显微镜直接计数法
显微镜直接计数法实验报告

显微镜直接计数法实验报告实验报告:显微镜直接计数法一、实验目的本实验旨在通过显微镜直接计数法,测定微生物样品中细胞的数量,以了解其生长和繁殖情况,为生物工程、生物医学、环境科学等领域的研究提供依据。
二、实验原理显微镜直接计数法是一种通过显微镜直接观察并计数样品中微生物数量的方法。
该方法具有操作简便、快速等优点,适用于测定样品中微生物的数量和生长情况。
通过显微镜直接计数法,可以观察到微生物的形态、大小、分布等情况,从而对其生长环境、生长状况等进行评估。
三、实验步骤1.样品制备:将待测样品进行适当稀释,使微生物细胞分散均匀。
2.显微镜观察:将样品滴加到显微镜载玻片上,用盖玻片固定,调整显微镜焦距,观察并计数微生物的数量。
3.计数方法:采用直接计数法,即直接观察并计数样品中的微生物数量。
对于压在盖玻片下的细胞,可以通过轻轻移动盖玻片进行观察和计数。
4.数据记录:记录每个样品中微生物的数量,并计算平均值。
同时记录观察到的细胞形态、大小、分布等情况。
5.结果分析:根据实验数据,分析微生物的生长情况、繁殖速度等。
四、实验结果及数据分析1.实验数据(见附表1)附表1:显微镜直接计数法实验数据2.数据分析通过附表1的数据,我们可以得出以下结论:(1)样品A中微生物的数量较少,而样品B、C、D中微生物的数量较多。
这表明不同样品中微生物的数量存在差异。
(2)在相同稀释倍数下,观察到的细胞数越多,计数结果越准确。
因此,选择合适的稀释倍数对于准确测定微生物数量至关重要。
在本实验中,选择100倍和1000倍作为稀释倍数,可以较为准确地测定微生物数量。
(3)通过对比不同样品在同一稀释倍数下的计数结果,可以得出不同样品中微生物的生长情况。
例如,样品B和D在1000倍稀释下的计数结果较高,说明这两个样品中微生物的生长情况较好。
而样品A和C在100倍稀释下的计数结果较低,说明这两个样品中微生物的生长情况较差。
(4)根据实验数据,可以进一步分析微生物的生长规律和繁殖速度。
显微镜直接计数法原理

显微镜直接计数法原理
显微镜直接计数法是一种用于测定溶液中微粒数量的方法,其原理是通过显微镜观察溶液中的微粒并进行直接计数。
这种方法适用于微粒浓度较低的溶液。
在进行显微镜直接计数之前,需要将待测溶液适当稀释,以保证在显微镜下观察到的微粒较为分散,不会产生严重的重叠。
然后,取少量稀释好的溶液放置在显微镜下的玻片上,利用显微镜进行观察和计数。
在显微镜观察过程中,可以使用目视计数法或者计数仪来进行微粒数量的计数。
目视计数法是通过直接观察显微镜视野中的微粒数量来进行计数,但这种方法需要操作人员具备一定的经验和技巧,否则容易产生误差。
计数仪则是通过将显微镜和计数器结合在一起,使用计数仪的软件进行自动计数,可以提高计数的准确性和效率。
在进行显微镜直接计数时,需要注意减小观察误差。
例如,应该避免在显微镜下对颗粒悬浮物的快速移动进行计数,应尽量保持视野稳定。
此外,还要随机选择计数视野,以确保样本的代表性。
显微镜直接计数法不仅可以用于测定溶液中的微粒数量,还可以用于观察微粒的形状、大小和分布情况。
但是,由于此方法需要借助显微镜进行观察,操作相对繁琐,且对于微粒浓度较高的溶液不适用。
因此,在实际应用中,常常需要结合其他测量方法来进行微粒数量的确定,以提高准确性和可靠性。
显微镜的直接计数和细菌大小测定-精选文档

四、操作方法
(一)酵母菌大小测定的操作方法 1.测微尺的构造和使用方法 (1)目镜测微尺的构造 目镜测微尺是一块圆形玻片, 其中央刻有精确的刻度,通常是将5mm划分为50 格,实际每格等于100μm。刻度的大小是随使用 的接目镜和接物镜的放大倍数而改变,用前必须用 物镜测微尺来标定,如图。 (2)物镜测微尺的构造 物镜测微尺为一块特制的 载玻片,其中央有一小圆圈。圆圈内刻有分度,将 长1mm的直线等分为100小格,每小格等于10μm, 如图 。
五、实验报告及思考题
1、微生物大小测定实验结果
(1)将目镜测微尺校正结果填入下表:
接物镜 接物镜倍数 目镜测微尺格 镜台测微尺格
数
数
低倍镜
高倍镜
油镜
目镜测微尺每格代表 的长度(μm)
接目镜的放大倍数________
(2) 酵母细胞大小的测量结果:
微生物 名称
目镜测微尺每 格代表的长度
/μm
宽
目镜测微 尺格数
2.目镜测微尺的标定
(1)取下接目镜,旋下目镜上的目透镜,将目镜测微 尺放人接目镜的中隔板上,使有刻度的一面朝下, 再旋上目透镜,并装入镜筒内。 (2)将物镜测微尺置于显微镜的载物台上,使有刻度 的一面朝上,同观察标本一样,使具有刻度的小圆 圈位于视野中央。 (3)先用低倍镜观察,对准焦距,待看清物镜测微尺 的刻度后,转动目镜,使目镜测微尺的刻度与物镜 测微尺的刻度相平行,并使两尺的左边第一条线相 重合,再向右寻找两尺的另外一条重合线。如图 (4)记录二条重合线间的目镜测微尺的格数和物镜测 微尺的格数。
4.酵母菌大小的测定
(1)取下镜台测微尺,换上酵母菌水浸制片。
(2)测量菌体的长度和宽度各占目镜测微尺 几格,然后换算出菌体的实际长度。
显微镜直接计数法

利用血球计数板在显微镜下直接计数,是一种常用的微生物计数方法。
此法的优点是直观、快速。
将经过适当稀释的菌悬液(或孢子悬液)放在血球计数板载玻片与盖玻片之间的计数室中,在显微镜下进行计数。
由于计数室的容积是一定的(㎜3),所以可以根据在显微镜下观察到的微生物数目来换算成单位体积内的微生物总数目。
由于此法计得的是活菌体和死菌体的总和,故又称为总菌计数法。
血球计数板,通常是一块特制的载玻片,其上由四条槽构成三个平台。
中间的平台又被一短横槽隔成两半,每一边的平台上各刻有一个方格网,每个方格网共分九个大方格,中间的大方格即为计数室,微生物的计数就在计数室中进行。
计数室的刻度一般有两种规格,一种是一个大方格分成16个中方格,而每个中方格又分成25个小方格,共400小格;另一种是一个大方格分成25个中方格,而每个中方格又分成16个小方格,总共也是400小格。
所以无论是哪种规格的计数板,每一个大方格中的小方格数都是相同的。
每一个大方格边长为1㎜,则每一大方格的面积为1㎜2,盖上盖玻片后,载玻片与盖玻片之间的高度为㎜,所以计数室的容积为㎜3。
其计算方法如下:1.16×25的计数板计算公式细胞数/ml=(100小格内的细胞数/100)×400×1000×稀释倍数2.25×16的计数板计算公式细胞数/ml=(80小格内的细胞数/80)×400×1000×稀释倍数器材酵母菌悬液,血球计数板,显微镜,盖玻片,无菌毛细管等。
操作步骤1.稀释:将酵母菌悬液进行适当稀释,菌液如不浓,可不必稀释。
2.镜检计数室:在加样前,先对计数板的计数室进行镜检。
若有污物,则需清洗后才能进行计数。
3.加样品:将清洁干燥的血球计数板盖上盖玻片,再用无菌的细口滴管将稀释的酵母菌液由盖玻片边缘滴一小滴(不宜过多),使菌液沿缝隙靠毛细渗透作用自行进入计数室,一般计数室均能充满菌液。
显微镜直接计数法实验报告

显微镜直接计数法实验报告一、实验目的1、了解显微镜直接计数法的原理和应用。
2、掌握血细胞计数板的使用方法。
3、学会对细胞进行计数,并计算细胞浓度。
二、实验原理显微镜直接计数法是利用血细胞计数板在显微镜下直接计数细胞的一种方法。
血细胞计数板是一块特制的厚玻璃片,板上有四个槽构成三个平台。
中间的平台又被一短横槽隔成两半,每半边上面刻有一个方格网。
方格网上刻有 9 个大方格,其中只有中间的一个大方格为计数室。
计数室的刻度一般有两种规格,一种是一个大方格分成 16 个中方格,而每个中方格又分成 25 个小方格;另一种是一个大方格分成 25 个中方格,而每个中方格又分成 16 个小方格。
但无论哪种规格,每个大方格的边长均为 1 毫米,盖上盖玻片后,计数室的容积是固定的。
因此,在计数时,只要测定一定体积的样品在计数室中所占的方格数,就能计算出样品中的细胞数量。
三、实验材料与设备1、材料酵母菌悬液2、设备显微镜血细胞计数板盖玻片吸管擦镜纸四、实验步骤1、准备血细胞计数板用酒精棉球擦拭计数板和盖玻片,然后用擦镜纸擦干。
将盖玻片盖在计数板上。
2、制备酵母菌悬液用无菌吸管吸取适量的酵母菌培养液,加入一定量的无菌生理盐水,充分混匀,制成适宜浓度的酵母菌悬液。
3、加样用吸管吸取酵母菌悬液,从盖玻片边缘滴一小滴(不宜过多),使菌液自行渗入计数室,注意不可有气泡产生。
4、计数静置片刻,待酵母菌细胞全部沉降到计数室底部后,将血细胞计数板置于显微镜载物台上。
先用低倍镜找到计数室,再换高倍镜进行计数。
计数时,对于压在方格线上的细胞,只计上线和左线的细胞。
5、计算统计五个中方格中的细胞总数,然后按下式计算:每毫升菌液中的细胞数=五个中方格中的细胞总数 × 5 × 10000 ×稀释倍数五、实验结果与分析1、实验结果经过计数,五个中方格中的细胞总数为_____个。
本次实验所使用的酵母菌悬液稀释倍数为_____倍。
实验技术十显微镜直接计数法

一、目的要求:
1. 理解血球计数板的计数原理 2. 学会并掌握使用血球计数板进行准确计数 3. 了解其在生产实践中的应用
生产实践中测定微生物生长繁殖的方法
测生长
间接法:平板菌落计数法 直接法 :显微镜直接计数
二、基本原理
利用血球计数器在显微镜下直接计数, 这是生产实践中常用的一种微生物计数 方法。
1000mm3(1mL)相当于多少个计数室的体积?
设菌悬液稀释倍数为B
则:原菌液含菌数 个/毫升=每小格平均菌数 ×4×106×B
若数中方格 则:
原菌液含菌数 个/毫升=每中方格平均菌数 ×25(16)× 104×B
优点: 方便、迅速、直接 缺点: 不能区分死菌与活菌; 不适于对运动细菌的计数; 需要相对高的细胞浓度; 个体较小的细菌在显微镜下难以观察;
计繁殖数
利用血球计数板,在显微镜下计算一定 容积里样品中Βιβλιοθήκη 生物的数量。血球计数板的构造
25中格× 16小格计数室 16中格×25小格计数室
计数室边长为1mm,则计数室的面积为l mm2高 度为0.1mm,所以每个计数室的体积为0.1mm3,
1mL=1cm3=1000mm3
1mL原菌液含菌数?
显微镜直接计数法实验报告

显微镜直接计数法实验报告显微镜直接计数法实验报告引言:显微镜直接计数法是一种常用的实验方法,用于测量微生物的数量和浓度。
通过直接观察显微镜下的视野,并进行计数,可以得出微生物的数量。
本实验旨在通过显微镜直接计数法,研究不同样本中微生物的数量和浓度变化。
实验材料和方法:1. 高倍显微镜2. 干净的载玻片和盖玻片3. 滴管和移液器4. 无菌培养基5. 不同样本(例如水样、土壤样本等)实验步骤:1. 准备工作:将载玻片和盖玻片用酒精擦拭干净,确保无菌状态。
2. 取一滴待测样本,滴在载玻片上。
3. 将盖玻片轻轻压在载玻片上,使样本均匀分布。
4. 将载玻片放在显微镜下,使用高倍镜观察。
5. 随机选择一个视野,计数视野中的微生物数量。
6. 移动显微镜的平台,选择下一个视野,继续计数。
7. 重复步骤6,直到计数足够多的视野。
8. 计算平均值,并根据视野的大小和显微镜的倍数,计算出微生物的数量和浓度。
实验结果:经过实验,我们得到了不同样本中微生物的数量和浓度数据。
例如,在水样中,我们观察到每个视野中的微生物数量平均为50个,视野的面积为0.01 mm²,显微镜的倍数为400倍。
因此,水样中微生物的数量为50个/0.01 mm² * 400 = 200,000个/mm²。
通过类似的计算,我们可以得出其他样本中微生物的数量和浓度。
讨论与分析:通过显微镜直接计数法,我们可以快速获得微生物的数量和浓度数据。
然而,这种方法也存在一些限制。
首先,由于显微镜的视野有限,我们只能观察到局部区域的微生物数量,可能无法代表整个样本的情况。
其次,显微镜直接计数法对于微生物形态和大小的要求较高,较小或较大的微生物可能无法准确计数。
此外,样本的准备和操作也可能影响到实验结果的准确性。
结论:显微镜直接计数法是一种常用的实验方法,用于测量微生物的数量和浓度。
通过观察显微镜下的视野,并进行计数,可以得出微生物的数量。
微生物的显微镜直接计数法

三、实验器材
1.菌种:酿酒酵母(Saccharomyces cerevisiae)。 2.仪器、材料:显微镜、血球计数板、盖玻 片、吸水纸、计数器、无菌滴管、擦镜纸。
四、实验方法
1.无菌生理盐水适当稀释制备酿酒酵母菌悬液。
2.镜检血球计数板。 3.血球计数板盖上盖玻片,将酵母菌悬液摇匀, 用无菌滴管吸取少许,从计数板平台两侧的沟槽 内沿盖玻片的下边缘摘入一滴,利用表面张力沟 槽中流出的多余菌悬液。 4.静置5min,将血球计数板置载物台上夹稳,先 在低倍镜下找到计数区,再转换高倍镜观察并计 数。
5.计数时若计数区由16个中方格组成,按对角 线方位,数左上、左下、右上、右下的4个中方 格(即100小格)的菌数。如为 25个中方格组成 的计数区,除数上述四个大方格外,还需数中央 l个大方格的菌数(即80个小格)。
6.如菌体位于大方格的双线上,计数时则数上 线不数下线,数左线不数右线,以减少误差。 对于出芽的酵母菌,芽体达到母细胞大小一半时, 即可作为两个菌体计算。
7.清洗血球计数板
五、实验作业
1.结果
各中方格菌数 1 第一室源自第二室A 4 5B
2
3
二室 均值
菌数 /ml
A表示五个中方格的总菌数;B表示菌液稀释倍数。
2.思考题 血球计数板计数误差来自哪些方面,应如何避免。
血球计数板是一块特制的厚型载玻片,载玻片上 有4条槽而构成3个平台。中间较宽的平台,被一 短横槽分隔成两半,每个半边上面各有一个计数 区。 计数区的刻度有两种: 一种是计数区(大方格)分为 16个中方格,而每 个中方格又分成 25个小方格; 另一种是一个计数区分成25个中方格,而每个中 方格又分成16个小方格。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
血球计数板计数法
利用血球计数板在显微镜下直接计数,是一种常用的微生物计数方法。
此法的优点是直观、快速。
将经过适当稀释的菌悬液(或孢子悬液)放在血球计数板载玻片与盖玻片之间的计数室中,在显微镜下进行计数。
由于计数室的容积是一定的(㎜3),所以可以根据在显微镜下观察到的微生物数目来换算成单位体积内的微生物总数目。
由于此法计得的是活菌体和死菌体的总和,故又称为总菌计数法。
血球计数板,通常是一块特制的载玻片,其上由四条槽构成三个平台。
中间的平台又被一短横槽隔成两半,每一边的平台上各刻有一个方格网,每个方格网共分九个大方格,中间的大方格即为计数室,微生物的计数就在计数室中进行。
计数室的刻度一般有两种规格,一种是一个大方格分成16个中方格,而每个中方格又分成25个小方格,共400小格;另一种是一个大方格分成25个中方格,而每个中方格又分成16个小方格,总共也是400小格。
所以无论是哪种规格的计数板,每一个大方格中的小方格数都是相同的。
每一个大方格边长为1㎜,则每一大方格的面积为1㎜2,盖上盖玻片后,载玻片与盖玻片之间的高度为㎜,所以计数室的容积为㎜3。
其计算方法如下:
1.16×25的计数板计算公式
细胞数/ml=(100小格内的细胞数/100)×400×1000×稀释倍数
2.25×16的计数板计算公式
细胞数/ml=(80小格内的细胞数/80)×400×1000×稀释倍数
器材酵母菌悬液,血球计数板,显微镜,盖玻片,无菌毛细管等。
操作步骤
1.稀释:将酵母菌悬液进行适当稀释,菌液如不浓,可不必稀释。
2.镜检计数室:在加样前,先对计数板的计数室进行镜检。
若有污物,则需清洗后才能进行计数。
3.加样品:将清洁干燥的血球计数板盖上盖玻片,再用无菌的细口滴管将稀释的酵母菌液由盖玻片边缘滴一小滴(不宜过多),使菌液沿缝隙靠毛细渗透作用自行进入计数室,一般计数室均能充满菌液。
注意不可有气泡产生。
静置5—10分钟即可计数。
4.显微镜计数:将血球计数板置于显微镜载物台上,先用低倍镜找到计数室所在位置,然后换成高倍镜进行计数。
在计数前若发现菌液太浓或太稀,需重新调节稀释度后再计数。
一般样品稀释度要求每小格内约有5—10个菌体为宜。
若选用25×16规格的计数板则每个计数室选5个中方格,可选4个角和中央的中格(即80个小格),若选用16×25规格的计数板,则数四个角:左上、右上、左下、右下的四个中方格,(即100小格)中的菌体进行计数。
位于格线上的菌体一般只数上方和右边线上的。
如遇酵母出芽,芽体大小达到母细胞的一半时,即作两个菌体计数。
计数一个样品要从两个计数室中计得的值来计算样品的含菌量。
5.清洗血球计数板:使用完毕后,将血球计数板在水笼头上用水柱冲洗,切勿用硬物洗刷,洗完后自行晾干或用吹风机吹干。
镜检,观察每小格内是否有残留菌体或其化沉淀物。
若不干净,则必须重复洗涤至干净为止。
实验报告
将结果记录于下表中。
A表示五个中方格中的总菌数;B表示菌液稀释倍数。