共聚焦激光扫描
激光扫描共聚焦显微镜原理及应用

激光扫描共聚焦显微镜原理及应用激光扫描共聚焦显微镜(Laser Scanning Confocal Microscope)是一种高分辨率的显微镜技术。
它结合了光学和计算机技术,通过使用激光扫描技术将样品的逐点扫描成像,可以获取到非常清晰的三维图像。
激光扫描共聚焦显微镜的原理是基于共焦聚焦技术。
它使用一束激光光束照射在样品表面上,并收集激光光束的反射或荧光信号。
激光光束通过一个探测镜来聚焦在样品表面上的一个非常小的点上,该点称为焦点。
通过扫描样品,系统可以获取到完整的样品图像。
1.高分辨率:激光扫描共聚焦显微镜可以获得非常高的分辨率。
由于只有焦点附近的信息被收集,所以可以消除反射和散射带来的干扰,提高图像的清晰度和分辨率。
2.三维成像:激光扫描共聚焦显微镜可以进行多个焦面的扫描,从而获取到三维样品图像。
这使得可以观察样品的内部结构和深层次的信息。
3.高灵敏度:激光扫描共聚焦显微镜可以检测到样品的荧光信号。
这在生物医学领域中非常有用,可以用于观察细胞和组织中的荧光标记物。
4.实时观察:由于激光扫描共聚焦显微镜具有快速扫描和成像的能力,因此可以进行实时观察。
这对于研究动态过程和实时观察样品的变化非常有用。
在生物医学研究中,激光扫描共聚焦显微镜被广泛应用于观察和研究活细胞及组织的结构和功能。
它可以用于观察和研究细胞器的位置和运动、细胞的分裂过程、病理细胞的形态学变化等。
在材料科学研究中,激光扫描共聚焦显微镜可以用于观察和研究材料的结构和性质。
它可以帮助研究人员观察各种材料的微观结构、表面形貌以及材料中的缺陷和分子分布等。
在纳米技术研究中,激光扫描共聚焦显微镜可以用于观察和研究纳米材料的形态和结构。
它可以帮助研究人员观察纳米粒子的形状、大小和分布,研究纳米材料的组装过程和性质等。
总之,激光扫描共聚焦显微镜是一种非常强大并且在科学研究中得到广泛应用的显微镜技术。
它通过激光聚焦和扫描技术,可以获得高分辨率、三维成像和实时观察的样品图像,并且在生物医学研究、材料科学和纳米技术等领域有着重要的应用价值。
激光扫描共聚焦显微镜的原理和应用

激光扫描共聚焦显微镜的原理和应用一、激光扫描共聚焦显微镜的原理传统的光学显微镜使用的是场光源,标本上每一点的图像都会受到邻近点的衍射或散射光的干扰;激光扫描共焦显微镜(Laser Scanning Confocal Microscope,LSCM)采用点光源照射样本,在焦平面上形成一个轮廓分明的小的光点,该点被照射后发出的荧光被物镜搜集,并沿原照射光路回送到由双色镜构成的分光器。
分光器将荧光直接送到探测器。
光源和探测器前方都各有一个针孔,分别称为照明针孔和探测针孔。
照明针孔与探测针孔相对于物镜焦平面是共轭的,焦平面上的点同时聚焦于照明针孔和发射针孔,焦平面以外的点被挡在探测针孔之外不能成像,这样得到的共聚焦图像是标本的光学切面,避免了非焦平面上杂散光线的干扰,克服了普通显微镜图像模糊的缺点,因此能得到整个焦平面上清晰的共聚焦图像。
原理图二、激光扫描共聚焦显微镜组成特点LSCM由显微镜光学系统,激光光源,扫描装置和检测系统构成,整套仪器由计算机控制,各部件之间的操作切换都可在计算机操作平台界面中方便灵活地进行。
显微镜是LSCM的主要组件,它关系到系统的成像质量。
通常有倒置和正置两种形式,前者在切片、活细胞检测等生物医学应用中使用更广泛。
三、激光扫描共聚焦显微镜的应用(一)细胞的三维重建普通荧光显微镜分辨率低,显示的图像结构为多层面的图像叠加,结构不够清晰。
LSCM能以0.1μm的步距沿轴向对细胞进行分层扫描,得到一组光学切片,经A/D转换后作为二维数组贮存。
这些数组通过计算机进行不同的三维重建算法,可作单色或双色图像处理,组合成细胞真实的三维结构。
旋转不同角度可观察各侧面的表面形态,也可从不同的断面观察细胞内部结构,测量细胞的长宽高、体积和断层面积等形态学参数。
通过模拟荧光处理算法,可以产生在不同照明角度形成的阴影效果,突出立体感。
通过角度旋转和细胞位置变化可产生三维动画效果。
LSCM的三维重建广泛用于各类细胞骨架和形态学分析、染色体分析、细胞程序化死亡的观察、细胞内细胞质和细胞器的结构变化的分析和探测等方面。
共聚焦激光显微镜原理

共聚焦激光显微镜原理共聚焦激光显微镜是一种高分辨率的显微技术,它利用激光光束对样品进行扫描,通过聚焦和探测来获取高分辨率的图像。
下面将详细介绍共聚焦激光显微镜的原理。
1. 激光扫描共聚焦激光显微镜使用一个激光束对样品进行扫描。
这个激光束可以是单色或多色的,并且可以调节其波长和功率。
在扫描过程中,激光束会被反射、散射或吸收,从而产生不同的信号。
2. 共聚焦共聚焦是指将激光束聚焦到一个非常小的点上,通常在几百纳米以下。
这个点称为焦点,在这个点上产生了强烈的电磁场,可以使样品中的荧光物质发出荧光信号。
同时,在这个点周围也会有一定程度的荧光信号。
3. 探测探测是指检测样品中发出的荧光信号,并将其转换成电子信号。
探测器通常使用光电倍增管或者CCD相机,可以捕捉到非常微弱的荧光信号。
4. 三维成像共聚焦激光显微镜可以进行三维成像。
通过改变激光束的焦距,可以在样品中扫描不同深度的区域。
这样就可以获得样品的三维结构信息。
5. 高分辨率共聚焦激光显微镜具有非常高的分辨率。
由于激光束被聚焦到一个非常小的点上,因此可以获得非常高的空间分辨率。
同时,由于只有在焦点处才会产生荧光信号,因此也可以获得非常高的时间分辨率。
6. 应用共聚焦激光显微镜广泛应用于生物医学研究领域。
它可以用于观察细胞、组织和器官中的结构和功能,并且还可以用于研究生物大分子如蛋白质、核酸等的结构和功能。
总之,共聚焦激光显微镜是一种高分辨率、非侵入性、三维成像技术,在生物医学研究领域具有广泛的应用前景。
激光共聚焦扫描显微镜检测ros的原理

激光共聚焦扫描显微镜检测ros的原理
激光共聚焦扫描显微镜检测ROS(活性氧簇)的原理如下:
1. 共聚焦显微镜采用单色激光扫描束形成点光源,对标本内焦平面上每一点进行扫描。
2. 标本上被照射点在检测器检测针孔处成像,由检测针孔后光电倍增管逐点或逐线接受,迅速在计算机监视器屏幕上形成荧光图像。
3. 照明针孔与检测针孔相对于物镜焦平面是共轭的,即焦平面点同步聚焦于照明针孔和检测针孔,焦平面以外点不会在检测针孔处成像。
这样得到的共聚焦图像是标本的光学横切面,克服了普通荧光显微镜图像模糊的缺陷。
4. 通过显微镜载物台上加装的微量步进马达,可以使载物台沿着Z轴上下移动,将样品各个层面移到照明针孔和检测针孔的共焦面上,使样品不同层面的图像都能清晰地显示,成为持续光切图像。
通过以上步骤,可以有效地利用激光共聚焦扫描显微镜检测ROS,获得更准确的结果。
激光共聚焦扫描显微镜使用原理讲解

1.激光共聚焦扫描显微镜的基本原理?与普通显微镜的区别?1.原理:激光共聚焦扫描显微镜利用激光束经光源前方的照明针孔(激发针孔)形成点光源,在物镜焦平面上形成一个轮廓分明的小点,激发出的荧光经原来的入射光路直接反向回到分光镜,并将荧光直接送到探测器前方的探测针孔(共聚焦针孔),通过探测针孔时先聚焦,由探测针孔后的光电倍增管逐点接收,在计算机屏幕上形成清晰的荧光图像。
照明针孔和探测针孔相对于物镜焦平面是共轭(共焦)的,即光点通过一系列的透镜,最终可同时焦聚于照明针孔和探测针孔。
这样,标本上的被照射点发射的荧光在探测针孔处成像,而来自该点以外的任何发射荧光均被探测针孔阻挡。
2.区别:共聚焦显微镜与普通显微镜相比有许多独特的优点,包括:可以控制焦深、照明强度、降低非焦平面光线的噪音干扰,从一定厚度标本中获取光学切片,即显微CT。
最核心的优点是降低噪音干扰:对于物镜焦平面的焦点处发出的光在针孔处可以得到很好地会聚,可以全部通过针孔探测器接收,而在焦平面上下位置发出的光在针孔处会产生直径很大的光斑,对比针孔的直径大小,则只有极少部分的光可以透过针孔被探测器接收。
而随着距离物镜焦平面的的距离越大,杂散光在探测针孔处的弥散斑就越大,能透过针孔的能量就越少,探测器上产生的信号就越小,这样就能有效防止杂质信号。
2.钙指示剂的类别和优缺点:1. 生物发光蛋白优点:不需要荧光激发系统,光毒性小。
缺点:不能通透细胞膜,对技术要求高,效率较低,需要较多的指示剂。
2. 荧光蛋白指示剂优点:比值测定,荧光信号强。
缺点:染料的信号可变度小,对PH值变化敏感。
3. Fura2(比值型)优点:避免实验设备、细胞类型、实验个体的差异,数据具有高度可比性。
缺点:紫外激发,一定的自发荧光,损害细胞的能量代谢。
4. Fluo3(非比值型)优点:激发,自发荧光小,对细胞的损害较小。
缺点:数据直接为荧光强度值,容易受染料浓度、细胞动态变化等因素的影响。
激光共聚焦扫描显微镜原理功能

激光共聚焦扫描显微镜原理功能激光共聚焦扫描显微镜(Laser Scanning Confocal Microscope,简称LSCM)是一种高分辨率的显微镜,通过激光光源和共聚焦扫描技术可以实现对样品的三维成像。
该显微镜原理独特,功能丰富,下面将详细介绍。
首先,让我们了解一下激光共聚焦扫描显微镜的工作原理。
激光共聚焦扫描显微镜的激光光源可以产生高能量、单色和高单频的激光束,然后通过一系列光学元件将激光聚焦到一个微细尖端,形成一个极小的焦点。
这个焦点可以对样品进行扫描,通过激光与样品之间的相互作用,得到一系列的反射或荧光信号。
这些信号经过光学系统的分光探测器进行收集与分析,可以获得高分辨率的图像。
1.高分辨率成像:激光共聚焦扫描显微镜的光学系统可以聚焦到亚米级尺寸的焦点,并收集样品表面或内部的成像信号。
相比传统的荧光显微镜具有更高的分辨率。
2.三维成像:激光共聚焦扫描显微镜可以通过扫描激光焦点在样品内部的位置,获取样品的三维信息。
可以使用自动扫描系统,将激光在X、Y、Z三个方向的位置进行扫描,实现高质量的三维成像。
3.荧光探测:激光共聚焦扫描显微镜常用于生物医学等领域的研究,可以通过荧光标记的样品来观察样品的分子组成和生物过程。
荧光探测技术可以提供对细胞和组织结构的高分辨率成像。
4.实时观察:由于激光共聚焦扫描显微镜可以实现高速扫描和数据采集,可以实时观察样品的动态变化。
这使得该技术在生物学和材料科学研究中非常有用。
5.光谱分析:激光共聚焦扫描显微镜可以使用多种光谱探测器来进行荧光信号的分析。
可以通过收集不同波长的荧光信号,获得样品中的各种分子或物质的信息。
6.激光刺激:激光共聚焦扫描显微镜也可以进行激光刺激实验。
通过选择合适的激光波长和功率,可以在细胞或样品的特定区域进行局部刺激。
这对于研究细胞生理和功能是非常重要的。
总之,激光共聚焦扫描显微镜具有高分辨率成像、三维成像、荧光探测、实时观察、光谱分析和激光刺激等功能。
激光扫描共聚焦显微镜教学课件

根据实验需求,调整扫描速度和分辨率以确 保图像质量。
图像采集
校准
确保显微镜处于校准状态,避 免图像出现畸变或失真。
采集参数设置
设置合适的曝光时间、增益和 数字位数等参数,以确保图像 质量。
多区域采集
如需观察大范围样品,可设置 多个采集区域,并确保各区域 间无缝拼接。
实时预览
在采集过程中实时预览图像, 确保图像质量满足要求。
特点
高分辨率、高对比度、高灵敏度 、无损检测、能够观察活细胞等 。
工作原理
01
激光束通过显微物镜照 射到样品上,形成光斑 ;
02
光斑通过扫描器在样品 表面进行扫描,同时收 集反射光或荧光;
03
反射光或荧光通过共聚 焦系统汇聚到光电倍增 管上,转换成电信号;
04
电信号经过处理后形成 图像,显示在计算机屏 幕上。
根据实验需求设置采集参数,如曝光 时间、增益等,以获取高质量的图像 。
CHAPTER 04
激光扫描共聚焦显微镜实验 案例
细胞膜流动性研究
总结词
通过观察细胞膜荧光标记物的扩散和 分布,了解细胞膜的流动性。
详细描述
利用荧光染料标记细胞膜,在激光扫 描共聚焦显微镜下观察标记物的动态 变化,通过分析荧光强度和分布的变 化,可以了解细胞膜的流动性。
高速成像
研发更快的扫描速度和数据处理能力,实现实时动态观察 ,缩短实验时间,提高实验效率。
多维成像
拓展激光扫描共聚焦显微镜的成像维度,从二维平面扩展 到三维立体成像,甚至包括时间序列的四维成像,以更全 面地揭示细胞活动和分子交互过程。
应用领域的拓展
临床诊断
将激光扫描共聚焦显微镜应用于 临床诊断,通过观察活体组织样 本,为疾病诊断和治疗提供更准
共聚焦激光扫描显微术ppt课件

四.细胞内PH值的测定,脑缺血,损伤时细 胞内PH变化
荧光漂白恢复技术(FRAP)与细胞间通讯研究
Gap junction的分布,密度,调控因素,网络阻断剂(Othanol , Dieldrin)
6. 激光手术切除神经细胞突起 光陷阱技术,套除细胞器,移动染色体
7. 神经细胞编程性死亡(programmed cell death,PCD) 与细胞内钙的关系
通过基团修饰以掩蔽生物活性分子,使其以惰性前体形式 存在。通常是可逆的。
原理:紫外线照射→共价键断裂→释放生物活性分子
PART ONE
锁化合物的两种光化学反应原理: 氮苯的光致同分异构作用和硝基甲苯的光 分解作用
#2022
偶氮苯衍生物:
邻硝基甲 苯衍生物:
01.
目前应用最广泛的笼锁化合物系利用硝基甲苯 的光敏性质合成。
髓,否则容易造成观者的阅读压 力,适得其反。正如我们都希望 改变世界,希望给别人带去光明,
但更多时候我们只需要播下一颗
种子,自然有微风吹拂,雨露滋
养。恰如其分地表达观点,往往
事半功倍。
二、基本原理
1.光学成像
激光器产生的激光经物镜聚焦到 样品上
反射光或荧光经目镜汇聚于探测 器
探检测器前有一小孔(Pinhole) 汇聚光束
五、在神经 生物学的应 用
1.神经细胞参数测定及三维重建
细胞外形 浦肯野氏细胞及其突起的投射 神经细胞轴突走向及神经支配的研究 神经骨架重组的研究
二.神经递质、调质及细胞内活性物质受体 的荧光定位
三.细胞内钙离子的测定
○ 细胞内信号传导的研究 ○ 钙内流与神经递质释放的关系 ○ 微环境变化,受体激活,电刺激与钙的释
0.00
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
激光扫描共聚焦显微镜(laser scanning confocal microscope LSCM)是20世纪80年代发展起来的一项 具有划时代意义的高科技新产品,是当今世界最先进 的细胞生物学分析仪器。激光共聚焦显微镜利用激光 作为光源,在传统光学显微镜基础上采用共轭聚焦的 原理和装置,以及通过针孔的选择和PMT的收集,并 带有一套对其所观察到的对象进行数字图像分析处理 的系统软件。与传统光学显微镜相比,它具有更高的 分辨率,实现多重荧光的同时观察并可形成清晰的三 维图象等优点。所以它问世以来在生物学的研究领域 中得到了广泛应用。
光学低相干反射测量技术(OLCR) OLCR最早形成于七十年代,它利用低相干光干涉原 理测量反射光的幅度和相对相位,从而获取传输介 质的内部信息。 用途:集成光纤器件的特征或瑕疵检测。
1991年,美国的麻省理工学 院的J. G. Fujimoto和D. Hu ang等人成功地开发了光学 相干层析成像技术,该技术 结合了共焦显微术和低相干 光的外差探测技术,通过快 速扫描实现二维或三维层析 成像。
How a Confocal Image is Formed
Pinhole 1
Specimen
Pinhole 2
Condenser Lens
Hale Waihona Puke Objective Lens
Detector
Modified from: Handbook of Biological Confocal Microscopy. J.B.Pawley, Plennum Press, 1989
In vivo fiber-optic confocal reflectance microscope with an injection-molded plastic miniature objective lens
Fibered Confocal Fluorescence Microscopy
共聚焦激光扫描显微镜
共聚焦激光扫描显微镜(Confocal Laser Scanning Microscope ,CLSM) 是1987年面世并 发展起来的一种先进的细胞生物学分析仪器,是 一项具有划时代意义的高科技新产品,是近代生 物医学图像分析仪器最重要的发展之一,有细胞 “CT”之称。成为形态学、分子细胞生物学、神 经科学、药理学、遗传学等领域中新一代较有力 的研究工具。
OCT将激光技术、超灵敏光电探测、精密自动控制和计算机图 像处理等多项技术综合为一体。
光学相干层析成像(Optical Coherence Tomography, OCT)作为 一种全新的光学层析成像技术,以其无辐射、非侵入、高分辨 率及高探测灵敏度等特点,在临床医学领域具有巨大的发展前 景。
发展历史
Emission Filter
Emission Filter
Emission Pinhole
原理示意图
光源(激光) 二色镜。 物镜 样品 针孔 检测仪 共焦显微镜的最大优点是可以只 从一个平面收集光。 针孔同焦平面成对(即共焦), 使得来自焦平面以外的光远离检 测仪。 激光扫描显微镜按顺序一点一点 地、一行一行地扫描样品,将象 素资料合成一个图象。通过移动 焦平面,单个图象(光限幅)可 以放在一起,形成可以以后进行 数字处理的三维栈。
基于共聚焦原理的皮肤在体三维成像技术
探测器 激光束
小孔
聚焦透镜 分光器
光学扫描 物镜
组织样品
Quarter Wave Plate 窗口
色素痣
A 明亮的黑素细胞巢围绕真 皮乳头呈圆形或椭圆形分布, 细胞形态规则,大小及明亮度 均一。细胞间有间隔。
B
对皮肤疾病的治疗与疗效评估需 要先进的皮肤诊断技术
v
平面反射镜
宽带光源
分束板 探测器
组织样品
光学低相干层析成像(OCT)
背景
生物医学光子学是光学与生命科学相互交叉、相互 渗透的一个边缘学科,是关于光辐射与生物组织之 间相互作用的学问。
光学技术在生物医学中应用由来已久,早在17世纪, 光学显微镜的发明将医学研究提高到细胞形态学水 平。
二十世纪七十年代之后,激光技术已成为临床治疗的有 效手段:激光诊断(以激光作为信息载体) 激光纤维内窥镜; 激光扫描共焦显微镜; 激光多普勒血流计; 激光光谱诊断技术;
1. 无创、原位、动态、即时 2. 对可疑皮损部位可进行多次、重复观察 3. 提供客观、量化的评估指标
皮肤影像学
内窥式激光共聚焦显微镜
横向分辨率为 3.1um;轴向 分辨率为 16.6um
J。Knitrtel et. al. optics communications 188(2001)267-273
Fluorescent Microscope
Arc Lamp
Confocal Microscope
Laser
Excitation Diaphragm Excitation Filter
Ocular
Excitation Pinhole Excitation Filter
PMT
Objective
Objective
Excitation Filter Ocular
Emission Filter
Confocal microscopy
Confocal Principle
Objective
Laser Excitation Pinhole
Excitation Filter PMT
Emission Filter Emission Pinhole
共聚焦显微镜的优点
减少由于光散射产生的图像模糊 增加有效分辨率 提高信噪比 厚标本的清楚细查 Z轴扫描 可以实现数字放大倍率的调节
Wide-field microscopy
Fluorescent Microscope
Objective
Arc Lamp Excitation Diaphragm
激光治疗(以激光作为能量载体) 光动力疗法治癌; 激光外科手术; 准分子激光角膜成形术;等
简介
进入二十世纪九十年代,由于医学对无辐射损伤、高分辨率层 析成像的需求,光学相干层析成像技术(OCT,Optical Cohere nce Tomography)孕育而生,并逐渐成为该领域的研究热点。
OCT是继超声、X射线、核磁共振等层析成像技术之后,又一 种新型的层析成像技术。