MATLAB数学建模
数学建模常用方法MATLAB求解

数学建模常用方法MATLAB求解数学建模是通过数学方法对实际问题进行数学描述、分析和求解的过程。
MATLAB是一款功能强大的数学软件,广泛用于数学建模中的问题求解。
在数学建模中,常用的方法有数值求解、优化求解和符号计算。
下面将介绍MATLAB在数学建模中常用的方法和求解示例。
1.数值求解方法:数值求解是利用数值计算方法来近似求解实际问题的数学模型。
MATLAB提供了许多数值求解函数,如方程求根、解线性方程组、曲线拟合、积分和微分等。
以方程求根为例,可以使用fsolve函数来求解非线性方程。
示例:求解非线性方程sin(x)=0.5```matlabx0=0;%初始点x = fsolve(fun,x0);```2.优化求解方法:优化求解是在给定约束条件下,寻找使目标函数取得最优值的变量值。
MATLAB提供了许多优化求解函数,如线性规划、二次规划、非线性规划、整数规划等。
以线性规划为例,可以使用linprog函数来求解线性规划问题。
示例:求解线性规划问题,目标函数为max(3*x1+4*x2),约束条件为x1>=0、x2>=0和2*x1+3*x2<=6```matlabf=[-3,-4];%目标函数系数A=[2,3];%不等式约束的系数矩阵b=6;%不等式约束的右端向量lb = zeros(2,1); % 变量下界ub = []; % 变量上界x = linprog(f,A,b,[],[],lb,ub);```3.符号计算方法:符号计算是研究数学符号的计算方法,以推导或计算数学表达式为主要任务。
MATLAB提供了符号计算工具箱,可以进行符号计算、微积分、代数运算、求解方程等。
以符号计算为例,可以使用syms函数来定义符号变量,并使用solve函数求解方程。
示例:求解二次方程ax^2+bx+c=0的根。
```matlabsyms x a b c;eqn = a*x^2 + b*x + c == 0;sol = solve(eqn, x);```以上是MATLAB在数学建模中常用的方法和求解示例,通过数值求解、优化求解和符号计算等方法,MATLAB可以高效地解决各种数学建模问题。
Matlab中的数学建模方法

Matlab中的数学建模方法引言在科学研究和工程领域,数学建模是一种重要的方法,它可以通过数学模型来描述和解释真实世界中的现象和问题。
Matlab是一款强大的数值计算和数据可视化工具,因其灵活性和易用性而成为数学建模的首选工具之一。
本文将介绍一些在Matlab中常用的数学建模方法,并以实例来展示其应用。
一、线性回归模型线性回归是最常见的数学建模方法之一,用于解决变量之间呈现线性关系的问题。
在Matlab中,可以使用regress函数来拟合线性回归模型。
例如,假设我们想要分析学生的身高和体重之间的关系,并建立一个线性回归模型来预测学生的体重。
首先,我们需要收集一组已知的身高和体重数据作为训练集。
然后,可以使用regress函数来计算回归模型的参数,并进行预测。
最后,通过绘制散点图和回归直线,可以直观地观察到身高和体重之间的线性关系。
二、非线性回归模型除了线性回归外,有时数据之间的关系可能是非线性的。
在这种情况下,可以使用非线性回归模型来建立更准确的数学模型。
在Matlab中,可以使用curvefit工具箱来拟合非线性回归模型。
例如,假设我们想要分析一组实验数据,并建立一个非线性模型来描述数据之间的关系。
首先,可以使用curvefit工具箱中的工具来选择最适合数据的非线性模型类型。
然后,通过调整模型的参数,可以用最小二乘法来优化模型的拟合效果。
最后,可以使用拟合后的模型来进行预测和分析。
三、最优化问题最优化是数学建模的关键技术之一,用于在给定的限制条件下找到使目标函数取得最大或最小值的变量取值。
在Matlab中,可以使用fmincon函数来求解最优化问题。
例如,假设我们要最小化一个复杂的目标函数,并且有一些约束条件需要满足。
可以使用fmincon函数来设定目标函数和约束条件,并找到最优解。
通过调整目标函数和约束条件,以及设置合适的初始解,可以得到问题的最优解。
四、概率统计模型概率统计模型用于解决随机性和不确定性问题,在许多领域都得到广泛应用。
matlab数学建模程序代码

matlab数学建模程序代码【实用版】目录1.MATLAB 数学建模概述2.MATLAB 数学建模程序代码的基本结构3.常用的 MATLAB 数学建模函数和命令4.MATLAB 数学建模程序代码的编写流程5.MATLAB 数学建模程序代码的示例正文一、MATLAB 数学建模概述MATLAB(Matrix Laboratory)是一款强大的数学软件,广泛应用于数学建模、数据分析、可视化等领域。
通过 MATLAB,用户可以方便地进行数学计算、编写程序以及绘制图表等。
在数学建模领域,MATLAB 为研究人员和工程师提供了丰富的工具箱和函数,使得数学模型的构建、求解和分析变得更加简单高效。
二、MATLAB 数学建模程序代码的基本结构MATLAB 数学建模程序代码通常分为以下几个部分:1.导入 MATLAB 库:在建模过程中,可能需要使用 MATLAB 提供的某些库或工具箱,需要在代码开头进行导入。
2.定义变量和参数:在建模过程中,需要定义一些变量和参数,用于表示模型中的各个要素。
3.建立数学模型:根据实际问题,编写相应的数学表达式或方程,构建数学模型。
4.求解模型:通过调用 MATLAB 内置函数或使用自定义函数,对数学模型进行求解。
5.分析结果:对求解结果进行分析,提取所需的信息,例如计算均值、方差等统计量。
6.可视化结果:使用 MATLAB 绘制图表,将结果以直观的形式展示出来。
三、常用的 MATLAB 数学建模函数和命令MATLAB 提供了丰富的数学建模函数和命令,例如:1.线性规划:使用`linprog`函数求解线性规划问题。
2.非线性规划:使用`fmincon`或`fsolve`函数求解非线性规划问题。
3.优化问题:使用`optimize`函数求解优化问题。
4.数据处理:使用`mean`、`std`等函数对数据进行统计分析。
5.图表绘制:使用`plot`、`scatter`等函数绘制各种图表。
matlab数学建模100例

matlab数学建模100例Matlab是一种强大的数学建模工具,广泛应用于科学研究、工程设计和数据分析等领域。
在这篇文章中,我们将介绍100个使用Matlab进行数学建模的例子,帮助读者更好地理解和应用这个工具。
1. 线性回归模型:使用Matlab拟合一组数据点,得到最佳拟合直线。
2. 多项式拟合:使用Matlab拟合一组数据点,得到最佳拟合多项式。
3. 非线性回归模型:使用Matlab拟合一组数据点,得到最佳拟合曲线。
4. 插值模型:使用Matlab根据已知数据点,估计未知数据点的值。
5. 数值积分:使用Matlab计算函数的定积分。
6. 微分方程求解:使用Matlab求解常微分方程。
7. 矩阵运算:使用Matlab进行矩阵的加减乘除运算。
8. 线性规划:使用Matlab求解线性规划问题。
9. 非线性规划:使用Matlab求解非线性规划问题。
10. 整数规划:使用Matlab求解整数规划问题。
11. 图论问题:使用Matlab解决图论问题,如最短路径、最小生成树等。
12. 网络流问题:使用Matlab解决网络流问题,如最大流、最小费用流等。
13. 动态规划:使用Matlab解决动态规划问题。
14. 遗传算法:使用Matlab实现遗传算法,求解优化问题。
15. 神经网络:使用Matlab实现神经网络,进行模式识别和预测等任务。
16. 支持向量机:使用Matlab实现支持向量机,进行分类和回归等任务。
17. 聚类分析:使用Matlab进行聚类分析,将数据点分成不同的类别。
18. 主成分分析:使用Matlab进行主成分分析,降低数据的维度。
19. 时间序列分析:使用Matlab进行时间序列分析,预测未来的趋势。
20. 图像处理:使用Matlab对图像进行处理,如滤波、边缘检测等。
21. 信号处理:使用Matlab对信号进行处理,如滤波、频谱分析等。
22. 控制系统设计:使用Matlab设计控制系统,如PID控制器等。
如何使用MATLAB进行数学建模与分析

如何使用MATLAB进行数学建模与分析第一章 MATLAB简介与安装MATLAB是一款强大的数值计算软件,广泛应用于科学计算、工程建模、数据处理和可视化等领域。
本章将介绍MATLAB的基本特点、主要功能以及安装方法。
首先,MATLAB具有灵活的编程语言,可以进行复杂的数学运算和算法实现。
其次,MATLAB集成了丰富的数学函数库,包括线性代数、优化、常微分方程等方面的函数,方便用户进行数学建模和分析。
最后,MATLAB提供了直观友好的图形界面,使得数据处理和结果展示更加便捷。
为了使用MATLAB进行数学建模与分析,首先需要安装MATLAB软件。
用户可以从MathWorks官网上下载最新版本的MATLAB安装程序,并按照提示进行安装。
安装完成后,用户需要根据自己的需要选择合适的许可证类型,并激活MATLAB软件。
激活成功后,用户将可以使用MATLAB的全部功能。
第二章 MATLAB基本操作与语法在开始进行数学建模与分析之前,用户需要了解MATLAB的基本操作和语法。
本章将介绍MATLAB的变量定义与赋值、矩阵运算、函数调用等基本操作。
首先,MATLAB使用变量来存储数据,并可以根据需要对变量进行重新赋值。
变量名可以包含字母、数字和下划线,但不允许以数字开头。
其次,MATLAB支持矩阵运算,可以方便地进行矩阵的加减乘除、转置和求逆等操作。
用户只需要输入相应的矩阵运算符和矩阵变量即可。
然后,MATLAB提供了丰富的数学函数,用户可以直接调用这些函数进行数学运算。
最后,用户可以根据需要编写自定义函数,实现更复杂的算法和数学模型。
第三章数学建模与优化数学建模是利用数学方法和技巧,对实际问题进行描述、分析和求解的过程。
本章将介绍如何使用MATLAB进行数学建模与优化。
首先,数学建模的第一步是问题描述和模型构建。
用户需要明确问题的目标、约束条件和决策变量,并将其转化为数学模型。
其次,用户可以使用MATLAB提供的优化函数,对数学模型进行求解。
MATLAB在数学建模中的应用

MATLAB在数学建模中的应用随着科学技术的不断进步,数学建模在许多领域得到了广泛的应用。
其中,MATLAB作为一种功能强大的计算软件,具有很多优势,使其成为数学建模中的重要工具之一。
本文将介绍MATLAB在数学建模中的应用。
一、MATLAB的基本特点MATLAB是一种用于数学计算、数据分析、可视化和编程的高级技术计算软件。
它提供了许多方便且易于使用的功能,包括数值分析、矩阵计算、信号处理、图像处理、统计分析和数据可视化等等。
MATLAB的高度集成性、易于编程、优雅的编程语言和强大的可视化功能,使其广泛应用于工程领域、科学研究、数学建模等领域。
二、MATLAB在数学建模中的应用1.求解数学模型MATLAB提供了一组广泛的数学函数和工具箱,用于求解各种数学模型。
例如微分方程、线性代数、函数逼近和数值积分等等。
通过这些工具箱可方便地进行数学建模,完成各种数学问题的求解。
同时,MATLAB的计算速度非常快,可以大大缩短计算时间,提高求解精度。
2.绘制图像MATLAB可以生成各种类型的图形和图表,从二维和三维函数图到统计图和数据可视化。
因为MATLAB支持向量和矩阵计算,因此绘制图像非常方便,可以准确地显示数学模型的参数变化。
这对于数学建模的理解和分析,以及对结果的解释和演示非常有帮助。
3.设计算法MATLAB是一种基于高级编程语言的环境。
因此,它为数学建模者提供了编写自己的算法的机会。
MATLAB不仅提供了许多内置的算法,而且还可以自定义算法,以满足特定的需求。
这给数学建模者带来了更多的灵活性和自主性。
4.交互式研究MATLAB提供了交互式控制台,将数值计算和可视化相结合。
数学建模者可以通过这个控制台和模型进行交互式研究,并在过程中进行参数设置和模型调整。
这种交互方式可以及时观察模型的性能和结果,以便及时调整模型参数。
同时它也可以帮助数学建模者更加深入地理解模型本身。
三、MATLAB在数学建模中的优势MATLAB具有许多出色的特点,使得它成为数学建模中的首选工具。
matlab数学建模常用模型及编程
matlab数学建模常用模型及编程摘要:一、引言二、MATLAB 数学建模的基本概念1.矩阵的转置2.矩阵的旋转3.矩阵的左右翻转4.矩阵的上下翻转5.矩阵的逆三、MATLAB 数学建模的常用函数1.绘图函数2.坐标轴边界3.沿曲线绘制误差条4.在图形窗口中保留当前图形5.创建线条对象四、MATLAB 数学建模的实例1.牛顿第二定律2.第一级火箭模型五、结论正文:一、引言数学建模是一种将现实世界中的问题抽象成数学问题,然后通过数学方法来求解的过程。
在数学建模中,MATLAB 作为一种强大的数学软件,被广泛应用于各种数学问题的求解和模拟。
本文将介绍MATLAB 数学建模中的常用模型及编程方法。
二、MATLAB 数学建模的基本概念在使用MATLAB 进行数学建模之前,我们需要了解一些基本的概念,如矩阵的转置、旋转、左右翻转、上下翻转以及矩阵的逆等。
1.矩阵的转置矩阵的转置是指将矩阵的一行和一列互换,得到一个新的矩阵。
矩阵的转置运算符是单撇号(’)。
2.矩阵的旋转利用函数rot90(a,k) 将矩阵a 旋转90 的k 倍,当k 为1 时可省略。
3.矩阵的左右翻转对矩阵实施左右翻转是将原矩阵的第一列和最后一列调换,第二列和倒数第二列调换,依次类推。
matlab 对矩阵a 实施左右翻转的函数是fliplr(a)。
4.矩阵的上下翻转matlab 对矩阵a 实施上下翻转的函数是flipud(a)。
5.矩阵的逆对于一个方阵a,如果存在一个与其同阶的方阵b,使得:a·bb·a=|a|·|b|·I,则称矩阵b 是矩阵a 的逆矩阵。
其中,|a|表示矩阵a 的行列式,I 是单位矩阵。
在MATLAB 中,我们可以使用函数inv(a) 来求解矩阵a 的逆矩阵。
三、MATLAB 数学建模的常用函数在MATLAB 数学建模过程中,我们经常需要使用一些绘图和数据处理函数,如绘图函数、坐标轴边界、沿曲线绘制误差条、在图形窗口中保留当前图形、创建线条对象等。
如何用MATLAB进行数学建模
如何用MATLAB进行数学建模下面是一个关于如何用MATLAB进行数学建模的文章范例:MATLAB是一种强大的数学软件工具,广泛应用于各种数学建模问题的解决。
通过合理利用MATLAB的功能和特性,可以更加高效地进行数学建模,并得到准确的结果。
本文将介绍如何使用MATLAB进行数学建模,并给出一些实际例子。
一、数学建模的基本步骤数学建模是指将实际问题转化为数学模型,并利用数学方法对其进行求解和分析的过程。
在使用MATLAB进行数学建模之前,我们需要明确问题的具体要求,然后按照以下基本步骤进行操作:1. 理解问题:深入了解问题背景、影响因素以及目标要求,确保对问题有一个清晰的认识。
2. 建立模型:根据问题的特性,选择合适的数学模型,并将问题转化为相应的数学表达式。
3. 编写MATLAB代码:利用MATLAB的计算功能和算法库,编写用于求解数学模型的代码。
4. 数据处理和结果分析:在获得计算结果后,根据需要进行数据处理和结果分析,评估模型的准确性和可行性。
二、MATLAB的数学建模工具MATLAB提供了一系列用于数学建模的工具箱和函数,这些工具可以帮助我们快速构建数学模型,并进行求解。
下面是一些常用的数学建模工具:1. 符号计算工具箱:MATLAB的符号计算工具箱可以实现符号运算,用于建立和求解复杂的数学表达式。
2. 优化工具箱:优化工具箱可以用于求解多种优化问题,如线性规划、非线性规划、整数规划等。
3. 数值解工具箱:数值解工具箱提供了各种数值方法和算法,用于求解微分方程、积分方程、差分方程等数学问题。
4. 统计工具箱:统计工具箱可以进行统计建模和分析,包括假设检验、回归分析、时间序列分析等。
5. 控制系统工具箱:控制系统工具箱用于建立和分析控制系统模型,包括经典控制和现代控制方法。
三、数学建模实例为了更好地展示使用MATLAB进行数学建模的过程,我们给出一个实际的数学建模例子:求解物体的自由落体运动。
利用Matlab进行数学建模的基本思路与方法
利用Matlab进行数学建模的基本思路与方法一、引言数学建模是应用数学的一种方法,它将实际问题抽象化为数学模型,并利用数学方法对模型进行分析和求解。
在现代科学研究和工程实践中,数学建模起到了不可替代的作用。
而Matlab作为一种功能强大、灵活易用的数值计算软件,成为了数学建模的常用工具。
本文将介绍利用Matlab进行数学建模的基本思路与方法,希望对读者在实际应用中有所帮助。
二、数学建模的基本步骤1. 问题分析在进行数学建模之前,首先要明确问题的目标和限制。
通过对问题的深入分析,确定问题的关键因素和变量,并建立问题的数学模型。
2. 确定假设在建立数学模型时,需要对问题中一些不确定的因素进行假设。
这些假设是为了简化问题,并使问题能够用数学方法求解。
假设应该尽量符合问题的实际情况,并且在后续分析中可以进行验证。
3. 建立数学模型根据问题的特点和假设,选择合适的数学工具和方法,建立数学模型。
数学模型可以是代数方程、微分方程、优化问题等形式。
在建立数学模型时,需要考虑模型的准确性和有效性。
4. 求解数学模型利用Matlab进行数学模型的求解是相对简便和高效的。
Matlab提供了丰富的函数库和工具箱,可以帮助用户快速求解各种数学问题。
根据建立的数学模型,选择适当的数值方法和算法,编写相应的Matlab程序进行求解。
5. 模型验证和分析对求解得到的结果进行验证和分析,比较模型与实际情况的一致性和可行性。
如果模型与实际情况存在较大差异,需要对模型进行修正。
同时,对模型的解释和分析,可以得到更深入的结论和洞察。
三、利用Matlab进行数学建模的方法1. 数据可视化与分析Matlab提供了强大的绘图功能,可以对数据进行可视化分析。
通过绘制曲线、散点图、柱状图等,可以直观地观察数据的分布和变化趋势。
同时,Matlab也提供了统计工具和函数,可以对数据进行统计分析,如求取均值、方差、相关系数等。
2. 参数拟合与优化对于某些复杂的数学模型,往往存在一些未知参数,需要通过实验数据进行求解。
matlab数学建模pdf
matlab数学建模pdfMATLAB是一种高级编程语言和交互式环境,主要用于数值计算、数据分析和可视化。
它在数学建模方面具有广泛的应用,因为它提供了一个方便的编程环境,支持矩阵和数组操作、函数和方程求解、数据分析和可视化等功能。
以下是一些使用MATLAB进行数学建模的示例:1.线性回归模型:MATLAB提供了一个名为`fitlm`的函数,用于拟合线性回归模型。
以下是一个简单的示例:```matlab%创建自变量和因变量数据x=[1,2,3,4,5];y=[2.2,2.8,3.6,4.5,5.1];%拟合线性回归模型lm=fitlm(x,y);%显示模型摘要summary(lm)```2.非线性最小二乘法拟合:MATLAB提供了一个名为`fitnlm`的函数,用于拟合非线性最小二乘法模型。
以下是一个简单的示例:```matlab%创建自变量和因变量数据x=[1,2,3,4,5];y=[1.2,2.5,3.7,4.6,5.3];%定义非线性模型函数modelfun=@(params,xdata) params(1)*exp(-params(2)*xdata)+params(3); %拟合非线性最小二乘法模型startPoint=[1,1,1];%初始参数值options=optimset('Display','off');%不显示优化过程信息lm=fitnlm(x,y,modelfun,startPoint,options); %显示模型摘要summary(lm)```3.微分方程求解:MATLAB提供了一个名为`ode45`的函数,用于求解常微分方程。
以下是一个简单的示例:```matlab%定义微分方程dy/dx=f(x,y)f=@(x,y)-0.5*y;%初始条件和时间跨度y0=1;tspan=[0,10];%使用ode45进行求解[t,y]=ode45(f,tspan,y0);%可视化结果plot(t,y(:,1))%y是解的矩阵,(:,1)表示取第一列数据作为纵坐标进行绘图xlabel('Time(s)')ylabel('Solution')```。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
大家好
7
表1.2 MATLAB中特殊变量名
变量名称
含义
ans
MATLAB默认变量
pi
圆周率
eps
计算机中的最小数,252
inf
无穷大,如1/0
NaN
不定值,如0/0、 /
i(j)
虚数单位
nargin
所用函数的输入变量数目
nargout
16
4、矩阵的指数运算、对数运算和开方运算 矩阵的指数运算 exam exam1 exam2
矩阵的对数运算 logm
矩阵的开方运算
sqrtm
5、矩阵的转置 ‘ 矩阵的逆矩阵 inv
6、矩阵元素的行列式的值:det 矩阵的秩:rank 矩阵的迹:trace 矩阵的范数:norm 矩阵的条件数:cond
T [a 0 ,a 1 a n 1 ,a n]
1、多项式构造 命令:poly2sym
例2.11、构造多项式 f(x)x53 x44 x2x2
2、求多项式的值 命令:polyval(p,s)
3、多项式四则运算
加“+”
减“-” 乘
conv(a,b)
除[q,r]=deconv[a,b]
大家好
21
第三章 MATLAB的符号计算
大家好
10
5、MATLAB的符号表达式 定义方式:变量名=‘表达式’
6、逻辑关系运算
表1.5 逻辑关系运算表
关系运算符 == ~= < > <= >=
功能 等于 不等于 小于 大于 小于等于 大于等于
逻辑运算符 & / ~
功能 逻辑与 逻辑或 逻辑非
大家好
11
[上机练习]
1.计算 5 的值;
2.求 ln 3 ;
大家好
27
六、求导数和偏导数
1、表达式的导数 diff(s,x,n)
2、多元函数的偏导数 diff(函数f(x,y),变量x,n)
求出 n f
3、求雅可比矩阵
xn
jacobian(函数f(x,y,z);函数g(x,y,z);函数
h(x,y,z),[x,y,z])
f f f
x
y
z
g g g
大家好
31
九、解方程和微分方程
大家好
30
九、解方程和微分方程
表2.3 符号方程求解函数格式
函数格式
说明
solve(s)
求解符号表达式s=0的代数方程,自变量为默认 自变量
solve(s,x)
求解符号表达式s=0的代数方程,自变量为x
solve( s1,s2,Lsn,x1,x2,Lxn)
求解符号表达式 组,自变量分别为
组成的代数方程
所用函数的输出变量数目
reamin
最小可用正实数
realmax
最大可用正实数
大家好
8
表1.3 基本函数表
函数名称 sin
功能 正弦
函数名称 fix
功能 朝零方向取整
cos
余弦
ceil
朝正无穷大方向取整
tan
正切
floor
朝负无穷大方向取整
cot
余切
round
四舍五入到整数
sec
正割
rem
除后取余数
函数格式
说明
limit(s) limit(s,a)
s为符号表达式。表达式中默认自变量趋于 0时的极限
表达式s中默认自变量趋于a时的极限
limit(s,x,a)
表达式s中自变量x趋于a时的极限
limit(s,x,a,’right 表达式s中自变量x趋于a时的右极限 ’) limit(s,x,a,’left’) 表达式s中自变量x趋于a时的左极限
双曲余切
大家好
9
3、数字变量的运算及显示格式 运算符号:+、-、*、/、\、^
四种显示格式: short 小数点后4位(默认) long 小数点后14位 short e 5位指数形式 long e 15位指数形式
4、数据的输入输出函数
从键盘输入数据
变量名=input(‘提示信息’)
输出函数
disp(输出项)
2、MATLAB的窗口 3、MATLAB的帮助系统
4、“clear”命令和“clc”命 令
大家好
Back
5
1、MATLAB的常用操作键
表1.1 命令窗口常用功能键
功能键 ↑,Ctrl-p ↓,Ctrl-N ←,Ctrl-B →,Ctrl-F Home,Ctrl-A End,Ctrl-E Esc Del,Ctrl-D Backspace Ctrl-K
2x3 x2 x3
x4 2
1
x1 x3 x 4 1
大家好
18
四、矩阵的线性变换
rot90——矩阵逆时针旋转90度; fliplr——矩阵作左右翻转; fliqud——矩阵作上下翻转; diag——产生对角矩阵; tril——产生下三角矩阵; triu——产生上三角矩阵; reshape——矩阵重建; size——矩阵尺寸; length——向量长度。
一、MATLAB简介和特点
二、MATLAB的安装与启动
三、MATLAB 基本知识
四、MATLAB基本操作
[上机练习]
大家好
3
MATLAB 是Matrix Laboratory (矩阵实验室)的 缩写,是由美国MathWorks 公司开发的集数值计算、 符号计算和图形可视化三大基本功能于一体的,功 能强大、操作简单的语言。
2、向量运算
①向量与标量的运算
和x1+x2
差 x1-x2
②向量间的运算 点积dot(x1,x2)
叉积cross(x1,x2)
混合积 dot(x1,cross(x2,x3)
大家好
20
七、多项式运算 多项式一般可表示为: f( x ) a 0 x n a 1 x n 1 a n 1 x a n
③利用数据文件装入
④利用矩阵编辑器(Matrix Editor)创建
大家好
14
二、矩阵元素的操作
1、选取矩阵中某些元素而构成新的矩阵或数组
b=a(m行:n行,r列:s列) ——表示从a中抽出m到n行、r到s列
b=a(:,r列:s列)——表示所有行均选 b=a(m行:n行,:)——表示所有列均选 c=a(m,r)——表示第m行r列元素被选中
a) x=fzero(‘fun’,a)
函数零 点
x=fzero(‘fun’,[a, b]) [x,y]=fzero(‘fun’ ,a)
[x,y]=
a为极值点附近的初始值, [a,b]为求零点的区间,x为 函数零点,y为零点的函数 值。
fzero(‘fun’,[a,
b])
大家好
26
五、求极限
表2.3 符号极限的函数格式
主要特点:
①运算符和库函数极其丰富,语言简洁,编程效率高, ②既具有结构化的控制语句,又有面向对象的编程特性。 ③图形功能强大。 ④功能强大的工具箱。 ⑤易于扩充。
大家好
Back
4
1、MATLAB的运行方式:命令行方式和M文件方式
例1.1、求矩阵
2 A[
6
5 ] 3
, 7 B [ 2
9 ]
0
的和。
基于MATLAB的 高等数学实验
主 讲: 张 朝 元
2009.3.-4.
大家好
1
第一章 MATLAB基本知识 第二章 MATLAB矩阵和数组计算 第三章 MATLAB符号运算 第四章 MATLAB绘图 第五章 MATLAB语言的程序设计 第六章 MATLAB应用
大家好
2
第一章 MATLAB基本知识
表达式R的值可用命令:vpa(R)
大家好
23
二、代数式的符号运算
符号表达式的化简函数
表2.1 符号化简函数表
函数格式
说明
collect(s,x) 合并自变量x的同幂系数
expand(s) 符号表达式s的展开
factor(s) 因式分解
numden(s) 分式通分
simple(s) 表达式的最简型
simplify(s) 化简
3.计算
tan
3 4
;
4.求 e 4 的值;
5.求15、35的最大公因数;
6. 计算3.14朝零取整;
7.用变量名y1表示方程 x33c o 2xs0
8.熟悉MATLAB的各窗口。
大家好
12
第二章 MATLAB矩阵和数组计 算 一、矩阵的建立
二、矩阵元素的操作
三、矩阵的基本运算
四、矩阵的线性变换
五、矩阵的分解
csc
余割
sign
符号函数
asin
反正弦
abs
绝对值
acos
反余弦
angle
复数相角
atan
反正切
ቤተ መጻሕፍቲ ባይዱ
imag
复数虚部
acot
反余切
real
复数实部
asec
反正割
conj
复数共轭
acsc
反余割
log10
常用对数
sinh
双曲正弦
log
自然对数
cosh
双曲余弦
exp
e为底指数
tanh
双曲正切
sqrt
平方根
coth
函数格式
symsum(s) symsum(s,x) symsum(s,a,b) symsum(s,x,a,b)