塔吊基础设计计算方法

合集下载

塔式起重机混凝土基础设计计算方法(详细版)

塔式起重机混凝土基础设计计算方法(详细版)
矩形基础的长边与短边长度之比不宜大于2,十字型基础的节点处应采 用加腋构造。
板式或十字形基础设计
基础平面尺寸的确定
参考厂房提供的塔机平面尺寸处步确定; 根据地基承载能力和变形要求复核塔机平面尺寸。
矩形基础地基承载能力的验算
轴心荷载作用时
Pk ≤f a
偏心荷载作用时
Pk ≤f a
桩基的设计计算
桩的抗拔设计应满足
Qk≤Ra
Ra u iqsiali Gk
Qk ——按荷载效应标准组合计算的基桩拔力
—R—a 单桩竖向抗拔承载力特征值;
i ——抗拔系数。当无试验资料且桩的入土深度不小
于6.0m时,可根据土质和桩的入土深度,取
i =0.5~0.8(砂性土,桩入土较浅时取低值;粘性土
承台宜设计成不变截面高度的方形板式或十字型梁式,截面高度 不宜小于1000mm,且应满足塔机使用说明书的要求。基桩宜按 均匀对称式布置,且不宜少于4根,边桩中心至承台边缘的距离 应不小于桩的直径或边长,且桩的外边缘至承台边缘的距离不小 于200mm。
桩基础
板式承台基础上、下面均应根据计算或构造要求配筋,直径不小 于12mm,间距不大于200mm,上、下层钢筋之间设置架立筋, 宜沿对角线配置暗梁。十字型承台应按梁式配筋,宜按对称式配 置正、负弯矩筋,箍筋不宜小于φ8@200。
基桩嵌入承台的长度对桩径<800mm的基桩不宜小于50mm, ≥800mm的基桩不宜小于100mm。
基桩主筋应锚入承台基础,锚固长度按现行国家标准《混凝土结 构设计规范》GB50010确定。对预应力混凝土管桩和钢管桩,宜 采用植于桩芯混凝土不少于20的主筋锚入承台基础。预应力管桩 和钢管桩中的桩芯混凝土长度应按抗拔锚固计算且不小于 1000mm,其强度等级宜比承台提高一级。

塔吊基础设计计算

塔吊基础设计计算

筑龙网WW W.ZH U L ON G.C OM(一)塔吊基础设计计算 1、根据塔吊使用说明书,十字梁设计为1100×1500、砼C25,适当配置钢筋,本基础坐落在5根桩上,即本塔吊基础设计, 2、基础十字梁钢筋设计根据塔吊使用说明书,十字梁所受的荷载为F1=F2=150KN 截面尺寸为1100×1500,砼为C25假如十字梁双排钢筋为5Φ25验算如上草图,M max F ×a =150×3.00=450KN.M 查表:ρ=0.26%As =ρ×b ×h =0.26%×1100×1500=4290mm 2A 设=4908mm 2 >As =4290mm 2故十字梁双排配筋满足要求。

3、 稳定验算以知条件:基础所受的垂直荷载 476KN基础所受的水平荷载 24KN 基础所受的倾翻力矩 1220KN 基础所受的扭矩 185 KN.mm 基础设计重量 610 KN.mm计算塔吊在非工作情况下是否稳定筑龙网WW W.ZH U L ON G.C OMe =(M+H ×h )/(V+G )≤Le/3=(185×103×24103×50)/(476×103+610×103)=1.28<=2.03L/3 故基础满足要求 五、塔吊稳定验算:(1) 塔吊在工作情况下有荷载稳定验算:K1=[G ×(c-h ×sina+b )-v ×(a-h )÷gt] ÷[Q ×(a-b )]=1.534>1.15 取a =0(2) 非工作下的稳定验算(取W3=2KN/M 风载按12级台风取) K2=[G1×(b+c1-h1×sina )] ÷[G2×C2-b + h2×sina+W3×P3]]=1.39>1.15故:塔吊在工作和非工作下均能保持稳定。

塔吊基础计算

塔吊基础计算

塔吊基础计算一、天然基础塔吊在安装完毕后。

其下地基即承受塔吊基础传来的上部荷载,一是竖向荷载,包括塔吊重量F和基础重量G;另一部分是弯矩M,主要是风荷载和塔吊附加荷卸产生的弯矩。

塔吊基础受力,可简化成偏心受压的力学模型(图1),此时,基础边缘的接触压力最大值和最小值分别可以按下式计算:图1塔吊基础受力简图(天然地基)图1塔吊基础受力简图(天然地基)其中:F————塔吊工作状态的重量,单位KNG————基础自重,单位KNG=b×b×h×ρ,单位KNb×h———基础边长、厚度,单位mρ——————基础比重,取25KN/m3e————偏心距,单位me=M/(F+G)M————塔吊非工作状态下的倾覆力矩。

若计算出的P min<0,即基底出现拉力,由于基底和地基之间不能承受拉力,此时基底接触压力将重新分布。

应按下式重新计算P maxF、M可由塔吊说明书中给出,将计算得出的最大接触压力P max和地质资料中给出的地基承载力标准值相比较,小于地基的承载力标准值即可满足要求。

二、桩基础对于有桩基础的塔吊,必须验算桩基础的承载力。

根据计算分析,在非工作状态下,塔吊大臂垂直于基础面对角线时最危险。

当以对角两根桩的连线为轴(图2—1),产生倾覆力矩时,将由单桩受力,此时桩的受力为最不利情况。

图2—1桩基础1、受力简图图2—2塔吊基础受力简图(桩基础)2、荷载计算当只受到倾覆力矩时:当只受到基础承台及塔吊重力时:3、单桩荷载最不利情况3、单桩最小荷载若计算出的P2<0,即桩将受到拉力,拉力为|P2|L———桩的中心距。

4、单桩承载力单桩的受压承载力由桩侧摩阻力共同承担的,单桩受压承载力为:单桩的抗拔承载力由桩侧摩阻力承担,单桩抗拔力为:R K2=U P∑q Si L i (2—6)其中:q p—————桩端承载力标准值,KP aA P—————桩身横截面面积,m2U—————桩身的周长,mPq Si—————桩身第I层土的摩阻力标准值,KP A kL i—————按土层划分的各段桩长,m将计算所得的P1和R K1相比较,|P2|和R K2相比较,若P1< R K1且|P2|< R K2则可满足要求。

塔吊基础设计计算

塔吊基础设计计算

塔吊基础设计计算设计塔吊的基础,就好比盖房子先要打好地基一样,可不是随随便便的事儿,得一步一步来:算重量和压力:先得摸清楚塔吊自身的重量有多大,再加上它能吊多重的货物,还得考虑到风吹过来的力、地震可能带来的冲击力,把这些力气统统算清楚。

挑基础样式:看看工地的地势和地质条件,选择合适的地基类型,比如独立基础(就像单独的一块大石头垫底)、连片基础(很多块石头连起来)或者打入地下的桩基础(像一根根钉子钉在地下)。

力量怎么传过去:接下来想象一下这些力气是怎么从塔吊传到地基上的,算出每个部位承受的压力有多大。

地基扛不扛得住:土壤能承受多大的压力,得根据地质报告来判断。

就像你得知道土地有多硬实,能撑得起多重的东西。

然后算算这块地基能不能顶住塔吊传下来的全部力气,包括抗压、抗弯折和抵抗剪切破坏的能力。

稳不稳定:考虑塔吊在工作时会不会被吹倒或者歪斜,就像一棵大树扎根在地上,得保证它稳稳当当的。

量体裁衣做基础:根据前面的计算结果,给地基设计合适的大小和深度,就像给塔吊穿鞋,得大小合适、底子扎实。

桩基础的细节设计:如果是用桩基础,那还要考虑桩的数量、粗细、打入地下的长度,还有桩顶上的承台怎么设计。

反复检查调整:设计出来了,还要反复检查,看这地基结实不结实,牢不牢靠,不达标的就调整,比如把地基做大点,或者多打几根桩。

施工方法和材料:设计好了,就要定施工方案,选好材料,就像烹饪要有食谱和食材一样,确保施工质量杠杠的。

权威认证:最后,设计成果要给专家和有关部门审核,通过了才算合格,就像考试答完了卷子,得老师批改过了才能安心。

总而言之,设计塔吊基础就像是给塔吊打造一个稳固有力的家,得方方面面都考虑周全,才能保证塔吊在工地上安全高效地工作。

7种塔吊基础计算

7种塔吊基础计算

一、塔吊单桩基础计算书塔吊桩基础的计算书一. 参数信息塔吊型号:QT60,自重(包括压重)F1=245.00kN,最大起重荷载F2=60.00kN塔吊倾覆力距M=600.00kN.m,塔吊起重高度H=50.00m,塔身宽度B=1.60m混凝土强度:C35,钢筋级别:Ⅱ级,混凝土的弹性模量 Ec=14500.00N/mm2桩直径或方桩边长 d=2.50m,地基土水平抗力系数 m=8.00MN/m4桩顶面水平力 H0=100.00kN,保护层厚度:50mm二. 塔吊基础承台顶面的竖向力与弯矩计算1. 塔吊自重(包括压重)F1=245.00kN2. 塔吊最大起重荷载F2=60.00kN作用于桩基承台顶面的竖向力 F=1.2×(F1+F2)=366.00kN塔吊的倾覆力矩 M=1.4×600.00=840.00kN.m三. 桩身最大弯矩计算计算简图:1. 按照m法计算桩身最大弯矩:计算依据《建筑桩基础技术规范》(JGJ94-94)的第5.4.5条,并参考《桩基础的设计方法与施工技术》。

(1) 计算桩的水平变形系数(1/m):其中 m──地基土水平抗力系数;b0──桩的计算宽度,b0=3.15m。

E──抗弯弹性模量,E=0.67Ec=9715.00N/mm2;I──截面惯性矩,I=1.92m4;经计算得到桩的水平变形系数:=0.271/m(2) 计算 D v:D v=100.00/(0.27×840.00)=0.45(3) 由 D v查表得:K m=1.21(4) 计算 M max:经计算得到桩的最大弯矩值:M max=840.00×1.21=1018.87kN.m。

由 D v查表得:最大弯矩深度 z=0.74/0.27=2.78m。

四.桩配筋计算依据《混凝土结构设计规范》(GB50010-2002)第7.3.8条。

沿周边均匀配置纵向钢筋的圆形截面钢筋混凝土偏心受压构件,其截面受压承载力计算: (1) 偏心受压构件,其偏心矩增大系数按下式计算:式中 l0──桩的计算长度,取 l0=4.00m;h──截面高度,取 h=2.50m;h0──截面有效高度,取 h0=2.50m;1──偏心受压构件的截面曲率修正系数:解得:1=1.00A──构件的截面面积,取 A=4.91m2;2──构件长细比对截面曲率的影响系数,当l0/h<15时,取1.0,否则按下式:解得:2=1.00经计算偏心增大系数=1.00。

塔吊基础计算书

塔吊基础计算书

塔吊分项参数计算塔吊是施工场地最重要的施工机械之一,其使用贯穿了整个工程。

在这过程中间隔时间长,不可预见性因素多,为确保塔吊的安全,以下计算都按极限苛刻条件下能保证塔吊正常工作计算。

即:塔吊设置在最大开挖深度处;型钢柱与混凝土灌注桩连接按光滑面锚固。

(计算详值见计算表格) 1. 基础竖向极限承载力计算F=F1+ F2F ——基础竖向极限承载力kn F1——塔吊自重(包括压重)kn F2最大起吊重量kn 2.单桩抗压承载力、抗拔力计算桩顶竖向力的计算(依据《建筑桩技术规范》JGJ94-94的第条)F 十。

iV V-A- M =1.2 —±士 弱尹2" Z* ("+”计算结果为抗压,“-”为抗拔)其中 N i ——单桩桩顶竖向力设计值kNn 单桩个数,n=4;F ——作用于桩基承台顶面的竖向力设计值TG ——塔吊基础重量KNMx,My 承台底面的弯矩设计值kN.mxi,yi 单桩相对承台中心轴的XY 方向距离mM ——塔吊的倾覆力矩kN.m3.桩长以及桩径计算 桩采用钻孔灌注桩R =f A +U £ f l >R = N xgk 实际 ppp s ii1U P =n d其中Rk 实际一一实际钻孔灌注桩承载能力KN桩端面承载能力KN桩侧摩擦阻力总和IUp£fsliKNR——单桩轴向承力安全值KN孔一一桩安全系数取2d桩直径m4.桩抗拔验算Ok=入RQk八k实际5.桩配筋计算桩身配筋率可取0.20%〜0.65% (计算取上限0.65%),抗压主筋不应少于6①10,箍筋采用不少于①6@3mm的螺旋箍筋,在桩顶5倍桩身直径范围内箍筋①6@1mm,每隔2m设一道2①12焊接加强箍筋。

As = S桩截面*配筋率n = 4As/ (n 巾2)其中n ——竖筋根数根As ——钢筋总截面积m①一一竖筋直径m6.桩上部钢支柱计算钢支柱采用 hxbxtwxt = 350 * 350 x 12 x 19, H 型钢。

塔吊基础技术计算公式

塔吊基础技术计算公式

塔吊基础技术计算公式引言。

塔吊是建筑工地上常见的起重设备,它具有起重能力大、操作范围广等优点,因此在建筑施工中得到了广泛应用。

在塔吊的设计和施工过程中,基础技术计算是至关重要的一环。

正确的基础技术计算可以确保塔吊的安全稳定运行,保障施工现场的安全。

本文将介绍塔吊基础技术计算的一些常用公式,希望对相关工程师和施工人员有所帮助。

一、塔吊基础技术计算公式。

1. 塔吊的起重能力计算公式。

塔吊的起重能力是指它能够承受的最大起重重量。

起重能力的计算公式如下:Q = (P F) × r。

其中,Q为塔吊的起重能力,P为塔吊的额定起重能力,F为塔吊自重,r为塔吊的工作半径。

2. 塔吊基础承载力计算公式。

塔吊的基础承载力是指它能够承受的最大荷载。

基础承载力的计算公式如下:Pb = ∑(Gk + Qk) + ∑(Ek × Ak)。

其中,Pb为塔吊的基础承载力,Gk为地面荷载,Qk为动载荷,Ek为风载荷,Ak为风载面积。

3. 塔吊的抗倾覆稳定计算公式。

塔吊在使用过程中需要保持稳定,抗倾覆稳定的计算公式如下:Fh = (M × L) / (H × 2)。

其中,Fh为塔吊的抗倾覆稳定系数,M为塔吊的最大起重力矩,L为塔吊的最大工作半径,H为塔吊的高度。

4. 塔吊的基础尺寸计算公式。

塔吊的基础尺寸是指它的基础面积和深度,基础尺寸的计算公式如下:A = Pb / σ。

D = A / B。

其中,A为塔吊的基础面积,Pb为塔吊的基础承载力,σ为土壤承载力,D为塔吊的基础深度,B为土壤的承载力系数。

5. 塔吊的基础沉降计算公式。

塔吊的基础沉降是指它在使用过程中可能发生的沉降情况,基础沉降的计算公式如下:S = (Q / A) × C。

其中,S为塔吊的基础沉降,Q为塔吊的荷载,A为塔吊的基础面积,C为土壤的沉降系数。

二、塔吊基础技术计算实例分析。

为了更好地理解塔吊基础技术计算公式的应用,我们以一个实际工程为例进行分析。

塔吊基础计算(格构柱)

塔吊基础计算(格构柱)

塔吊基础计算(格构柱)塔吊基础计算(格构柱)八、基础验算基础承受的垂直力:P=449KN 基础承受的水平力: H=71KN 基础承受的倾翻力矩: M=1668KN.m(一)、塔吊桩竖向承载力计算:1、单桩桩顶竖向力计算:单桩竖向力设计值按下式计算:Q ik=( P + G )/n ± M/a2式中:Q ik—相应于荷载效应标准组合偏心竖向力作用下第i根桩的竖向力;P—塔吊桩基础承受的垂直力,P=449KN;G—桩承台自重,G=(4.8×4.8×0.4+4.8×4.8×1.3)×25=979.2KN;P+G=449+979.2=1428.2KNn—桩根数,n=4;M—桩基础承受的倾翻力矩,M=1668+71×1.3=1760.3KN.m;a—桩中心距,a=3.2m。

Q ik=1428.2/4±1760.3/3.2×2单桩最大压力: Q压=357.05+389.03=746.08KN单桩最大拔力: Q拔=357.05-389.03=-31.98KN2、桩承载力计算:(1)、单桩竖向承载力特征值按下式计算:R a = q pa A P+u P∑q sia L i式中: R a—单桩竖向承载力特征值;q pa、q sia—桩端阻力,桩侧阻力特征值;A P—桩底端横截面面积;u P—桩身周边长度;L i—第i层岩土层的厚度。

5号塔吊桩:对应的是8-8剖的Z52。

桩顶标高为-6.8m,绝对标高为-1.9m,取有效桩长52m,桩端进入6-1粘土层2.19m。

a=1813.51>746.08KN 满足要求3、承台基础的验算(1)承台弯矩计算Mx1=My1=2×(746.08-979.2/4)×(3.2/1.414)=2268.88KN〃m (2)承台截面受力主筋配筋面积As=1.4×2268.88×106/(0.9×1300×310)=8757.7mm2塔吊承台配筋采用22@180双层双向计27根,Ag=10258.38mm2>As(3)承台截面抗剪切验算实际计算:βfcb0h0+ 1.25fyAsv h0/(s )=(0.05×16.7×4800×1250+ 1.25×310×8757.7×1250/180)×103=28576.7KN >>γ0V=1.0×746.08=746.08KN经过计算承台完全可以满足抗剪要求。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

塔吊基础设计计算方法地基基础采用预应力混凝土管桩基础,设计等级教工宿舍C1C4、教工宿舍C15C16为丙级,教工宿舍C5C6为乙级。

抗震设防烈度为6度,设计使用年限50年。

标签:塔吊基础;四桩;预应力管桩;承载力;倾覆力矩1 工程概况广东水利电力职业技术学院从化校区教工宿舍工程包括C1C4、C5C6、C15C16共3栋主体建安工程,二期精装修以及其他配套工程等。

三栋建筑由教工宿舍C1C4和教工宿舍C5C6、教工宿舍C15C16组成,总建筑面积:17782.82m2。

其中教工宿舍C1C4地上6层;教工宿舍C5C6地上12层;教工宿舍C15C16地上6层,基地建筑面积2358.99m2(其中C1C4为862.89m2;C5C6为745.05m2;C15C16为751.05m2)。

C1C4首层层高3m,二层~六层层高为3.0m,六层以上层高均为3.2m;C5C6首层层高4m,二层~十二层层高3m,十二层以上4.7m;C15C16首层层高3m,二层~六层层高3m,六层以上3.9m。

C1C4、C15C16建筑结构类型为异形柱框架结构,C5C6建筑结构类型为剪力墙结构。

教工宿舍C1C4、教工宿舍C15C16建筑结构类型为异形柱框架结构,教工宿舍C5C6建筑结构类型为剪力墙结构。

建筑安全等级为二级,抗震设防类型为丙类。

地基基础采用预应力混凝土管桩基础,设计等级教工宿舍C1C4、教工宿舍C15C16为丙级,教工宿舍C5C6为乙级。

抗震设防烈度为6度,设计使用年限50年。

建筑防火类别为二类,耐火等级为二级;主体建筑屋面工程防水为2级。

根据施工现场场地条件及周边环境情况,安装1台塔式起重机负责建筑材料的垂直及水平运输。

2 塔吊基础(四桩)设计2.1 计算参数采用1台QTZ80塔式起重机,塔身尺寸1.60m,地下室开挖深度为0m;现场地面标高-0.60m,承台面标高-0.30m;采用预应力管桩基础,地下水位-2.90m。

2.1.1 塔吊基础受力情况图1 塔吊基础受力示意图比较桩基础塔吊的工作状态和非工作状态的受力情况,塔吊基础按非工作状态计算如图。

Fk=464.10kN,Fh=73.90kNM=1552.00+73.90×1.20=1640.68kN.mFk’=464.10×1.35=626.54kN,Fh’=73.90×1.35=99.77kNMk=(1552.00+73.90×1.20)×1.35=2214.92kN·m2.1.2 桩顶以下岩土力学资料(如表1)2.1.3 基础设计主要参数基础桩采用4根φ400预应力管桩,桩顶标高-1.50m;桩混凝土等级C80,fC=35.90N/mm2,EC=3.80×104N/mm2;ft=2.22N/mm2,桩长20.10m,壁厚95mm;钢筋HRB335,fy=300.00N/mm2,Es=2.00×105N/mm2承台尺寸长(a)=4.50m,宽(b)=4.50m,高(h)=1.30m;桩中心与承台中心 1.80m,承台面标高-0.30m;承台混凝土等级C30,ft=1.57N/mm2,fC=16.70N/mm2,γ砼=25kN/m3Gk=abhγ砼=4.50×4.50×1.30×25=658.13kN图2 塔吊基础尺寸示意图2.2 桩顶作用效应计算2.2.1 竖向力(1)轴心竖向力作用下Nk=(Fk+Gk)/n=(464.10+658.13)/4=280.56kN(2)偏心竖向力作用下按照Mx作用在对角线进行计算,Mx=Mk=1640.68kN·m,yi=1.80×20.5=2.55mNk=(Fk+Gk)/n±Mxyi/Σyi2=(464.10+658.13)/4±(1640.68×2.55)/(2×2.552)=280.56±321.70Nkmax=602.26kN,Nkmin=-41.14kN(基桩承受竖向拉力)2.2.2 水平力Hik=Fh/n=73.90/4=18.48kN2.3 单桩允许承载力特征值计算管桩外径d=400mm=0.40m,内径d1=400-2×95=210mm=0.21m,hb=0.60 hb/d=0.60/0.40=1.50,λp=0.16×1.50=0.242.3.1 单桩竖向极限承载力标准值计算Aj=π(d2-d12)/4=3.14×(0.402-0.212)/4=0.09m2,Apl=πd12/4=3.14×0.212/4=0.03m2Qsk=u∑qsikli=πd∑qsikli=3.14×0.40×970.50=1218.95kNQpk=qpk(Aj+λpApl)=4000.00×(0.09+0.24×0.03)=388.80kN,Quk=Qsk+Qpk=1218.95+388.80=1607.75kNRa=1/KQuk=1/2×1607.75=803.88kN2.3.2 桩基竖向承载力计算(1)轴心竖向力作用下Nk=280.56kN4,按αL=4,查表得:υx=2.441RHa=0.75×(α3EI/υx)χoa=0.75×(0.673×45600/2.441)×0.01=42.14kN2.4.2 桩基水平承载力计算Hik=18.48kNNkmin=41.14kN,基桩呈整体性破坏的抗拔承载力满足要求。

Tuk/2+Gp=853.26/2+28.40=455.03kN>Nkmin=41.14kN,基桩呈非整体性破坏的抗拔承载力满足要求。

2.6 抗倾覆验算图3 倾覆点示意图a1=4.50/2=2.25m,bi=4.50/2+1.80=4.05m倾覆力矩M倾=M+Fhh=1552+73.90×(7.500.30)=2084.08kN·m抗倾覆力矩M抗=(Fk+Gk)ai+2(Tuk/2+Gp)bi=(464.10+658.13)×2.25+2×(853.26/2+28.40)×4.05=6210.76kN.mM抗/M倾=6210.76/2084.08=2.98抗倾覆验算2.98>1.6,满足要求。

2.7 桩身承载力验算2.7.1 正截面受压承载力计算按照Mx作用在对角线进行计算,Mx=Mk=2214.92kN·m,yi=1.80×20.5=2.55mNk=(Fk’+1.2Gk)/n±Mxyi/Σyi2=(626.54+1.2×658.13)/4±(2214.92×2.55)/(2×2.552)=354.07±434.30Nkmax=788.38kN,Nkmin=-80.23kNΨc=0.85,ΨcfcAj=0.85×35.90×1000×0.09=2746.35kN正截面受压承载力=2746.35kN>Nkmax=788.38kN,满足要求。

2.7.2 预制桩插筋受拉承载力验算插筋采用HRB335,fy=300.00N/mm2,取4 20,As=4×314=1256mm2fyAs=300×1256=376800N=376.80kNfyAs=376.80kN>Nkmin=80.23kN,正截面受拉承载力满足要求。

M倾/(4x1As)=2084.08×1000/(4×1.80×1256)=230.46N/mm2M倾/(4x1As)=230.46N/mm2Fι=626.54kN,满足要求。

(2)角桩向上冲切力承载力计算N1=Nk’=Fk’/n+Mxyi/Σyi2=626.54/4+2214.92×2.55/(2×2.552)=590.93kN λ1x=λ1y=а0/ho=0.80/1.20=0.67,c1=c2=0.45+0.20=0.65mV=2Nk’=2×590.93=1181.87kNβ1x=β1y=0.56/(λ1x+0.2)=0.56/(0.67+0.2)=0.64[β1x(c2+а1y/2)+β1y (c1+а1x/2)]βhpftho=0.64×(0.65+0.80/2)×2×0.94×1.57×1000×1.20=2380.17kN角桩向上冲切承载力=2380.2kN>V=1181.87kN,满足要求。

(3)承台受剪切承载力验算Nk’=Fk’/n+Mxyi/Σyi2=626.54/4+2214.92×2.55/(2×2.552)=590.93kNV=2Nk’=2×590.93=1181.86kNβhs=(800/ho)1/4=(800/1200)0.25=0.90,λ=а0/ho=0.80/1.20=0.67α=1.75/(λ+1)=1.75/(0.67+1)=1.05,b0=4.50m=4500mmβhsαftb0ho=0.90×1.05×1.57×1000×4.50×1.20=8011.71kN承台受剪切承载力=8011.71kN>V=1181.86kN,满足要求。

2.7.4 承台抗弯验算(1)承台弯矩计算Ni=Fk’/n+Mxyi/Σyi2=626.54/4+2214.92×2.55/(2×2.552)=590.93kN,Xi=1.80m M=ΣNiXi=2×590.93×1.80=2127.35kN.m(2)承台配筋计算承台采用HRB335,fy=300.00N/mm2As=M/0.9fyho=2127.35×106/(0.9×300×1200)=6566mm2取23 20@201mm(钢筋间距满足要求),As=23×314=7222mm2承台配筋面积7222mm2>6566mm2,满足要求。

2.8 计算结果2.8.1 基础桩4根φ400预应力管桩,桩顶标高-1.50m,桩长20.10m;桩混凝土等级C80,壁厚95mm,桩顶插筋4 20。

2.8.2 承台长(a)=4.50m,宽(b)=4.50m,高(h)=1.30m,桩中心与承台中心1.80m,承台面标高-0.30m;混凝土等级C30,承台底钢筋采用双向23 20@200mm。

相关文档
最新文档