB是STM32微控制器系列中的一种,内部具有128KB程序存储器、20KB随机读写存储器、1个16位高级定时器、3个16位通用定时器、2个SPI、2个I2C、3个USART、1个USB、1个CAN、2个ADC。

芯片为64引脚LQFP封装,有51个I/O引脚。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

ADS 集成开发环境及EasyJTAG 仿真器应用ADS 集成开发环境是ARM 公司推出的ARM 核微控制器集成开发工具,英文全称为ARM Developer Suite,成熟版本为ADS1.2。

ADS1.2 支持ARM10 之前的所有ARM 系列微控制器,支持软件调试及JTAG 硬件仿真调试,支持汇编、C、C++源程序,具有编译效率高、系统库功能强等特点,可以在Windows98、Windows XP、Windows2000 以及RedHat Linux上运行。

这里将简单介绍使用ADS1.2 建立工程,编译连接设置,调试操作等等。

最后还介绍了基于LPC2100 系列ARM7 微控制器的工程模板的使用,EasyJTAG 仿真器的安装与使用。

一、ADS 1.2 集成开发环境的组成ADS 1.2 由6 个部分组成,如表1 所示。

表1 ADS 1.2 的组成部分由于用户一般直接操作的是CodeWarrior IDE 集成开发环境和AXD 调试器,所以这一章我们只介绍这两部分软件的使用,其它部分的详细说明参考ADS 1.2 的在线帮助文档或相关资料。

1. CodeWarrior IDE 简介ADS 1.2 使用了CodeWarrior IDE 集成开发环境,并集成了ARM 汇编器、ARM 的C/C++编译器、Thumb 的C/C++编译器、ARM 连接器,包含工程管理器、代码生成接口、语法敏感(对关键字以不同颜色显示)编辑器、源文件和类浏览器等等。

CodeWarrior IDE 主窗口如图1所示。

2. AXD 调试器简介AXD 调试器为ARM 扩展调试器(即ARM eXtended Debugger),包括ADW/ADU 的所有特性,支持硬件仿真和软件仿真(ARMulator)。

AXD 能够装载映像文件到目标内存,具有单步、全速和断点等调试功能,可以观察变量、寄存器和内存的数据等等。

AXD 调试器主窗口如图2 所示。

二、工程的编辑1. 建立工程点击WINDOWS 操作系统的【开始】->【程序】->【ARM Developer Suite v1.2】->【CodeWarrior for ARM Developer Suite】起动Metrowerks CodeWarrior,或双击“CodeWarriorfor ARM Developer Suite”快捷方式起动。

启动ADS1.2 IDE 如图3 所示。

点击【File】菜单,选择【New…】即弹出New 对话框,如图4 所示。

选择工程模板为ARM 可执行映象(ARM Executable Image)或Thumb 可执行映象(Thumb Executable Image),或Thumb、ARM 交织映象(Thumb ARM Interworking Image),然后在【Location】项选择工程存放路径,并在【Project name】项输入工程名称,点击【确定】按钮即可建立相应工程,工程文件名后缀为mcp(下文有时也把工程称为项目) 。

2. 建立文件建立一个文本文件,以便输入用户程序。

点击“New Text File”图标按钮,如图5 所示。

然后在新建的文件中编写程序,点击“Save”图标按钮将文件存盘(或从【File】菜单选择【Save】),输入文件全名,如TEST1.S。

注意,请将文件保存到相应工程的目录下,以便于管理和查找。

当然,您也可以New 对话框选择【File】页来建立源文件,如图4 所示,或使用其它文本编辑器建立或编辑源文件。

3. 添加文件到工程如图6 所示,在工程窗口中【Files】页空白处右击鼠标,弹出浮动菜单,选择“Add Files…”即可弹出“Select files to add…”对话框,选择相应的源文件(可按着Ctrl 键一次选择多个文件),点击【打开】按钮即可。

另外,用户也可以在【Project】菜单中选择【Add Files…】来添加源文件,或使用New对话框选择【File】页来建立源文件时选择加入工程(即选中“Add to Project”项)。

添加文件操作如图6、图7 所示。

4. 编译连接工程如图8 所示为工程窗口中的图标按钮,通过这些图标按钮,您可以快速的进行工程设置、编译连接、启动调试等等(在不同的菜单项上可以分别找到对应的菜单命令)。

它们从左至右分别为:DebugRel Settings:工程设置,如地址设置、输出文件设置、编译选项等,其中DebugRel 为当前的生成目标(target system)。

Synchronize Modification Dates:同步修改日期,检查工程中每个文件的修改日期,若发现有更新(如使用其它编辑器编辑源文件),则在Touch 栏标记“√”。

Make:编译连接(快捷键为F7)。

Debug:启动AXD 进行调试(快捷键为F5)。

Run:启动AXD 进行调试,并直接运行程序。

Project Inspector:工程检查,查看和配置工程中源文件的信息。

点击“DebugRel Settings…”图标按钮,即可进行工程的地址设置、输出文件设置、编译选项等,如图9 所示。

在“ARM Linker”对话框设置连接地址,在“Language Settings”中设置各编译器的编译选项。

对于简单的软件调试,可以不进行连接地址的设置,直接点击工程窗口的“Make”图标按钮,即可完成编译连接。

若编译出错,会有相应的出错提示,双击出错提示行信息,编辑窗即会使用光标指出当前出错的源代码行,编译连接输出窗口如图10 所示。

同样,您可以在【Project】菜单中找到相应的命令。

如图11 所示,Touch 栏用于标记文件是否已编译,若打上“√”则表明对应文件需要重新编译。

Touch 栏用于标记文件是否已编译,若打上“√”则表明对应文件需要重新编译。

可以通过单击该栏位置来设置/取消符号“√”,或将工程目录下的*.tdt 文件删除也可以使整个工程源文件均打上“√”。

5. 打开旧工程点击【File】菜单,选择【Open…】即弹出“打开”对话框,找到相应的工程文件(*.mcp),单击【打开】即可。

在工程窗口的【Files】页中,双击源程序的文件名即可打开该文件进行编辑。

三、工程的调试1. 选择调试目标当工程编译连接通过后,在工程窗口中点击“Debug”图标按钮,即可启动AXD 进行调试(也可以通过【开始】菜单起动AXD)。

点击菜单【Options】选择【Configure Target…】,即弹出Choose Target 窗口,如图12 所示。

在没有添加其它仿真驱动程序前,Target 项中只有两项,分别为ADP(JTAG 硬件仿真)和ARMUL(软件仿真)。

选择仿真驱动程序后,点击【File】选择【Load Image…】加载ELF 格式的可执行文件,即*.axf 文件。

说明:当工程编译连接通过后,在“工程名\工程名_Data\当前的生成目标”目录下就会生成一个*.axf 调试文件。

比如工程TEST,当前的生成目标Debug,编译连接通过后,则在…\TEST\TEST_Data\Debug 目录下生成TEST.axf 文件。

2. 调试工具条AXD 运行调试工具条如图13 所示,调试观察窗口工具条如图14 所示,文件操作工具条如图15 所示。

四、LPC2100 系列ARM7 微控制器工程模板在第二节介绍新建立工程时,我们已经接触了ADS1.2 提供的几个标准工程模板,使用各个模板建立的工程,它们的各项设置均有不同之处,方便生成不同结构的代码,如ARM可执行映象(生成ARM 指令的代码)或Thumb 可执行映象(生成Thumb 指令的代码),或Thumb、ARM 交织映象(生成Thumb、ARM 指令交织的代码)。

针对LPC2100 系列ARM7 微控制器,我们定义了6 个工程模板,这些模板一般包含的设置信息有FLASH 起始地址0x00000000、片内RAM 起始地址0x40000000、编译连接选项及编译优化级别等等;模板中包含了LPC2100 系列ARM7 微控制器的起动文件,包括IRQ.S、STARTUP.S、TARGET.C;模板还包含了LPC2100 系列ARM7 微控制器的头文件(如:LPC2294.h 和LPC2294.inc,LPC2294 的寄存器是向下兼容的),分散加载描述文件(如:mem_a.scf、mem_b.scf、mem_c.scf)等等1. 为ADS1.2 增加LPC2100 专用工程模板(/tools/kaifaban/EasyARM2100.asp网页可以下载到工程模板)将工程模板的所有目录工拷贝到“<ADS1.2 安装目录>\Stationery\”即可,操作如图16和图17 所示。

这个步骤只需1 次,以后就可以直接使用工程模板了。

2. 使用LPC2100 专用工程模板建立工程启动ADS1.2 IDE,点击【File】菜单,选择【New…】即弹出New 对话框,如图18 所示。

由于事先增加了LPC2100 专用工程模板,所以在工程模板栏中多出几项工程模板选项。

其中:ARM Executable Image for lpc2100 :无操作系统时所有C 代码均编译成ARM 指令的工程模板。

asm for lpc2100 :汇编程序工程模板。

Thumb ARM Interworking Image for lpc2100 :无操作系统时部分C代码编译为ARM指令,部分C 代码编译为Thumb 指令的工程模板。

Thumb Executable Image for lpc2100 :无操作系统时所有C 编译成Thumb 指令的工程模板。

ARM Executable Image for UCOSII(for lpc2100) :所有C 代码均编译为ARM 指令的μC/OS-II 工程模板Thumb Executable Image for UCOSII(for lpc2100) :部分C 代码编译为ARM 指令,部分C 代码编译为Thumb 指令的μC/OS-II 工程模板(使用μC/OS-II 时,不可能所有代码均编译成Thumb 指令)。

用户选择相应的工程模板建立工程,如图19 所示为使用ARM Executable Image forlpc2100 工程模板建立的一个工程。

工程有三个生成目标(target system):DebugInRAM、DebugInFLASH 和RelInFLASH,它们的配置如表2 所示。

工程模板已经将相应的编译参数设置好了,可以直接使用即可。

注意:选用RelInFLASH 目标时,将会对LPC2100 芯片(除LPC2106/2105/2104 外)进行加密。

相关文档
最新文档