GTO驱动电路备课讲稿

合集下载

电力牵引变流技术GTO、GTR的原理与结构

电力牵引变流技术GTO、GTR的原理与结构

2.2、GTR的结构及工作原理
对大功率三极管来讲,单靠外壳散热是远远不够的。例如, 50W的硅低频大功率晶体三极管,如果不加散热器工作, 其最大允许耗散功率仅为2—3W
2.2、GTR的结构及工作原理

2 工作原理 在电力电子技术中,GTR与其它的电力电子器 件一般工作于开关状态,在电子技术中,一般工 作于放大状态。晶体管通常连接成共射极电路, NPN型GTR一般工作于正偏(Ib>0)时大电流导通, 反偏时(Ib<0)时处于截止状态。因此,我们通过 控制基极信号,施加足够大功率的脉冲驱动信号, 晶体管将工作于导通与截止状态,这时的GTR与 我们前面学过的全控晶闸管一样,相当于可控制 导通也可控制关断的一个开关。

整个工作过程分为开通过程、导通状态、关断过程、阻断状态4个 不同的阶段。图中开通时间ton对应着GTR由截止到饱和的开通过程,
关断时间toff对应着GTR饱和到截止的关断过程。
ib 90%Ib 1 10%Ib 1 0
Ib 1
t Ib 2 to n to f f Ics ts tf
ic 90%Ics 10%Ics 0
(a)串联电阻调速 (b)直流斩波调速 图2-1 城轨直流牵引传动系统示意图
【学习任务】
2.1、GTO的结构及工作原理
可关断(GTO)的内部结构
2.1、GTO的结构及工作原理
GTO的驱动电路
理想的门极驱动信号(电流、电压)波形如图所示,其中实线为 电流波形,虚线为电压波形。
2.1、GTO的结构及工作原理 GTO的驱动电路
td tr
t0 t1
t2
t3
t4
t5
t
图4-7 开关过程中ib和ic的波形

12 第5章 GTO

12 第5章 GTO

★全控型,可以通过在门极施加负的脉冲电流使其关断。
★ GTO 的电压、电流容量较大,与普通晶闸管接近,水
平4500A/5000V、1000A/9000V。
★ 在兆瓦级以上的大功率场合仍有较多的应用。如电力 有源滤波器、直流输电、静止无功补偿等。
GTO 第3页
GTO 第4页
5.1.1 结构
●与普通晶闸管的相同点: PNPN四层半导体结构,外部
GTO 第17页
(2)下降时间tf ●下降时间 tf 对应着阳极电 流迅速下降,阳极电压不 断上升和门极反电压开始 建立的过程。
●这段时间里,等效晶体管 从饱和区退至放大区,继 续从门极抽出载流子,阳 极电流逐渐减小。
●门极电流逐渐减小。
GTO 第18页
(3)尾部时间tt ●尾部时间 tt 是指从阳极电 流降到极小值开始,直 到降到维持电流为止的 时间。 ●这段时间内,残存载流 子被抽出。 ●一般: tt > ts >tf
GTO 第29页
5.3 GTO的缓冲电路
5.3.1 缓冲电路的作用
1、GTO缓冲电路主要作用: (1) GTO关断时,在阳极电流下降阶段,抑制阳极电压 VAK 中的尖峰 VP ,对 IA 进行分流,以降低关断损耗, 防止导通区减小、电流密度过大、引起结温升高, 和α1、α2增大给关断带来困难。 GTO开通时,缓冲电容通过电阻向GTO放电,有助 于所有GTO元迅速达到擎住电流,尤其是主电路为 电感负载时。
I ATO I GM
●一切影响IATO和IGM的因素均会影响βoff。 3、 阳极尖峰电压VP ●阳极尖峰电压VP是在下降时间末尾出现的极值电压。 ●它几乎随阳极可关断电流线性增加, VP 过高可能导致
GTO失效。

GTO驱动电路

GTO驱动电路

门极可关断晶闸管GTO驱动电路1.电力电子器件驱动电路简介电力电子器件的驱动电路是指主电路与控制电路之间的接口,可使电力电子器件工作在较理想的开关状态,缩短开关时间,减小开关损耗,对装置的运行效率、可靠性和安全性都有重要的意义。

一些保护措施也往往设在驱动电路中,或通过驱动电路实现。

驱动电路的基本任务:按控制目标的要求施加开通或关断的信号;对半控型器件只需提供开通控制信号;对全控型器件则既要提供开通控制信号;又要提供关断控制信号。

门极可关断晶闸管简称GTO, 是一种通过门极来控制器件导通和关断的电力半导体器件,它的容量仅次于普通晶闸管,它应用的关键技术之一是其门极驱动电路的设计。

门极驱动电路设计不好,常常造成GTO晶闸管的损坏,而门极关断技术应特别予以重视。

门极可关断晶闸管GTO的电压、电流容量较大,与普通晶闸管接近,因而在兆瓦级以上的大功率场合仍有较多的应用。

2.GTO驱动电路的设计要求由于GTO是电流驱动型,所以它的开关频率不高。

GTO驱动电路通常包括开通驱动电路、关断驱动电路和门极反偏电路三部分,可分为脉冲变压器耦合式和直接耦合式两种类型。

用理想的门极驱动电流去控制GTO 的开通和关断过程,以提高开关速度,减少开关损耗。

GTO要求有正值的门极脉冲电流,触发其开通;但在关断时,要求很大幅度的负脉冲电流使其关断。

因此全控器件GTO的驱动器比半控型SCR复杂。

门极电路的设计不但关系到元件的可靠导通和关断, 而且直接影响到元件的开关时间、开关损耗, 工作频率、最大重复可控阳极电流等一系列重要指标。

门极电路包括门极开通电路和门极关断电路。

GTO对门极开通电路的要求:GTO的掣住电流比普通晶闸管大得多, 因此在感性负载的情况下, 脉冲宽度要大大加宽。

此外, 普通晶闸管的通态压降比较小, 当其一旦被触发导通后, 触发电流可以完全取消, 但对于GTO, 即使是阻性负载, 为了降低其通态压降, 门极通常仍需保持一定的正向电流, 因此, 门极电路的功耗比普通品闸管的触发电路要大的多。

2021年 9实验十八 GTO、MOSFET、GTR、IGBT驱动与保护电路实验V2.2版

2021年 9实验十八 GTO、MOSFET、GTR、IGBT驱动与保护电路实验V2.2版

实验十八 GTO、MOSFET、GTR、IGBT驱动与保护电路实验一、实验目的1理解各种自关断器件对驱动与保护电路的要求。

2熟悉各种自关断器件的驱动与保护电路的结构及特点。

3掌握由自关断器件构成直流斩波电路原理与方法。

二、实验所需挂件及附件序号型号备注1 DJK01 电源控制屏该控制屏包含“三相电源输出〞,“励磁电源〞等几个模块。

2 DJK06 给定及实验器件3 DJK07 新器件特性实验4DJK12 功率器件驱动电路实验箱5 双踪示波器自备三、实验线路及原理自关断器件的实验接线及实验原理图如图3-27所示,图中直流电源可由控制屏上的励磁电压提供,或由控制屏上三相电源中的两相经整流滤波后输出,接线时,应从直流电源的正极出发,经过限流电阻、自关断器件及保护电路、直流电流表、再回到直流电源的负端,构成实验主电路。

图3-27 自关断器件的实验接线及原理图四、实验内容自关断器件及其驱动、保护电路的研究〔可根据需要选择一种或几种自关断器件〕。

五、实验方法1GTR的驱动与保护电路实验在本实验中,把DJK12实验挂箱中的频率选择开关拨至“低频档〞。

然后调节频率按钮,使波输出频率在“1KH〞左右。

在主电路中,直流电源由控制屏上的励磁电源输出,负载电阻R用DJK06上的灯泡负载,直流电压、电流表均在控制屏上。

驱动与保护电路接线时,要注意控制电源及接地的正确连接。

对于GTR器件,采用±5V电源驱动。

接线时,波形的输出端接GTR驱动模块的输入端,±5V电源分别接GTR电源的输入端。

实验时应先检查驱动电路的工作情况。

在未接通主电路的情况下,接通驱动模块的电源,此时可在驱动模块的输出端观察到相应的波形,调节波形发生器的频率及占空比,观测波形的变化规律。

在驱动电路正常工作后,将占空比调小,然后合上主电路电源开关,再调节占空比,用示波器观测、记录不同占空比时基极的驱动电压、GTR管压降及负载上的波形。

测定并记录不同占空比α时负载的电压平均值Ua于下表中:2GTO的驱动与保护电路实验将DJK12实验挂箱上的频率选择开关拨至“低频档〞,调节频率调节电位器,使方波的输出频率在“1KH〞左右,然后再按实验原理图接好驱动与保护电路。

GTO与GTR

GTO与GTR

GTO与GTR1 2012-2013(2)刘刚-电力电子技术教案2.4 典型全控型器件(第三讲)GTR和GTO的特点——双极型,电流驱动,有电导调制效应,通流能力很强,开关速度较低,所需驱动功率大,驱动电路复杂。

2.4.1门极可关断晶闸管门极可关断晶闸管:是晶闸管的一种派生器件,属于电流驱动型器件,可以通过在门极施加负的脉冲电流使其关断。

GTO的电压、电流容量较大,与普通晶闸管接近,因而在兆瓦级以上的大功率场合仍有较多的应用。

1、GTO的结构和工作原理结构:与普通晶闸管的相同点是PNPN四层半导体结构,外部引出阳极、阴极和门极,符号如图1所示。

GTO导通过程与普通晶闸管一样,只是导通时饱和程度较浅。

GTO关断过程中有强烈正反馈使器件退出饱和而关断。

2、GTO的动态特性开通过程:与普通晶闸管相同。

关断过程:与普通晶闸管有所不同,开通和关断过程电流波形如图2所示。

图1 GTO的元件符号图图2开通和关断过程电流波形(1)储存时间t,使等效晶体管退出饱和。

s(2)下降时间t。

f(3)尾部时间t,残存载流子复合时间。

t通常t比t小得多,而t比t要长;门极负脉冲电流幅值越大,t越短。

fstss3、GTO的主要参数许多参数和普通晶闸管相应的参数意义相同,以下只介绍意义不同的参数。

2 2012-2013(2)刘刚-电力电子技术教案(1)开通时间t:延迟时间与上升时间之和。

延迟时间一般约1~2,s,上on升时间则随通态阳极电流的增大而增大。

(2)关断时间t:一般指储存时间和下降时间之和,不包括尾部时间。

下off降时间一般小于2,s。

不少GTO都制造成逆导型,类似于逆导晶闸管,需承受反压时,应和电力二极管串联。

(3)最大可关断阳极电流I:GTO器件额定电流。

ATO(4)电流关断增益,:最大可关断阳极电流与门极负脉冲电流最大值IoffGMIATO,之比称为电流关断增益: ,offIGM,一般很小,只有5左右,这是GTO的一个主要缺点。

电力电子技术第三章 全控型器件的驱动

电力电子技术第三章 全控型器件的驱动

第一节 全控型电力电子器件的驱动
2.专用集成驱动电路芯片 1)驱动电路与IGBT栅射极接线长度应小于1m,并使用双绕线,以提 高抗干扰能力。
图3-9 电力MOSFET的一种驱动电路
第一节 全控型电力电子器件的驱动
3z10.tif
第一节 全控型电力电子器件的驱动
2)如果发现IGBT集电极上产生较大的电压脉冲,应增加栅极串接电 阻RG的阻值。 3)图3-10中外接两个电容为47μF,是用来吸收电源接线阻抗变化引 起的电源电压波动。
图3-6 抗饱和电路
第一节 全控型电力电子器件的驱动
图中VD1、VD2为抗饱和二极管,VD3为反向基极电流提供回路。在 轻载情况下,GTR饱和深度加剧使UCE减小,A点电位高于集电极电 位,二极管VD2导通,使流过二极管VD1的基极电流IB减小,从而减 小了GTR的饱和深度。抗饱和基极驱动电路使GTR在不同的集电极 电流情况下,集电结处于零偏或轻微正向偏置的准饱和状态,以缩 短存储时间。在不同负载情况下以及在应用离散性较大的GTR时, 存储时间趋向一致。应当注意的是,VD2为钳位二极管,它必须是 快速恢复二极管,该二极管的耐压也必须和GTR的耐压相当。因电 路工作于准饱和状态,其正向压降增加,也增大了导通损耗。
图3-2 门极控制电路 结构示意图
第一节 全控型电力电子器件的驱动
(1)开通控制 开通控制要求门极电流脉冲的前沿陡、幅度高、宽 度大及后沿缓。
图3-3 推荐的GTO门极控制 信号波形
第一节 全控型电力电子器件的驱动
(2)关断控制 GTO的关断控制是靠门极驱动电路从门极抽出P2基区 的存储电荷,门极负电压越大,关断的越快。 (3)GTO的门极驱动电路 GTO的门极控制电路包括开通电路、关断 电路和反偏电路。 间接驱动是驱动电路通过脉冲变压器与GTO门极相连,其优点是: GTO主电路与门极控制电路之间由脉冲变压器或光耦合器件实现电 气隔离,控制系统较为安全;脉冲变压器有变换阻抗的作用,可使 驱动电路的脉冲功率放大器件电流大幅度减小。缺点是:输出变压 器的漏感使输出电流脉冲前沿陡度受到限制,输出变压器的寄生电 感和电容易产生寄生振荡,影响GTO的正确开通和关断。此外,隔 离器件本身的响应速度将影响驱动信号的快速

1.2门极可关断晶闸管GTO 4.2 大功率晶体管GTR

1.2门极可关断晶闸管GTO 4.2 大功率晶体管GTR

直流负载线
9
2. GTO的特定参数
1. 最大可关断阳极电流IATO
IATO也是GTO的额定电流。 GTO的阳极电流 IA过大时,管子饱和加深,
导致门极关断失败,因此,GTO必须规定一个最
大可关断阳极电流IATO,也就是管子的铭牌电流。
IATO与管子电压上升率、工作频率、反向门极电
流峰值和缓冲电路参数有关,在使用中应予以 注意。
能控制较大的电流和较高的电压;
电力三极管由于结构所限其耐压难于超过1500V,现今商品 化的电力三极管的额定电压、电流大都不超过1200V、 800A; 逐步被其他全控型电力电子器件(特别是IGBT和 MOSFET),趋于淘汰
22
1.
GTR的极限参数
(1).集电极最大电流ICM(最大电流额定值)
(MOSFET) 、绝缘栅双极晶体管(IGBT)
2
电力电子器件的分类
按照器件能够被控制的程度,分为以下三类:
半控型器件
——通过控制信号可以控制其导通而不能控制
其关断,晶闸管是典型的半控型电力电子器件。 全控型器件 ——通过控制信号既可控制其导通又可控制其关 断,又称自关断器件,GTO、GTR等。
不能自关断与开关速度慢的缺点。其电气符号与普通晶
体管相同。
GTR是一种双极型大功率高反压晶体管,具有自关
断能力,控制方便,开关时间短,高频特性好,价格低
廉。可用于不停电电源、中频电源和交流电机调速等电
力变流装臵中。
20
图4-5 1300系列GTR的外观
21
电力三极管的主要特点
是电流驱动器件,控制基极电流就可控制电力三极管的开通 和关断; 开关速度较快; 饱和压降较低; 有二次击穿现象;

大功率GTO使用时的两个关键技术

大功率GTO使用时的两个关键技术

1997年第1期机 车 电 传 动№1,1997 1997年1月10日EL ECTR I C DR I V E FOR LOCOM O T I V E Jan.10,1997收稿日期:19962082283“八五”国家重点科技攻关项目的子项目。

梁克宇 1969年生,1991年毕业于西南交通大学电力牵引与传动控制专业,工程师,现主要从事半导体变流技术研究。

大功率GTO使用时的两个关键技术3铁道部科学研究院(北京100081) 梁克宇 摘 要:介绍了大功率GTO使用时其吸收电路和驱动电路的设计要求,并阐述了几种不同的吸收电路以及驱动电路设计中应注意的隔离、抗干扰及GTO状态检测等问题。

关键词:吸收电路 驱动电路 大功率GTOTwo key techn iques i n h igh power GT O appl ica tionCh ina A cadem y of R ail w ay Science(B eijing100081) L i ang KeyuAbstract:T he design requ irem en ts fo r snubber circu its and driving circu its in h igh pow er GTO app licati on are in troduced.A t2 ten ti on shall be paid to the iso lati on,an ti2in terference and GTO state exam inati on du ring design of several snubber circu its and driv2 ing circu its.Key words:snubber circu it,driving circu it,h igh pow er GTO. GTO是高压大电流双极型全控器件。

与传统的晶闸管相比,GTO的工作频率较高且具有关断能力,无需辅助换流回路,这使主电路体积和重量都大大减小,效率提高,可靠性增强。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

G T O驱动电路
门极可关断晶闸管GTO驱动电路
1.电力电子器件驱动电路简介
电力电子器件的驱动电路是指主电路与控制电路之间的接口,可使电力电子器件工作在较理想的开关状态,缩短开关时间,减小开关损耗,对装置的运行效率、可靠性和安全性都有重要的意义。

一些保护措施也往往设在驱动电路中,或通过驱动电路实现。

驱动电路的基本任务:按控制目标的要求施加开通或关断的信号;对半控型器件只需提供开通控制信号;对全控型器件则既要提供开通控制信号;又要提供关断控制信号。

门极可关断晶闸管简称GTO, 是一种通过门极来控制器件导通和关断的电力半导体器件,它的容量仅次于普通晶闸管,它应用的关键技术之一是其门极驱动电路的设计。

门极驱动电路设计不好,常常造成GTO晶闸管的损坏,而门极关断技术应特别予以重视。

门极可关断晶闸管GTO的电压、电流容量较大,与普通晶闸管接近,因而在兆瓦级以上的大功率场合仍有较多的应用。

2.GTO驱动电路的设计要求
由于GTO是电流驱动型,所以它的开关频率不高。

GTO驱动电路通常包括开通驱动电路、关断驱动电路和门极反偏电路三部分,可分为脉冲变压器耦合式和直接耦合式两种类型。

用理想的门极驱动电流去控制GTO 的开通和关断过程,以提高开关速度,减少开关损耗。

GTO要求有正值的门极脉冲电流,触发其开通;但在关断时,要求很大幅度的负脉冲电流使其关断。

因此全控器件GTO的驱动器比半控型SCR复杂。

门极电路的设计不但关系到元件的可靠导通和关断, 而且直接影响到元件的开关
时间、开关损耗, 工作频率、最大重复可控阳极电流等一系列重要指标。

门极电路包括门极开通电路和门极关断电路。

GTO对门极开通电路的要求:GTO的掣住电流比普通晶闸管大得多, 因此在感性负载的情况下, 脉冲宽度要大大加宽。

此外, 普通晶闸管的通态压降比较小, 当其一旦被触发导通后, 触发电流可以完全取消, 但对于GTO, 即使是阻性负载, 为了降低其通态压降, 门极通常仍需保持一定的正向电流, 因此, 门极电路的功耗比普通品闸管的触发电路要大的多。

对门极关断电路的要求:GTO对作为关断脉冲的负向门极电流有很高的要求。

负向门极电流的幅值,斜率直接影响到元件的元断能力、关断时间及关断损耗。

要求门极关断回路有足够大的动力源, 回路阻抗和感抗非常小,用作门极关断回路的开关元件要有很小的内阻, 较宽的频带和较好的承受冲击电流的能力。

3.GTO的普通驱动电路
下图1为普通的GTO驱动电路原理图。

当输入信号为正脉冲时,光耦合器B导通,三极管V1截止,V2和V3导通,电源E1经R7、V3及C3(R8)触发GTO导通。

当输入信号为零脉冲时,光耦合器B截止,V1导通,V2和V3截止。

关断电路中的V4导通,V5截止,晶闸管VT经R13和R14获得触发信号并导通,电源E2经VT、GTO、R8、R15形成门极负电流使GTO关断。

电路中C1到C5为加速电容。

图1 门极可关断晶闸管驱动电路
应用这种电路驱动GTO 时,容易造成大容量晶闸管内部数个并联的小晶闸管开通过程中先是局部几个单元开通,然后等离子体在整个芯片内向边沿扩展。

最初较高的电流上升率可能使最先导通的区域过载而导致器件损坏,因此必须采用较大的抑制电感来抑制电流上升率。

同时,为了获得合理的关断增
益,对于GTO 晶闸管响应时间来说只能施加较小的门极电流,从而导致存储时间过长(20us),造成关断不同步,du/ dt 耐量低, 并需要体积庞大的吸收电容。

因此,这种电路的最高开关频率一般限制在300—500Hz 。

下面介绍新型的“硬驱动门极驱动技术”。

4.“硬驱动”门极驱动技术
所谓GTO 晶闸管的“硬驱动”是指在GTO 在关断过程中的短时间内,给其内阴极加以上升率di/dt 及幅值都很大的驱动信号。

图2是硬驱动门极单元的典型电路。

它可分成两部分,上部分电路控制开通过程,下部分电路控制关断过程, 且两部分独立工作。

电路设计时应使其电感最小值化,LG 为杂散电感。

其工作过程分析如下:在开通期间,电容通过开关10S 放电,在约250ns 内产生
1000A 的硬驱动门极电流。

门极电流通过二极管维持在高水平,然后通过
11S 由
5V 电源维持。

在较大门极电流脉冲作用下,GTO 晶闸管等效原理电路中N-P-N 晶体管开通,N 发射区注入电子,并输送到N 基区,产生相应空穴注入。

空穴电荷区开始崩缩,阴极电压在100 ns 内下降到VA< 200V 。

此时,主电流仍很小,这就意味着晶体管作用强于晶闸管作用。

在关断期间,电容C2通过开关20
S 吸收数千安培的大电流脉冲,电流脉冲的上升时间约为1.5us 。

另外,开关21S 用来维持器件的阻断状态。

图2 新型“硬驱动”门极单元简图
5.小结
GTO 晶闸管既具有普通晶闸管的优点,同时又具有GTR 的优点,是目前应用于高压、大容量场合中的一种大功率开关器件,设计与选择性能优良的门极驱动电路对保证GTO 的正常工作和性能优化是至关重要的,特别是门极关断技术应特别重视,它是正确使用GTO 的关键。

相关文档
最新文档