必修四三角函数三角恒等变换知识点总结

合集下载

三角恒等变换知识点总结详解

三角恒等变换知识点总结详解

三角恒等变换知识点总结详解三角恒等变换是指一些与三角函数相关的恒等式或等式组,通过这些等式可以将一个三角函数表达式转化为另一个三角函数表达式,或者简化一个复杂的三角函数表达式。

这些恒等变换在解决三角函数相关问题时非常有用。

下面是对一些常见的三角恒等变换进行总结和详解。

1.正弦函数的恒等变换:- 正弦函数的定义:对于任意实数x,sin(x) = y,其中y为[-1, 1]之间的值。

- 正弦函数的周期性:sin(x + 2π) = sin(x),即正弦函数以2π为周期。

- 正弦函数的奇偶性:sin(-x) = -sin(x),即正弦函数是奇函数。

2.余弦函数的恒等变换:- 余弦函数的定义:对于任意实数x,cos(x) = y,其中y为[-1, 1]之间的值。

- 余弦函数的周期性:cos(x + 2π) = cos(x),即余弦函数以2π为周期。

- 余弦函数的奇偶性:cos(-x) = cos(x),即余弦函数是偶函数。

3.正切函数的恒等变换:- 正切函数的定义:对于任意实数x(除了例如π/2 + kπ,其中k 为整数),tan(x) = y,其中y为整个实数轴上的值。

- 正切函数的周期性:tan(x + π) = tan(x),即正切函数以π为周期。

- 正切函数的奇偶性:tan(-x) = -tan(x),即正切函数是奇函数。

4.三角函数的平方和差公式:- sin²(x) + cos²(x) = 1,即正弦函数的平方与余弦函数的平方和等于1- sin(x + y) = sin(x)cos(y) + cos(x)sin(y),即正弦函数的和的正弦等于两个正弦函数的乘积和。

- cos(x + y) = cos(x)cos(y) - sin(x)sin(y),即余弦函数的和的余弦等于两个余弦函数的乘积差。

- sin(x - y) = sin(x)cos(y) - cos(x)sin(y),即正弦函数的差的正弦等于两个正弦函数的乘积差。

三角恒等变换高考数学中的关键知识点总结

三角恒等变换高考数学中的关键知识点总结

三角恒等变换高考数学中的关键知识点总结三角恒等变换是高考数学中的重要内容,涉及到三角函数的性质和等价关系。

在解决三角函数相关题目时,熟练掌握三角恒等变换可帮助我们简化计算和推导过程,提高解题效率。

本文将对三角恒等变换中的关键知识点进行总结。

一、基本恒等式1. 余弦、正弦和正切的平方和恒等式:$cos^2(x) + sin^2(x) = 1$$1 - tan^2(x) = sec^2(x)$$1 - cot^2(x) = csc^2(x)$这些恒等式是三角函数中最为基础的恒等式,也是其他恒等式的基础。

通过这些基本恒等式,我们可以推导出其他更复杂的恒等式。

2. 三角函数的互余关系:$sin(\frac{\pi}{2} - x) = cos(x)$$cos(\frac{\pi}{2} - x) = sin(x)$$tan(\frac{\pi}{2} - x) = \frac{1}{cot(x)}$$cot(\frac{\pi}{2} - x) = \frac{1}{tan(x)}$互余关系表明,角度x和其余角之间的三角函数之间存在特定的关系。

3. 三角函数的倒数关系:$sin(-x) = -sin(x)$$cos(-x) = cos(x)$$tan(-x) = -tan(x)$$cot(-x) = -cot(x)$三角函数的倒数关系表明,对于同一角度的正负,其正弦、余弦、正切和余切的值也是相反的。

二、和差恒等式和差恒等式是三角恒等变换中的重要内容,它们可用于将角度的和或差转化为其他三角函数表示,从而简化解题过程。

1. 正弦和差恒等式:$sin(x \pm y) = sin(x)cos(y) \pm cos(x)sin(y)$2. 余弦和差恒等式:$cos(x \pm y) = cos(x)cos(y) \mp sin(x)sin(y)$3. 正切和差恒等式:$tan(x \pm y) = \frac{tan(x) \pm tan(y)}{1 \mp tan(x)tan(y)}$这些和差恒等式在解决角度和为特定值时的三角函数计算中起到了重要的作用。

高中数学三角恒等式知识点归纳

高中数学三角恒等式知识点归纳

高中数学三角恒等式知识点归纳三角恒等式是高中数学中的重要知识点,它们在三角函数的运算和证明中起到关键的作用。

下面是一些常见的三角恒等式知识点的归纳:1. 基本恒等式- 正弦函数的平方加上余弦函数的平方等于1:$\sin^2x +\cos^2x = 1$- 正切函数是正弦函数与余弦函数的比值:$\tan x = \frac{\sin x}{\cos x}$- 余切函数是余弦函数与正弦函数的比值:$\cot x = \frac{\cos x}{\sin x}$- 正割函数是1除以余弦函数:$\sec x = \frac{1}{\cos x}$- 余割函数是1除以正弦函数:$\csc x = \frac{1}{\sin x}$2. 倍角与半角公式- 正弦函数的倍角公式:$\sin 2x = 2 \sin x \cos x$- 余弦函数的倍角公式:$\cos 2x = \cos^2x - \sin^2x$- 正切函数的倍角公式:$\tan 2x = \frac{2\tan x}{1 - \tan^2x}$- 正弦函数的半角公式:$\sin^2\frac{x}{2} = \frac{1 - \cosx}{2}$- 余弦函数的半角公式:$\cos^2\frac{x}{2} = \frac{1 + \cosx}{2}$- 正切函数的半角公式:$\tan\frac{x}{2} = \sqrt{\frac{1 - \cos x}{1 + \cos x}}$3. 和差与积化和差公式- 正弦函数的和差公式:$\sin(x \pm y) = \sin x \cos y \pm \cos x \sin y$- 余弦函数的和差公式:$\cos(x \pm y) = \cos x \cos y \mp \sin x \sin y$- 正切函数的和差公式:$\tan(x \pm y) = \frac{\tan x \pm \tan y}{1 \mp \tan x \tan y}$- 正弦函数的积化和差公式:$\sin x \sin y = \frac{1}{2}[\cos(x - y) - \cos(x + y)]$- 余弦函数的积化和差公式:$\cos x \cos y = \frac{1}{2}[\cos(x - y) + \cos(x + y)]$- 正切函数的积化和差公式:$\tan x \tan y = \frac{1 - \cos(x + y)}{1 + \cos(x + y)}$4. 诱导公式- 正弦函数的诱导公式:$\sin(\pi \pm x) = \mp \sin x$- 余弦函数的诱导公式:$\cos(\pi \pm x) = -\cos x$- 正切函数的诱导公式:$\tan(\pi \pm x) = \mp \tan x$这是一些常见的高中数学中三角恒等式的知识点归纳。

高一数学必修四三角恒等变换知识点

高一数学必修四三角恒等变换知识点

高一数学必修四三角恒等变换知识点两角和差公式⒉两角和与差的三角函数公式sin(α+β)=sinαcosβ+cosαsinβsin(α-β)=sinαcosβ-cosαsinβcos(α+β)=cosαcosβ-sinαsinβcos(α-β)=cosαcosβ+sinαsinβtanα+tanβ(α+β)=——————1-tanα·tanβtanα-tanβtan(α-β)=——————1+tanα·tanβ倍角公式二倍角的正弦、余弦和正切公式(升幂缩角公式)sin2α=2sinαcosαcos2α=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)2tanαtan2α=—————1-tan^2(α)半角公式⒋半角的正弦、余弦和正切公式(降幂扩角公式)1-cosαsin^2(α/2)=—————21+cosαcos^2(α/2)=—————21-cosαtan^2(α/2)=—————1+cosα万能公式⒌万能公式2tan(α/2)sinα=——————1+tan^2(α/2)1-tan^2(α/2)cosα=——————1+tan^2(α/2)2tan(α/2)tanα=——————1-tan^2(α/2)和差化积公式⒎三角函数的和差化积公式α+βα-βsinα+sinβ=2sin—----·cos—---22α+βα-βsinα-sinβ=2cos—----·sin—----22α+βα-βcosα+cosβ=2cos—-----·cos—-----22α+βα-βcosα-cosβ=-2sin—-----·sin—-----22积化和差公式⒏三角函数的积化和差公式sinα·cosβ=0.5[sin(α+β)+sin(α-β)]cosα·sinβ=0.5[sin(α+β)-sin(α-β)]cosα·cosβ=0.5[cos(α+β)+cos(α-β)]sinα·sinβ=-0.5[cos(α+β)-cos(α-β)]9解三角形步骤1.在锐角△ABC中,设三边为a,b,c。

高中数学必修4第三章_三角恒等变换知识点

高中数学必修4第三章_三角恒等变换知识点

111高中数学必修4第三章三角恒等变换知识点⑴商的关系: ① tan y sin x cos ②cotx cos y sin ③sin y cos ta n④cosx .r r⑵倒数关系: tan cot 1⑶平方关系: sin 2 cos 212、两角和与差的正弦、 余弦和正切公式:⑴cos cos cos sin sin:⑵ cos cos cos ⑶sin sin cos cos sin :⑷ sinsin cos ⑸ta ntan tan(tan tantan 1 1 tan tan ⑹ta n tan tan (tan tantan 11 tan tan1、同角关系: cos sintan tan 余弦和正切公式: 3、二倍角的正弦、 sin sin tan tan⑴ si n2 2sin cos 1 sin 2 sin 2 cos 22si n cos (sincos )2⑵ cos2 2 cos.2 sin 2cos 21 1 2si n 2升幕公式 cos 降幕公式 cos 2c 22cos — 2 cos2 1 1 cos 2sinsin 221 cos2⑶tan2羊1 tan 24、万能公式: ① sin 22 ta n 1 tan 2② cos2ta n 2 tan 2 ③ tan 22ta n 1 tan 2④ si n 2tan 21 tan 2⑤ cos 2_____1 tan 25、半角公式cos—2sin —2cos tan2 cossin 1 cos1 cos sin(后两个不用判断符号,更加好用)6、asin bcos . a2b2sin((其中辅助角与点(a,b)在同一象限,且tanb-)a2。

必修4-第三章三角恒等变换-知识点详解

必修4-第三章三角恒等变换-知识点详解

必修4 第三章三角恒等变换知识点详解3.1 两角和与差的正弦、余弦和正切公式1. 两角和与差的正弦、余弦、正切公式:()sin sin cos cos sin sin 22sin cos 令αβαβαβαβααα=±=±−−−→=βαβαβαsin sin cos cos )cos(-=+βαβαβαsin sin cos cos )cos(+=-βαβαβαsin cos cos sin )sin(+=+βαβαβαsin cos cos sin )sin(-=-2. 倍角公式:()()2222222cos cos cos sin sin cos 2cos sin 2cos 112sin tan tan 1+cos2tan cos 1tan tan 21cos2sin 22tan tan 21tan 令 = = αβαβαβαβααααααβααβααβααααα=±=−−−→=-↓=-=-±±=⇒-↓=-3. 正切变形公式tanα+tanβ=tan(α+β)(1-tanαtanβ)tanα-tanβ=tan(α-β)(1+tanαtanβ)3.2 简单的三角恒等变换三角函数的化简、计算、证明的恒等变形的基本思路是:一角二名三结构。

即首先观察角与角之间的关系,注意角的一些常用变式,角的变换是三角函数变换的核心!第二看函数名称之间的关系,通常“切化弦”;第三观察代数式的结构特点。

基本的技巧有:(1)巧变角(已知角与特殊角的变换、已知角与目标角的变换、角与其倍角的变换、两角与其和差角的变换. 如()()ααββαββ=+-=-+,2()()ααβαβ=++-,2()()αβαβα=+--,22αβαβ++=⋅,()()222αββααβ+=---等), (2)公式变形使用(tan tan αβ±()()tan 1tan tan αβαβ=±。

(完整word版)必修四三角函数和三角恒等变换知识点及题型分类总结,推荐文档

(完整word版)必修四三角函数和三角恒等变换知识点及题型分类总结,推荐文档

三角函数知识点总结1、任意角:正角: ;负角: ;零角: ;2、角α的顶点与 重合,角的始边与 重合,终边落在第几象限,则称α为第几象限角.第一象限角的集合为 第二象限角的集合为 第三象限角的集合为 第四象限角的集合为 终边在x 轴上的角的集合为 终边在y 轴上的角的集合为 终边在坐标轴上的角的集合为 3、与角α终边相同的角的集合为 4、已知α是第几象限角,确定()*n nα∈N 所在象限的方法:先把各象限均分n 等份,再从x 轴的正半轴的上方起,依次将各区域标上一、二、三、四,则α原来是第几象限对应的标号即为nα终边所落在的区域.5、 叫做1弧度.6、半径为r 的圆的圆心角α所对弧的长为l ,则角α的弧度数的绝对值是 .7、弧度制与角度制的换算公式:8、若扇形的圆心角为()αα为弧度制,半径为r ,弧长为l ,周长为C ,面积为S ,则l= .S=9、设α是一个任意大小的角,α的终边上任意一点P 的坐标是(),x y ,它与原点的距离是()0r r =>,则sin y r α=,cos x r α=,()tan 0yx xα=≠. 10、三角函数在各象限的符号:第一象限全为正,第二象限正弦为正,第三象限正切为正,第四象限余弦为正. 11、三角函数线:.12、同角三角函数的基本关系:(1) ;(2) ;(3) 13、三角函数的诱导公式:()()1sin 2sin k παα+=,()cos 2cos k παα+=,()()tan 2tan k k παα+=∈Z . ()()2sin sin παα+=-,()cos cos παα+=-,()tan tan παα+=. ()()3sin sin αα-=-,()cos cos αα-=,()tan tan αα-=-.()()4sin sin παα-=,()cos cos παα-=-,()tan tan παα-=-.()5sin cos 2παα⎛⎫-=⎪⎝⎭,cos sin 2παα⎛⎫-= ⎪⎝⎭. ()6sin cos 2παα⎛⎫+= ⎪⎝⎭,cos sin 2παα⎛⎫+=- ⎪⎝⎭.口诀:奇变偶不变,符号看象限. 重要公式⑴()cos cos cos sin sin αβαβαβ-=+;⑵()cos cos cos sin sin αβαβαβ+=-; ⑶()sin sin cos cos sin αβαβαβ-=-;⑷()sin sin cos cos sin αβαβαβ+=+; ⑸()tan tan tan 1tan tan αβαβαβ--=+(()()tan tan tan 1tan tan αβαβαβ-=-+);⑹()tan tan tan 1tan tan αβαβαβ++=-(()()tan tan tan 1tan tan αβαβαβ+=+-).二倍角的正弦、余弦和正切公式: ⑴sin 22sin cos ααα=.(2)2222cos2cos sin 2cos 112sin ααααα=-=-=-(2cos 21cos 2αα+=,21cos 2sin 2αα-=).⑶22tan tan 21tan ααα=-.公式的变形:()βαβαβαtan tan 1)tan(tan tan μ•±=±,辅助角公式()sin cos αααϕA +B =+,其中tan ϕB =A. 14、函数sin y x =的图象平移变换变成函数()sin y x ωϕ=A +的图象. 15.函数()()sin 0,0y x ωϕω=A +A >>的性质:①振幅:A ;②周期:2πωT =;③频率:12f ωπ==T ;④相位:x ωϕ+;⑤初相:ϕ.16.图像正弦函数、余弦函数和正切函数的图象与性质:三角函数题型分类总结一.求值1、sin330︒= tan690° = o585sin =2、(1)(07全国Ⅰ) α是第四象限角,12cos 13α=,则sin α= (2)(09北京文)若4sin ,tan 05θθ=->,则cos θ= . (3)(09全国卷Ⅱ文)已知△ABC 中,12cot 5A =-,则cos A = . (4) α是第三象限角,21)sin(=-πα,则αcos = )25cos(απ+=3、(1) (07陕西) 已知sin α=则44sin cos αα-= .(2)(04全国文)设(0,)2πα∈,若3sin 5α=)4πα+= .(3)(06福建)已知3(,),sin ,25παπα∈=则tan()4πα+= 4(07重庆)下列各式中,值为23的是( ) (A )2sin15cos15︒︒ (B )︒-︒15sin 15cos 22(C )115sin 22-︒(D )︒+︒15cos 15sin 22 5. (1)(07福建) sin15cos75cos15sin105+oooo= (2)(06陕西)cos 43cos77sin 43cos167o o o o+= 。

三角函数概念及三角恒等变换知识点总结-高三数学一轮复习

三角函数概念及三角恒等变换知识点总结-高三数学一轮复习

知识点总结 51 三角函数概念及三角恒等变换一.角的概念的推广:1.定义:角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形.2.角的分类:{按旋转方向的不同分类{正角:按逆时针方向旋转形成的角;负角:按顺时针方向旋转形成的角;零角:没有旋转;按终边位置不同分类{象限角:角的终边在第几象限,就是第几象限的角;轴线角:角的终边在坐标轴上。

3.终边相同的角:所有与角α终边相同的角,连同角α在内,构成的角的集合是S ={β|β=k ·360°+α,k ∈Z }. 即任一与角α终边相同的角,都可以表示成角α与整数个周角的和. 4.几种特殊位置的角的集合 (1)象限角的集合:①第一象限角:{α|2kπ<α<2kπ+π2 ,k ∈Z};②第二象限角:{α|2kπ+π2<α<2kπ+π ,k ∈Z}; ③第三象限角:{α|2kπ+π<α<2kπ+3π2,k ∈Z};④第四象限角:{α|2kπ+3π2<α<2kπ+2π ,k ∈Z};(2)轴线角的集合:①终边在x 轴非负半轴上的角的集合:{α|α=2kπ ,k ∈Z }. ②终边在x 轴非正半轴上的角的集合:{α|α=2kπ+π ,k ∈Z }. ③终边在x 轴上的角的集合:{α|α=kπ ,k ∈Z }. ④终边在y 轴上的角的集合:{α|α=kπ+π2 ,k ∈Z}.⑤终边在坐标轴上的角的集合:{α|α=k ∙π2 ,k ∈Z}. (3)终边在特殊直线上:①终边在y =x 上的角的集合:{α|α=kπ+π4 ,k ∈Z}.②终边在y =-x 上的角的集合:{α|α=kπ−π4 ,k ∈Z}.③终边在坐标轴或四象限角平分线上的角的集合:{α|α=k ∙π4 ,k ∈Z}. 二.弧度制:1.弧度的角:在圆中,把长度等于半径长的弧所对的圆心角叫做1弧度的角,用符号rad 表示.2.正角、负角和零角的弧度数一般的,正角的弧度数是一个正数,负角的弧度数是一个负数,零角的弧度数是0. 3.角度制与弧度制的换算(1)1°=π180 rad. (2)1 rad =(180π)°4.如果半径为r 的圆的圆心角α所对弧的长为l ,那么,角α的弧度数的绝对值是|α|=lr 相关公式:(1)扇形的弧长公式:l =nπr180=|α|r . (2)扇形的面积公式:S =12lr =nπr 2360=12|α|r 2. 三.三角函数概念(1)利用单位圆定义三角函数:设α是一个任意角,它的终边与单位圆交于点P (x ,y ),那么: sin α=y . cos α=x . tan α=yx (x ≠0).(2)利用终边上的点定义三角函数:设α是一个任意角,它的终边过点P (x ,y ),|OP |=r 那么: sin α=yr. cos α=xr. tan α=yx(x ≠0).(3)符号法则:一全二正三切四余 (4)特殊角的三角函数值四.三角恒等变形 1.同角三角函数的基本关系 (1)平方关系:sin 2α+cos 2α=1.(2)商数关系:sinαcosα=tan α(α≠kπ+π2,k ∈Z). 变形:(1)(sin α±cos α)2=1±2sin αcos α=1±sin2α,(2)sin 2α=1-cos 2α=(1+cos α)(1-cos α); (3)cos 2α=1-sin 2α=(1+sin α)(1-sin α); (4)sin α=tan αcos α(α≠kπ+π2,k ∈Z).2.正弦、余弦的诱导公式:奇变偶不变,符号看象限。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三角函数 三角恒等变换知识点总结一、角的概念和弧度制:(1)在直角坐标系讨论角:角的顶点在原点,始边在x 轴的正半轴上,角的终边在第几象限,就说过角是第几象限的角。

若角的终边在坐标轴上,就说这个角不属于任何象限,它叫象限界角。

(2)①与α角终边相同的角的集合:},2|{},360|{0Z k k Z k k ∈+=∈+=απββαββ或与α角终边在同一条直线上的角的集合: ; 与α角终边关于x 轴对称的角的集合: ; 与α角终边关于y 轴对称的角的集合: ; 与α角终边关于x y =轴对称的角的集合: ;②一些特殊角集合的表示:终边在坐标轴上角的集合: ;终边在一、三象限的平分线上角的集合: ; 终边在二、四象限的平分线上角的集合: ; 终边在四个象限的平分线上角的集合: ; (3)区间角的表示:①象限角:第一象限角: ;第三象限角: ;第一、三象限角: ;②写出图中所表示的区间角:(4)正确理解角:要正确理解“oo90~0间的角”= ;“第一象限的角”= ;“锐角”= ; “小于o90的角”= ; (5)由α的终边所在的象限,通过 来判断2α所在的象限。

来判断3α所在的象限 (6)弧度制:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零;任一已知角α的弧度数的绝对值rl=||α,其中l 为以角α作为圆心角时所对圆弧的长,r 为圆的半径。

注意钟表指针所转过的角是负角。

(7)弧长公式: ;半径公式: ;扇形面积公式: ;二、任意角的三角函数:(1)任意角的三角函数定义:以角α的顶点为坐标原点,始边为x 轴正半轴建立直角坐标系,在角α的终边上任取一个异于原点的点),(y x P ,点P 到原点的距离记为r ,则=αsin ;=αcos ;=αtan ;=αcot ;=αsec ;=αcsc ;如:角α的终边上一点)3,(a a -,则=+ααsin 2cos 。

注意r>0 (2)在图中画出角α的正弦线、余弦线、正切线;比较)2,0(π∈x ,x sin ,x tan ,x 的大小关系: 。

(3)特殊角的三角函数值:三、同角三角函数的关系与诱导公式:作用:已知某角的一个三角函数值,求它的其余各三角函数值。

(2)诱导公式:ααπ⇒+k 2: , , ; ααπ⇒+: , , ; αα⇒-: , , ; ααπ⇒-: , , ; ααπ⇒-2: , , ; ααπ⇒-2: , , ; ααπ⇒+2: , , ; ααπ⇒-23: , , ;ααπ⇒+23: , , ; 诱导公式可用概括为:2K π±α,-α,2π±α,π±α,23π±α的三角函数奇变偶不变,符号看象限 α的三角函数作用:“去负——脱周——化锐”,是对三角函数式进行角变换的基本思路.即利用三角函数的奇偶性将负角的三角函数变为正角的三角函数——去负;利用三角函数的周期性将任意角的三角函数化为角度在区间[0o ,360o )或[0o ,180o )的三角函数——脱周;利用诱导公式将上述三角函数化为锐角三角函数——化锐.(3)同角三角函数的关系与诱导公式的运用:①已知某角的一个三角函数值,求它的其余各三角函数值。

注意:用平方关系,有两个结果,一般可通过已知角所在的象限加以取舍,或分象限加以讨论。

②求任意角的三角函数值。

步骤:③已知三角函数值求角:注意:所得的解不是唯一的,而是有无数多个. 步骤: ①确定角α所在的象限;②如函数值为正,先求出对应的锐角1α;如函数值为负,先求出与其绝对值对 应的锐角1α;③根据角α所在的象限,得出π2~0间的角——如果适合已知条件的角在第二限;则它是1απ-;如果在第三或第四象限,则它是1απ+或12απ-;④如果要求适合条件的所有角,再利用终边相同的角的表达式写出适合条件的所有角的集合。

如m =αtan ,则=αsin ,=αcos ;=-)23sin(απ ;=-)215cot(απ_________。

注意:巧用勾股数求三角函数值可提高解题速度:(3,4,5);(6,8,10);(5,12,13);(8,15,17);四、三角函数图像和性质1.周期函数定义定义 对于函数()f x ,如果存在一个不为零的常数T ,使得当x 取定义域的每一个值时,()()f x T f x +=都成立,那么就把函数()f x 叫做周期函数,不为零的常数T 叫做这个函数的公式二、 四、五、 六、七、 八、九周期.请你判断下列函数的周期x y sin = x y cos = |cos |x y = ||cos x y = |sin |x y =y=tan x y=tan |x| y=|tan x| ||sin x y = 例 求函数f(x)=3sin )35(π+x k ()0≠k 的周期。

并求最小的正整数k,使他的周期不大于1注意 理解函数周期这个概念,要注意不是所有的周期函数都有最小正周期,如常函数f (x )=c(c 为常数)是周期函数,其周期是异于零的实数,但没有最小正周期. 结论:如函数)()(k x f k x f -=+对于R x ∈任意的,那么函数f(x)的周期T=2k; 如函数)()(x k f k x f -=+对于R x ∈任意的,那么函数f(x)的对称轴是k x k k x x =-++=2)()(2.图像3、图像的平移对函数y=A sin(ωx+ϕ)+k (A.>.0,..ϕ.≠.0,.. k.≠.0)..,其图象的基本变换有:..0,..ω>(1)振幅变换(纵向伸缩变换):是由A的变化引起的.A>1,伸长;A<1,缩短.(2)周期变换(横向伸缩变换):是由ω的变化引起的.ω>1,缩短;ω<1,伸长.(3)相位变换(横向平移变换):是由φ的变化引起的.ϕ>0,左移;ϕ<0,右移.(4)上下平移(纵向平移变换): 是由k的变化引起的.k>0, 上移;k<0,下移四、三角函数公式:三倍角公式:θθθ3sin 4sin 33sin -=;θθθcos 3cos 43cos 3-=五、三角恒等变换:三角变换是运算化简的过程中运用较多的变换,提高三角变换能力,要学会创设条件,灵活运用三角公式,掌握运算,化简的方法和技能.常用的数学思想方法技巧如下:(1)角的变换:在三角化简,求值,证明中,表达式中往往出现较多的相异角,可根据角与角之间的和差,倍半,互补,互余的关系,运用角的变换,沟通条件与结论中角的差异,使问题获解,对角的变形如:①α2是α的二倍;α4是α2的二倍;α是2α的二倍;2α是4α的二倍;α3是23α的二倍;3α是6α的二倍;απ22±是απ±4的二倍。

②2304560304515o ooooo=-=-=;问:=12sin π ;=12cos π;③ββαα-+=)(;④)4(24αππαπ--=+;⑤)4()4()()(2απαπβαβαα--+=-++=;等等(2)函数名称变换:三角变形中,常常需要变函数名称为同名函数。

如在三角函数中正余弦是基础,通常化切、割为弦,变异名为同名。

(3)常数代换:在三角函数运算,求值,证明中,有时需要将常数转化为三角函数值,例如常数“1”的代换变形有: oo45tan 90sin cot tan tan sec cos sin 12222===-=+=αααααα(4)幂的变换:降幂是三角变换时常用方法,对次数较高的三角函数式,一般采用降幂处理的方法。

常用降幂公式有: ; 。

降幂并非绝对,有时需要升幂,如对无理式αcos 1+常用升幂化为有理式,常用升幂公式有: ; ;(5)公式变形:三角公式是变换的依据,应熟练掌握三角公式的顺用,逆用及变形应用。

如:_______________tan 1tan 1=-+αα; ______________tan 1tan 1=+-αα;____________tan tan =+βα;___________tan tan 1=-βα; ____________tan tan =-βα;___________tan tan 1=+βα;=αtan 2 ;=-α2tan 1 ;=++o o o o 40tan 20tan 340tan 20tan ;=+ααcos sin = ; =+ααcos sin b a = ;(其中=ϕtan ;)=+αcos 1 ;=-αcos 1 ;(6)三角函数式的化简运算通常从:“角、名、形、幂”四方面入手;基本规则是:切割化弦,异角化同角,复角化单角,异名化同名,高次化低次,无理化有理,和积互化,特殊值与特殊角的三角函数互化。

如:=+)10tan 31(50sin oo ;=-ααcot tan ;=94cos 92cos9cosπππ;=++75cos 73cos 7cos πππ ;推广:=++76cos 74cos 72cos πππ ;推广:。

相关文档
最新文档