第22讲直角三角形

合集下载

直角三角形性质应用讲义及答案

直角三角形性质应用讲义及答案

直角三角形性质应用(讲义)一、知识点睛1. 直角三角形两锐角 ,且任一直角边长小于 .2. 勾股定理:直角三角形两直角边的 等于斜边的 ;勾股定理逆定理:如果三角形的三边长a ,b ,c 满足 ,那么这个三角形是 三角形.3. ①直角三角形斜边上的中线等于 ;②如果一个三角形 ,那么这个三角形是直角三角形.4. ①30°角所对的直角边是 ;②在直角三角形中,如果一条直角边等于斜边的一半,那么这条直角边所对的锐角等于 .5. 常用直角三角形的三边关系A C B45°1130°234211BCA BCAB CA6. 等面积法ABCC B Aa 2+b 2=c2ABC C BAβαC A B 30°CB A CBA2mmD h C BAc bay x二、精讲精练1. 下图是用4个全等的直角三角形与1个小正方形镶嵌而成的正方形图案,已知大正方形面积为49,小正方形面积为4,若用x ,y 表示直角三角形的两直角边(x >y ),下列四个说法:①x 2+y 2=49,②x -y =2,③2xy +4=49,④x +y =9.其中说法正确的是( ) A .①③ B .①②③ C .②④ D .①②③④2. 如图,在正方形ABCD 中,E 是DC 的中点,F 为BC 上的一点且BC =4CF ,试说明△AEF 是直角三角形.3. 如图,△ACB 和△ECD 都是等腰直角三角形,∠ACB =∠ECD =90°,D 为AB 边上一点,求证:AD 2+DB 2=DE 2.ABCDE4. 在△ABC 中,AB =15,AC =13,高AD =12,则△ABC 的周长是_______.FE DC B A5.在一张直角三角形纸片的两直角边上各取一点,分别沿斜边中点与这两点的连线剪去两个三角形,剩下的部分是如图所示的直角梯形,其中三边长分别为2、4、3,则原直角三角形纸片的斜边长是()A.10 B.45C.10或45D.10或2176.直角三角形斜边上的中线长是6.5,一条直角边长是5,则另一直角边长等于()A.13 B.12 C.10 D.57.如图,在△ABC中,∠ACB=90°,∠ABC=60°,BD平分∠ABC,P点是BD的中点,若AD=6,则CP的长为()A.3B.3.5C.4D.4.58.△ABC周长是24,M是AB的中点,MC=MA=5,则△ABC的面积是.9.如图,△ABC和△DCE都是边长为4的等边三角形,点B、C、E在同一条直线上,连接BD,则BD的长为()A.3B.23C.33D.43EDCBAPDCB A23423410. 如图,四边形ABCD 中,∠DAB =∠DCB =90o ,点M 、N 分别是BD 、AC 的中点.MN 、AC 的位置关系如何?证明你的猜想.11. 如图,在Rt △ABC 中,AC ≠AB ,AD 是斜边BC 上的高,DE⊥AC ,DF ⊥AB ,垂足分别为E 、F ,则图中与∠C (除∠C 外)相等的角的个数是( ) A .2 B .3 C .4 D .512. 如图,已知DE =m ,BC =n ,∠EBC 与∠DCB 互余,求BD 2+CE 2的值.BCDE13. 在△ABC 中,∠C =90°,AB =6,∠B =30°,点P 是BC 边上的动点,则AP 长不可能是( )A .3.5B .4.2C .5.8D .214. 如图,在Rt △ABC 中,∠A =30°,DE 垂直平分斜边AC ,交AB 于D ,E 是垂足,连接CD ,若BD =1,则AC 的长是( ) A .23 B .2 C .43 D .4NMCD BAFEDCB AEDA15. 某市在旧城改造中,计划在一块如图所示的△ABC 空地上种植草皮以美化环境,已知∠A =150°,这种草皮每平方米售价a 元,则购买这种草皮至少需要( ) A .300a 元 B .150a 元 C .450a 元 D .225a 元CBA30m20m16. 放风筝是大家喜爱的一种运动.星期天的上午小明在绿城广场上放风筝,如图他在A 处时不小心让风筝挂在了一棵树的树梢上,风筝固定在了D 处,此时风筝线AD 与水平线的夹角为30°.为了便于观察,小明迅速向前边移动边收线到达了离A 处6米的B 处,此时风筝线BD 与水平线的夹角为45°.已知点A 、B 、C 在同一条直线上,∠ACD =90°.求DC 的长度.ABCD30°45°17. 已知,在△ABC 中,∠A =45°,AC =2,AB =3+1,则边BC 的长为 .CBAP CBA18. 在Rt △ABC 中,∠C =90°,AC =9,BC =12,则点C 到AB 的距离是( )A .365B .1225C .94D .33419. 如图所示,等边△ABC 内一点P 到三边距离分别为h 1,h 2,h 3,且h 1+h 2+h 3=3,其中PD =h 1,PE =h 2,PF =h 3,则△ABC 的面积S △ABC =( )A .23B .33C .103D .12320. 如图,△ABC 中,∠C =90°,两直角边AC =8,BC =6,在三角形内有一点P ,它到各边的距离相等,则这个距离是( ) A .1 B .2 C .3 D .无法确定21. 在直线l 上依次摆放着七个正方形(如图所示).已知斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次是S 1、S 2、S 3、S 4,则S 1+S 2+S 3+S 4=_______.l321S 4S 3S 2S 1P FEDCBACBA22. 如图,△ABC 中,∠ACB =90°,点E 为AB 的中点,点D 在BC 上,且AD =BD ,AD 、CE 相交于点F ,若∠B =20°,则∠DFE 等于( ) A .70° B .60° C .50° D .40°23. 在锐角△ABC 中,∠BAC =60°,BN 、CM 为高,P 为BC 的中点,连接MN 、MP 、NP ,则结论:①NP =MP ;②当∠ABC =60°时,MN ∥BC ;③BN =2AN ;④::AN AB =AM AC ,一定正确的有( )A .1个B .2个C .3个D .4个三、回顾与思考______________________________________________________ ______________________________________________________ ______________________________________________________【参考答案】 一、 知识点睛1.互余,斜边长2.平方和,平方,a 2+b 2=c 2,直角3.斜边的一半,一边上的中线等于这边的一半4.斜边的一半,30°二、精讲精练1.B 2.(略) 3.(略) 4. 42或32 5.C 6.B 7.A 8.24 9.D 10.MN ⊥AC ,证明(略) 11.BABCD EFPNM CBA12.m2+n2,证明(略)13.D14.A15.B 16.8m,求解(略)17.2 18.A19.B20.B 21.4 22.B 23.C。

《直角三角形》 讲义

《直角三角形》 讲义

《直角三角形》讲义一、直角三角形的定义在平面几何中,如果一个三角形中有一个角是直角(90 度),那么这个三角形就被称为直角三角形。

直角所对的边称为斜边,其余的两条边称为直角边。

二、直角三角形的性质1、角的性质直角三角形的两个锐角之和为 90 度。

这是因为三角形的内角和为180 度,减去直角 90 度,剩下的两个角之和必然是 90 度。

2、边的性质(1)勾股定理这是直角三角形最著名的定理之一。

直角三角形两条直角边的平方和等于斜边的平方。

假设直角三角形的两条直角边分别为 a 和 b,斜边为 c,那么就有 a²+ b²= c²。

例如,一个直角三角形的两条直角边分别为 3 和 4,那么斜边 c 的长度就可以通过计算 c =√(3²+ 4²) = 5 得到。

(2)斜边中线定理直角三角形斜边的中线等于斜边的一半。

3、面积性质直角三角形的面积等于两条直角边乘积的一半。

即面积 S = 1/2 ×直角边 1 ×直角边 2 。

三、直角三角形的判定1、一个角为 90 度的三角形是直角三角形。

这是最直接的判定方法。

2、如果一个三角形的两条边的平方和等于第三边的平方,那么这个三角形是直角三角形。

这是基于勾股定理的逆定理。

3、如果一个三角形一边上的中线等于这条边的一半,那么这个三角形是直角三角形。

四、直角三角形中的特殊直角三角形1、等腰直角三角形两条直角边长度相等的直角三角形称为等腰直角三角形。

它的两个锐角都是 45 度。

2、常见的勾股数组合如 3、4、5;5、12、13 等。

这些勾股数在解决相关问题时可以快速判断三角形是否为直角三角形。

五、直角三角形在实际生活中的应用1、建筑工程在建造房屋、桥梁等结构时,需要确保结构的稳定性和安全性。

直角三角形的性质可以帮助工程师计算支撑结构的长度、角度和受力情况。

2、测量在无法直接测量某些长度或距离时,可以通过构建直角三角形,利用其性质进行间接测量。

直角三角形

直角三角形

第1章直角三角形§1.1直角三角形的性质和判定(Ⅰ)一、复习提问:(1)什么叫直角三角形?(2)直角三角形是一类特殊的三角形,除了具备三角形的性质外,还具备哪些性质? (一)直角三角形性质定理1:直角三角形的两个锐角互余。

练习1(1)在直角三角形中,有一个锐角为520,那么另一个锐角度数(2)在Rt△ABC中,∠C=900,∠A -∠B =300,那么∠A= ,∠B= 。

练习2 在△ABC中,∠ACB=900,CD是斜边AB上的高,那么,(1)与∠B互余的角有(2)与∠A相等的角有。

(3)与∠B相等的角有。

(二)直角三角形的判定定理1提问:“在△ABC中,∠A +∠B =900那么△ABC是直角三角形吗?”归纳:有两个锐角互余的三角形是直角三角形练习3:若∠A= 600,∠B =300,那么△ABC是三角形。

(三)直角三角形性质定理2直角三角形斜边上的中线等于斜边的一半。

三、巩固训练:练习4:在△ABC中,∠ACB=90 °,CE是AB边上的中线,那么与CE相等的线段有_________,与∠A相等的角有_________,若∠A=35°,那么∠ECB= _________。

练习5:已知:∠ABC=∠ADC=90O,E是AC中点。

求证:(1)ED=EB(2)∠EBD=∠EDB(3)图中有哪些等腰三角形?练习6 已知:在△ABC中,BD、CE分别是边AC、AB上的高, M是BC的中点。

如果连接DE,取DE的中点 O,那么MO 与DE有什么样的关系存在?§1.1直角三角形的性质和判定(Ⅰ)EDCBA提出命题:直角三角形斜边上的中线等于斜边的一半 证明命题:(教师引导,学生讨论,共同完成证明过程)推理证明思路: ①作点D 1 ②证明所作点D 1 具有的性质 ③ 证明点D 1 与点D 重合 应用定理:例1、已知:如图,在△ABC 中,∠B=∠C ,AD 是∠BAC 的平分线,E 、F 分别AB 、AC 的中点。

天元区第一中学九年级数学上册第22章相似形22.2相似三角形的判定第5课时判定两个直角三角形相似教案

天元区第一中学九年级数学上册第22章相似形22.2相似三角形的判定第5课时判定两个直角三角形相似教案

22.2 相似三角形的判定第5课时判定两个直角三角形相似教学目标【知识与技能】使学生了解直角三角形相似定理的证明方法并会应用.【过程与方法】1.类比证明两个直角三角形全等的方法,继续渗透和培养学生对类比思想的认识和理解.2.通过了解定理的证明方法培养和提高学生利用已学知识证明新命题的能力.【情感、态度与价值观】通过学习培养学生类比的意识,了解由特殊到一般的唯物辩证法的观点.重点难点【重点】直角三角形相似定理的应用.【难点】了解直角三角形相似判定定理的证题方法与思路.教学过程一、复习引入师:我们学习了几种判定三角形相似的方法?学生回答:5种.师:哪5种?教师找一名学生回答,另一名或两名学生补充完善.师:其中判定定理1、2、3的证明思路是什么?生:作相似证全等或作全等证相似.师:同学们还记得什么是“勾股定理”吗?生:记得.师:请你叙述一下.学生回答.二、共同探究,获取新知1.推理证明.师:判定两个直角三角形是否全等时,除了用那些一般的方法外还可以用“HL”的方法,那么判定两个直角三角形相似是否也有类似的方法呢?教师多媒体课件出示:如图,在Rt△ABC和Rt△A'B'C'中,∠C=∠C'=90°,=,判断Rt△ABC与Rt△A'B'C'是否相似,为什么?师:已知一个直角三角形的斜边、一条直角边与另一个直角三角形的斜边、一条直角边对应成比例,你能判断这两个直角三角形是否相似吗?学生思考、讨论后回答.师:我们知道了哪些条件?生甲:两个直角对应相等.生乙:两边对应成比例.师:你再添加什么条件就能证出这两个三角形相似呢?生:还有剩下的一边也是对应成比例的.师:为什么要这样添加呢?生:因为添加了这个条件,就可以根据三边对应成比例的两个三角形相似判定这两个三角形相似了.师:那么你怎么证明它们也是对应成比例的呢?学生思考.生:设==k,则AB=kA'B'.AC=kA'C'.根据勾股定理BC可以用含AB、AC的式子表示,进而可以用含A'B'的式子表示,再用勾股定理就得到BC=kB'C',所以就得到了三边对应成比例,这两个三角形相似.师:你回答得太好了!现在请同学们写出具体的步骤,然后与课本上的对照,将不完善的地方改正.学生证明并修改.证明:设==k,则AB=kA'B',AC=kA'C'.∵BC===k=kB'C',∴===k,∴△ABC∽△A'B'C'.师:所以我们得到了判定两个直角三角形相似的一个定理:如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似.2.例题.教师多媒体课件出示:【例】如图,∠ABC=∠CDB=90°,CB=a,AC=b.问当BD与a、b之间满足怎样的函数表达式时,以点A、B、C为顶点的三角形与以点C、D、B为顶点的三角形相似?解:∵∠ABC=∠CDB=90°,当=时,△ABC∽△CDB.即=,BD=.又当=时,△ABC∽△BDC,即=,CD=.BD2=a2-()2,BD=.答:当BD=或BD=时,以点A、B、C为顶点的三角形与以点C、D、B为顶点的三角形相似.三、练习新知师:请同学们看课本84页练习1后回答.生甲:△ABF和△ACE.生乙:△EDB和△FDC.师:下面请同学们完成第2题.证明:(1)∵△ADC和△ACB是直角三角形.∴∠A+∠ACD=90°,∠BCD+∠ACD=90°,∴∠A=∠BCD(同角的余角相等),又∠ADC=∠CDB=90°,∴△ADC∽△CDB(两角对应相等的两个三角形相似).∴=(相似三角形的对应边成比例).∵CD2=AD·BD(比例的基本性质).(2)∴∠B=∠B(公共角),∠ACB=∠CDB,∴△ABC∽△CBD(两角对应相等的两个三角形相似).∴=(相似三角形的对应边成比例).∵BC2=AB·BD(比例的基本性质).∴∠A=∠A(公共角).∠ACB=∠ADC,∴△ABC∽△ACD(两角对应相等的两个三角形相似).∴=(相似三角形的对应边成比例).∴AC2=AB·AD(比例的基本性质).师:很好!现在请同学们看第3题.学生计算后回答,然后集体订正得到:解:(1)相似.证明如下:∵BC===6,∴==,==,∴=,∴这两个直角三角形相似.(2)相似.证明如下:∵A'B'===15,∴==,==,∴=,∴这两个直角三角形相似.四、巩固提高师:经过刚才的了解,同学们掌握得怎么样呢?让我出几道题目来考考大家.1.小明在一次军事夏令营活动中进行打靶训练,在用枪瞄准点B时要使眼睛O、准星A、目标B在同一条直线上,如图所示,在射击时,小明有轻微的抖动,致使准星A偏离到A'.若OA=0.2m,OB=40 m,AA'=0.0015m,则小明射击到的点B'偏离目标点B的长度BB'约为( )A.3m【答案】B2.如图,在△ABC中,∠C=90°,∠B=60°,D是AC上一点,DE⊥AB于E点,且CD=2,DE=1,则BC 的长为( )A.2B.C.2D.4【答案】B3.在Rt△ABC和Rt△A'B'C'中,∠C=∠C'=90°,下列条件不能判断它们相似的是( )A.∠A=∠B'B.AC=BC,A'C'=B'C'C.AB=3BC,A'B'=3B'C'D.△ABC中有两边长为3、4,△A'B'C'中有两边长为6、8【答案】D4.如图,在△ABC中,∠C=90°,E是AC的中点,且AB=5,AC=4,过点E作EF⊥AB于点F,则AF= .【答案】第4题图第5题图5.如图,正方形ABCD的边长为4,AE=MN=2,那么当CM= 时,Rt△ADE与Rt△MNC相似.(M为BC边上的动点,N为CD边上的动点)【答案】或6.如图,长梯AB靠在墙壁上,梯脚B距墙80cm,梯上点D距墙70cm,量得BD的长为55cm,请你求出梯子的长.【答案】设梯子的长AB为xcm,由Rt△ADE∽Rt△ABC,得=,∴=,解得x=440.∴梯子的长是440cm.五、课堂小结师:直角三角形相似的判定除了本节定理外,前面判定任意三角形相似的方法对直角三角形同样适用,所以在证明两个直角三角形相似时不要忘了用证任意三角形相似的方法,在做题时要灵活选用合适的方法.在证明四条线段之间的关系时我们可以考虑证它们所在的两个三角形相似.教学反思教师在讲解例题时,应指出要使△ABC∽△CDB,应有点A与C,B与D,C与B成对应点,对应边分别是斜边和一条直角边,还可提问:(1)当BD与a、b满足怎样的关系时,△ABC∽△BDC?(答案:当=时△ABC∽△BDC,即=,BD=.因此,当BD=时,△ABC∽△BDC)(2)当BD与a、b满足怎样的关系时,△ABC与△BDC相似(不指明对应关系)?(答案:当BD=时,△ABC∽△CDB;当BD=时,△ABC∽△BDC)探索性题目是已知命题的结论,寻找使结论成立的题设,是探索充分条件,所以有一定难度,教材中为了降低难度,在例4中给了探索方向,即“当BD与a、b满足怎样的关系式时”,这种题目体现分析问题的思维方法,对培养学生研究问题的习惯有好处,教师要给予足够重视,但由于有一定的难度,只要求学生了解这类问题的思考方法,不应提高要求或增加难度.第2课时何时获得最大利润1.经历探索商品销售中最大利润等问题的过程,体会二次函数是一类最优化问题的数学模型,感受数学的应用价值.2.能够分析和表示实际问题中变量之间的二次函数关系,并运用二次函数的知识求出实际问题的最大(小)值.重点会根据实际问题列出二次函数关系式,并能运用二次函数的知识求出其最大(小)值.难点分析和表示实际问题中变量之间的二次函数关系,正确地列出二次函数关系式.一、情境导入前面我们认识了二次函数,研究了二次函数的图象和性质,由简单的二次函数y=x2开始,然后是y=ax2,y=ax2+c,最后是y=a(x-h)2,y=a(x-h)2+k,y =ax2+bx+c,掌握了二次函数的三种表示方式.怎么突然转到了获取最大利润呢?看来这两者之间肯定有关系.那么究竟有什么样的关系呢?我们本节课将研究有关问题.二、探究新知1.课件出示:服装厂生产某品牌的T恤衫,每件的成本是10元.根据市场调查,以单价13元批发给经销商,经销商愿意经销 5 000件,并且表示单价每降价0.1元,愿意多经销500件.厂家批发单价是多少时,可以获利最多?设批发单价为x(0<x≤13)元,那么(1)销售量可以表示为____________;(2)销售额可以表示为____________;(3)所获利润可以表示为____________;(4)当批发单价是____元时,可以获得最大利润,最大利润是____.分析:获利就是指利润,总利润应为每件T恤衫的利润(批发价一成本)乘T恤衫的数量,设批发单价为x元,则降低了(13-x)元,每降低0.1元,可多售出500件,则可多售出5 000(13-x)件,因此共售出5 000+5 000(13-x)件,若所获利润用y(元)表示,则y =(x-10)[5 000+5 000(13-x)].解:(1)销售量可以表示为5 000+5 000(13 -x)=70 000-5 000x.(2)销售额可以表示为x(70 000-5 000x)=70 000x-5 000x2.(3)所获利润可以表示为(70 000x-5 000x2)-10(70 000-5 000x)=-5 000x2+120 000x-700 000.(4)设总利润为y元,则y=-5 000x2+120 000x-700 000=-5 000(x-12)2+20 000∵-5 000<0 ,∴抛物线有最高点,函数有最大值.当x=12元时,y最大=20 000元.即当销售单价是12元时,可以获得最大利润,最大利润是20 000元.2.课件出示:某旅社有客房120间,每间房的日租金为160元,每天都客满.经市场调查发现,如果每间客房的日租金增加10元时,那么客房每天出租数会减少6间.不考虑其他因素,旅社将每间客房的日租金提高到多少元时,客房日租金的总收入最高?处理方式:让学生根据上面的利润问题的解法来解决这道题.三、举例分析例 1 还记得本章一开始的“种多少棵橙子树”的问题吗?我们得到表示增种橙子树的数量x(棵)与橙子总产量y(个)的二次函数表达式y=(600-5x)(100+x)=-5x2+100x +60 000.我们还曾经利用列表的方法得到一个猜测,现在验证一下你的猜测是否正确?你是怎么做的?与同伴进行交流.因为表达式是二次函数,所以求橙子的总产量y的最大值即是求函数的最大值.所以y=-5x2+100x+60 000=-5(x2-20x+100-100)+60 000=-5(x-10)2+60 500当x=10时,y最大=60 500.(1)利用函数图象描述橙子的总产量与增种橙子树的棵数之间的关系.(2)增种多少棵橙子树,可以使橙子的总产量在60 400个以上?①当x<10时,橙子的总产量随增种橙子树的增加而增加;当x>10时,橙子的总产量随增种橙子树的增加而减小.②由图可知,增种6棵、7棵、8棵、9棵、10棵、11棵、12棵、13棵或14棵,都可以使橙子总产量在60 400个以上.例2 已知一个矩形的周长是24 cm.(1)写出这个矩形的面积S与一边长a的函数表达式;(2)画出这个函数的图象;(3)当a长多少时,S最大?解:(1)S=a(12-a)=-a2+12a=-(a2-12a+36-36)=-(a-6)2+36.(2)图象如下:(3)当a=6时,S最大=36.四、练习巩固1.关于二次函数y=ax2+bx+c的图象有下列命题:①当c =0时,函数的图象经过原点;②当c >0且函数图象开口向下时,方程ax 2+bx +c =0必有两个不等实根; ③当a <0,函数的图象最高点的纵坐标是4ac -b24a;④当b =0时,函数的图象关于y 轴对称. 其中正确命题的个数有( )A .1个B .2个C .3个D .4个2.二次函数y =x 2-8x +c 的最小值为0,那么c 的值等于( ) A .4 B .8 C .-4 D .163.某类产品按质量共分为10个档次,生产最低档次产品每件利润为8 元,如果每提高一个档次每件利润增加2元.用同样的工时,最低档次产品每天可生产60件,每提高一个档次将少生产3件,求生产何种档次的产品利润最大?五、课堂小结1.通过本节课的学习,你有什么收获? 2.用二次函数解决实际问题有哪些步骤? 六、课外作业1.教材第49页“随堂练习”.2.教材第50页习题2.9第1~3题.本节课是应用函数模型分析与解决最大利润问题.例题中的实际问题司空见惯,但学生没有亲身经历,在上课前可以让学生利用课余时间对学校的商店做一个简单的调查,锻炼学生的实践能力.数学教学不仅要考虑数学自身的特点,更应遵循学生学习数学的心理规律.强调从学生已有的生活经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程,进而使学生获得对数学理解的同时,在思维能力、情感态度与价值观等多方面得到进步和发展.二次函数与一元二次方程的关系教学目标【知识与技能】1.掌握二次函数图象与x轴的交点横坐标与一元二次方程两根的关系.2.理解二次函数图象与x轴的交点的个数与一元二次方程根的个数的关系.3.会用二次函数图象求一元二次方程的近似根.【过程与方法】经历探索二次函数与一元二次方程的关系的过程,体会二次函数与方程之间的联系,进一步体会数形结合的思想.【情感态度】通过自主学习,小组合作,探索出二次函数与一元二次方程的关系,感受数学的严谨性,激发热爱数学的情感.教学重点①理解二次函数与一元二次方程的联系.②求一元二次方程的近似根.教学难点理解二次函数与一元二次方程的联系.教学过程一、情境导入,初步认识1.一元二次方程ax2+bx+c=0的实数根,就是二次函数y=ax2+bx+c,当 y=0 时,自变量x 的值,它是二次函数的图象与x轴交点的横坐标 .2.抛物线y=ax2+bx+c与x轴交点个数与一元二次方程ax2+bx+c=0根的判别式的关系:当b2-4ac<0时,抛物线与x轴无交点;当b2-4ac=0时,抛物线与x轴有一个交点;当b2-4ac>0时,抛物线与x轴有两个交点.学生回答,教师点评二、思考探究,获取新知探究1 求抛物线y=ax2+bx+c与x轴的交点例1 求抛物线y=x2-2x-3与x轴交点的横坐标.【分析】抛物线y=x2-2x-3与x轴相交时,交点的纵坐标y=0,转化为求方程x2-2x-3=0的根.解:因为方程x2-2x-3=0的两个根是x1=3,x2=-1,所以抛物线y=x2-2x-3与x轴交点的横坐标分别是3或-1.【教学说明】求抛物线与x轴的交点坐标,首先令y=0,把二次函数转化为一元二次方程,求交点的横坐标就是求此方程的根.探究2 抛物线与x轴交点的个数与一元二次方程的根的个数之间的关系思考:(1)你能说出函数y=ax2+bx+c(a≠0)的图象与x轴交点个数的情况吗?猜想交点个数和方程ax2+bx+c=0(a≠0)的根的个数有何关系?(2)一元二次方程ax2+bx+c=0(a≠0)的根的个数由什么来判断?【教学说明】抛物线y=ax2+bx+c(a ≠0)与x轴的位置关系一元二次方程ax2+bx+c=0(a≠0)根的情况b2-4ac的值有两个公共点有两个不相等的实数根b2-4ac>0只有一个公共点有两个相等的实数根b2-4ac=0无公共点无实数根b2-4ac<0探究3 利用函数图象求一元二次方程的近似根提出问题:同学们可以估算下一元二次方程x2-2x-6=0的较小的根是什么?学生回答:【教学点评】x1≈-1.7.三、运用新知,深化理解1.(广东中山中考)已知抛物线y=ax2+bx+c的图象如图所示,则关于x的方程ax2+bx+c=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.有两个同号的实数根D.没有实数根2.若一元二次方程x2-mx+n=0无实根,则抛物线y=-x2+mx-n图象位于()A.x轴上方B.第一、二、三象限C.x轴下方D.第二、三、四象限3.(x-1)(x-2)=m(m>0)的两根为α,β,则α,β的范围为()A.α<1,β>2B.α<1<β<2C.1<α<2<βD.α<1,β>24.二次函数y=ax2+bx+c与x轴的交点坐标为(1,0),(3,0),则方程ax2+bx+c=0的解为 .5.(湖北武汉中考)已知二次函数y=x2-(m+1)x+m的图象交x轴于A(x1,0),B(x2,0)两点,交y轴的正半轴于点C,且x21+x22=10.(1)求此二次函数的解析式;(2)是否存在过点D(0,-)的直线与抛物线交于点M、N,与x轴交于点E,使得点M、N关于点E对称?若存在,求出直线MN的解析式;若不存在,请说明理由.学生解答:【答案】1.D 2.C 3.D 4.x1=1,x2=35.解:(1)y=x2-4x+3 (2)存在 y=x-【教学说明】一元二次方程的根的情况和二次函数与x轴的交点个数之间的关系是相互的,根据根的情况可以判断交点个数,反之也成立.四、师生互动,课堂小结1.这节课你学到了什么?还有哪些疑惑?2.在学生回答基础上,教师点评:①求二次函数自变量的值与一元二次方程根的关系;②抛物线与x轴交点个数与一元二次方程根的个数的关系.③用函数图象求“一元二次方程的近似根”;教学反思通过本节课的学习,让学生用函数的观点解方程和用方程的知识求函数,取某一特值时,把对应的自变量的值都联系起来了,这样对二次函数的综合应用就方便得多了,从中让学生体会到各知识之间是相互联系的这一最简单的数学道理.11。

1.2直角三角形——直角三角形的边角性质+练习课件+2023-—2024学年北师大版数学八年级下册

1.2直角三角形——直角三角形的边角性质+练习课件+2023-—2024学年北师大版数学八年级下册

【点拨】
∵1 宣=12矩,1 欘=112宣,1 矩=90°,∠A=1 矩,
∠B=1


∴∠A
= 90°,

B

1
1 2
1 ×2
×90°=
67.5°,
∴∠C=90°-∠B=90°-67.5=22.5°.
3 (母题:教材P34复习题T5)若三角形三个内角的比为 1 ∶2 ∶3,则这个三角形是__直__角____三角形.
(2)若AE是△ABC的角平分线,AE,CD相交于点F,求证: ∠CFE=∠CEF. 【证明】∵AE是△ABC的角平分线,∴∠DAF=∠CAE. ∵∠FDA=90°,∠ACE=90°, ∴∠DAF+∠AFD=90°,∠CAE+∠CEA=90°. ∴∠AFD=∠CEA. ∵∠AFD=∠CFE, ∴∠CFE=∠CEA,即∠CFE=∠CEF.
解:如图②,延长 MN 至点 C′,使 NC′=NC,连接 AC′, 则 AC′的长即为蚂蚁爬行的最短路程. 在 Rt△AMC′中,AM=3×2=6(cm), MC′=20+2=22(cm). 由勾股定理,得 AC′2=AM2+MC′2=62+222=520, 则 AC′=2 130 cm. 答:蚂蚁需要爬行的最短路程是 2 130 cm.
∵∠C=90°,∴∠4+∠5=90°. ∴∠3+∠5=90°,即∠FBG=90°. 又∵DF⊥EG,DE=DG,∴FG=EF. 在Rt△FBG中,BG2+BF2=FG2,∴AE2+BF2=EF2.
【点方法】
欲证AE2+BF2=EF2,应联想到勾股定理,把AE, BF和EF转. 化. 为同一个直角三角形的三边.
【点拨】
∵直角三角形的三边a,b,c满足c>a>b,∴该直角三 角形的斜边为c,∴c2=a2+b2,∴c2-a2-b2=0,∴S1= c2-a2-b2+b(a+b-c)=ab+b2-bc. ∵S2=b(a+b-c)= ab+b2-bc,∴S1=S2,故选C.

2024年中考数学几何模型归纳(全国通用)22 解直角三角形模型之实际应用模型(教师版)

2024年中考数学几何模型归纳(全国通用)22 解直角三角形模型之实际应用模型(教师版)

专题22解直角三角形模型之实际应用模型解直角三角形是中考的重要内容之一,直角三角形边、角关系的知识是解直角三角形的基础。

将实际问题转化为数学问题是关键,通常是通过作高线或垂线转化为解直角三角形问题,在解直角三角形时要注意三角函数的选取,避免计算复杂。

在解题中,若求解的边、角不在直角三角形中,应先添加辅助线,构造直角三角形。

为了提高解题和得分能力,本专题重点讲解解直角三角形的实际应用模型。

模型1、背靠背模型图1图2图3【模型解读】若三角形中有已知角时,则通过在三角形内作高CD,构造出两个直角三角形求解,其中公共边(高)CD是解题的关键.【重要关系】如图1,CD为公共边,AD+BD=AB;如图2,CE=DA,CD=EA,CE+BD=AB;如图3,CD=EF,CE=DF,AD+CE+BF=AB。

【答案】该建筑物BC【分析】由题意可知,【点睛】本题考查的是解直角三角形函数,熟练掌握直角三角形的特征关键.例2.(2023湖南省衡阳市中考数学真题)随着科技的发展,无人机已广泛应用于生产生活,如代替人们在高空测量距离和高度.圆圆要测量教学楼学楼底部243米的C30 ,CD长为49.6米.已知目高(1)求教学楼AB的高度.(2)若无人机保持现有高度沿平行于行,求经过多少秒时,无人机刚好离开圆圆的视线【答案】(1)教学楼AB的高度为【分析】(1)过点B作BG DC通过证明四边形GCAB为矩形,之间的和差关系可得CG【点睛】本题主要考查了解直角三角形的实际应用,解题的关键是正确画出辅助线,构造直角三角形,熟练掌握解直角三角形的方法和步骤.例3.(2023年湖北中考数学真题)为了防洪需要,某地决定新建一座拦水坝,如图,拦水坝的横断面为梯形ABCD,斜面坡度3:i,求斜坡AB的长.18C【答案】斜坡AB的长约为10米【分析】过点D作DE BC于点E,在Rt△在Rt DEC △中,2018CD C ,,sin 20sin18200.31 6.2DE CD C ∵34AF BF ,∴在Rt ABF 中,2AB AF 【答案】大楼的高度BC 为303m 【分析】如图,过P 作PH AB 于QH BC ,BH CQ ,求解PH 704030CQ BH ,PQ CQ 【详解】解:如图,过P 作PH则四边形CQHB 是矩形,∴由题意可得:80AP ,PAH ∴3sin 60802PH AP ∴704030CQ BH ,∴∴403103BC QH模型2、母子模型图1图2图3图4【模型解读】若三角形中有已知角,通过在三角形外作高BC,构造有公共直角的两个三角形求解,其中公共边BC是解题的关键。

直角三角形的射影定理

直角三角形的射影定理
2
在ACD中 CAD ACD 900 BCD ACD 900 ACB 900 ABC 是直角三角形.
14 [普通高中课程数学选修4-1] 第一讲 相似三角形的判定及有关性质
习题1.4 3.如图已知线段a,b.求作线段a和b的比例中项。
a b
15 [普通高中课程数学选修4-1] 第一讲 相似三角形的判定及有关性质
5 [普通高中课程数学选修4-1] 第一讲 相似三角形的判定及有关性质
2.相似三角形的性质
(1)相似三角形对应高的比,对应中线的比和对应 角平分线的比都等于相似比; (2)相似三角形周长的比等于相似比; (3)相似三角形面积的比等于相似比的平方。
A´ A
B
D
C



6 [普通高中课程数学选修4-1] 第一讲 相似三角形的判定及有关性质
结论:两个相似三角形的外接圆的直径比,周长比 等于相似比;面积比等于相似比的平方。
结论:两个相似三角形的内切圆的直径比,周长比 等于相似比;面积比等于相似比的平方。
7 [普通高中课程数学选修4-1] 第一讲 相似三角形的判定及有关性质
8 [普通高中课程数学选修4-1] 第一讲 相似三角形的判定及有关性质
1.射影
点在直线上的正射影 从一点向一直线所引垂线 的垂足,叫做这个点在这条直线上的正射影。
A A B
M

A
N
M


N
一条线段在直线上的正射影 线段的两个端点在 这条直线上的正射影间的线段。
点和线段的正射影简称射影
9 [普通高中课程数学选修4-1] 第一讲 相似三角形的判定及有关性质
探究:△ ABC 是直角三角形,CD为斜边AB上的高。 射影定理 直角三角形斜边上的高是两条直角边在斜 你能从射影的角度来考察 AC与AD,BC与BD等的关 边上射影的比例中项;两直角边分别是它们在斜边上 系。你能发现这些线段之间的某些关系吗? 射影与斜边的比例中项。

(完整版)直角三角形的性质和判定

(完整版)直角三角形的性质和判定

直角三角形的性质和判定一、知识要点1、直角三角形的性质:(1)在直角三角形中,两锐角 _____________________ ;(2) _________________________________________ 在直角三角形中,斜边上的中线等于■勺一半;(3) _______________________________________________________________________ 在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于 _________________________________ ;(4) ________________________________________________________________________________ 在直角三角形中,如果一条直角边等于斜边的一半,那么这条直角边所对的角等于 ____________________ 。

2、直角三角形的判定:(1) ____________________ 有一个角等于■勺三角形是直角三角形;(2) ____________________ 有两个角■勺三角形是直角三角形;(3) _________________________________________ 如果三角形一边上的中线等于这条边的 ____________________ 那么这例2、如图,在Rt△ ABC中, CD是斜边上的中线, CEL AB 已知AB=10cm DE=2.5crr,求CD和/ DCE个三角形是直角三角形。

二、知识运用典型例题例1、在厶ABC中,/ C=90°,/ A=30°, CD丄AB,⑴若BD=8求AB的长;(2)若AB=8求BD的长。

例3、如图,在△ ABC 中,/ C=90°,Z A=x °,Z B=2 x。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

答案:4
7.如图,长方体的底面边长分别为1cm和3cm, 高为6cm.如果用一根细线从点A开始经过4个侧 面缠绕一圈到达点B,那么所用细线最短需要 _____cm;如果从点A开始经过4个侧面缠绕n圈 到达点B,那么所用细线最短需要_____cm. 【解析】根据侧面展开图,把所需的线长度转化到平面图形 中,利用勾股定理求得需要 =10(cm);点A开始经过4
11.(12分)如图,△ACB和△ECD都是等腰直角三角形,∠ACB =∠ECD=90°,D为AB边上一点,求证: (1)△ACE≌△BCD; (2)AD2+DB2=DE2. 【证明】 (1)∵∠ACB=∠ECD, ∴∠ACD+∠BCD=∠ACD+∠ACE. 即∠BCD=∠ACE. ∵BC=AC,DC=EC,∴△ACE≌△BCD.
(2)∵△ACB是等腰直角三角形, ∴∠B=∠BAC=45°
∵△ACE≌△BCD,∴∠B=∠CAE=45°.
∴∠DAE=∠CAE+∠BAC=45°+45°=90°. ∴AD2+AE2=DE2. 由(1)知AE=DB,∴AD2+DB2=DE2.
12.(12分)(2010·苏州中考)如图,在△ABC中,∠C=90°, AC=8,BC=6.P是AB边上的一个动点(异于A、B两点),过点P分 别作AC、BC边的垂线,垂足为M、N. 设AP=x.
【解析】选C.因为∠ACB=90°,AC=4,BC=3,所以AB上的高为 △12 ABC以AB边所在的直线为轴旋转一周为同底圆锥,所以得到 几何体的表面积为
5

二、填空题(每小题6分,共24分) 6.(2010·德州中考)如图,小明在A时测得 某树的影长为2 m,B时又测得该树的影长为 8 m,若两次日照的光线互相垂直,则树的 高度为_____m. 【解析】如图,根据题意可得,△MNQ∽△PMQ,则
1 2 1 ×4×3=6, 2
而矩形PMCN的面积=AM·MP=4×3=12. 积同时相等的x的值.
所以不存在能使△PAM的面积、△PBN的面积与矩形PMCN的面
13.(12分)如图,已知A、B是线段MN上的两点,MN=4,MA=1, MB>1.以A为中心顺时针旋转点M,以B为中心逆时针旋转点N, 使M、N两点重合成一点C,构成△ABC,设AB=x.
个侧面缠绕n圈到达点B,根据侧面展开图把所需的线长度转
化到平面图形中发现,直角三角形中一边为6,另一边为8n, 利用勾股定理求得需要长度为
答案:
8.如图,在Rt△ABC中,∠ACB为90°, CD⊥AB,cos∠BCD= 2 ,BD=1,则边AB的
3
长是_____.
答案:9
5
9.(2010·山西中考)如图,在△ABC中,AB=
【解析】选A.
4.以OA为斜边作等腰直角三角形OAB,再以OB为斜边在△OAB 外侧作等腰直角三角形OBC,如此继续,得到8个等腰直角三 角形(如图),则图中△OAB与△OHI的面积比值是( )
(A)32
(B)64
(C)128
(D)256
【解析】选C.三角形的边长之比是8 2∶1.
5.如图,已知Rt△ABC中,∠ACB=90°,AC=4, BC=3,以AB边所在的直线为轴,将△ABC旋转一 周,则所得几何体的表面积是( )
(1)在△ABC中,AB=____;
(2)当x=_____时,矩形PMCN的周长是14; (3)是否存在x的值,使得△PAM的面积、△PBN的面积与矩形
PMCN的面积同时相等?请说出你的判断,并加以说明.
【解析】(1)10
(2)5
(3)不存在x的值,使得△PAM的面积、△PBN的面积与矩形 PMCN的面积同时相等. ∵PM⊥AC,PN⊥BC, ∴∠AMP=∠PNB=90°. ∵AC∥PN,∴∠A=∠NPB. ∴△AMP∽△PNB. ∴当P为AB中点,即AP=PB时, △AMP≌△PNB. ∴此时S△AMP=S△PNB= AM·MP=
一、选择题(每小题6分,共30分)
1.(2010·无锡中考)下列性质中,等腰三角形具有而直角三 角形不一定具有的是( (A)两边之和大于第三边 (B)有一个角的平分线垂直于这个角的对边 )
(C)有两个锐角的和等于90°
(D)内角和等于180° 【解析】选B.

②若点D在线段MA上,
2.(2010·湛江中考)下列四组线段中,可以构成直角三角形 的是( ) (B)2,3,4
(A)1,2,3
(C)3,4,5
(D)4,5,6
【解析】选C.∵32+42=25,
52=25,∴32+42=52,
∴3,4,5能构成直角三角形.
3.如图,为了测量河的宽度,王芳同学在河岸边相距200 m 的M和N两点分别测定对岸一棵树P的位置,P在M的正北方向, 在N的北偏西30°的方向,则河的宽度是( )
米3万,铺设水管的最短长度为多少?并求出总费用是多,连结BF,交L于点E,
则三角形CEF相似于三角形DEB,所以CE= 千米,所以AE=
30 千米, DE= 4 90 4
50 千米,BE= 150 千米.所以铺设水管的最短 4 4
长度为AE+BE=50千米,因此总费用是150万元.
(1)求x的取值范围;
(2)若△ABC为直角三角形,求x的值; (3)探究△ABC的最大面积.
【解析】(1)在△ABC中,∵AC=1,AB=x,BC=3-x.
(2)①若AC为斜边,则1=x2+(3-x)2, 即x2-3x+4=0,无解. ②若AB为斜边,则x2=(3-x)2+1, 解得x= 5 ,满足1<x<2.
3
③若BC为斜边,则(3-x)2=1+x2,
解得x= 4 ,满足1<x<2.∴x= 5 或x= 4 .
3 3 3
(3)在△ABC中,作CD⊥AB于D,
设CD=h,△ABC的面积为S,则S= ①若点D在线段AB上,
1 xh. 2
当x=
3 4 1 时(满足 ≤x<2),S2取最大值 ,从而S取最大值 2 3 2
AC=13,BC=10,D是AB的中点,过点D作DE⊥
AC于点E,则DE的长是_____. 【解析】作AF⊥BC,CH⊥AB,则BF=5,AF=12,根据 AF·BC=CH·AB,可知CH=120 ,故由△ADE
13 ∽△ACH可知,DE的长是 60 . 13 60 答案: 13
三、解答题(共46分) 10.(10分)如图,A、B两个小镇在河流CD的同侧,分别到河 的距离为AC=10千米,BD=30千米,且CD=30千米,现在要在河 边建一自来水厂,向A、B两镇供水,铺设水管的费用为每千
相关文档
最新文档