信号系统基础知识

合集下载

信号与系统知识点总结

信号与系统知识点总结

信号与系统知识点总结信号与系统是电子信息科学与技术专业中的一门重要课程,它研究的是信号的产生、传输、处理和系统的分析、设计与控制等内容。

信号与系统是电子信息工程及其相关专业的基础课程,对于学习与工程实践有着重要的意义。

下面是信号与系统知识点的总结。

1.信号的分类信号是信息的载体,它可以是连续的或离散的,可以是周期的或非周期的,可以是冲激的或非冲激的。

根据信号的不同属性,可以将其分为连续信号和离散信号、周期信号和非周期信号、冲激信号和非冲激信号等。

2.连续信号与离散信号连续信号是定义在连续时间域上的信号,用函数表示;离散信号是定义在离散时间域上的信号,用数列表示。

连续信号和离散信号可以通过采样和重构的方法相互转换。

3.周期信号与非周期信号周期信号是在一定时间内重复出现的信号,其周期可以是有限的也可以是无限的;非周期信号是不具有周期性的信号,其能量或功率可以是有限的也可以是无限的。

4.冲激信号与非冲激信号冲激信号是单位面积上的单位冲量信号,可以看作是宽度趋近于零、幅度趋近于无穷大的矩形信号;非冲激信号是在一定时间范围内的非零函数。

5.信号的基本操作信号的基本操作包括平移、反褶、放大、缩小等。

平移操作是将信号在时间轴上平移,反褶操作是将信号在时间轴上反转,放大操作是增大信号的幅度,缩小操作是减小信号的幅度。

6.系统的分类系统是对信号进行操作或变换的装置或过程,可以分为线性系统和非线性系统、时不变系统和时变系统等。

线性系统具有叠加性和比例性质,时不变系统的输出与输入的延迟无关。

7.线性时不变系统的性质线性时不变系统具有线性叠加性、时域平移不变性、时域卷积性质和频域相应性质。

线性时不变系统可以通过其单位冲激响应来描述,单位冲激响应与系统的输入信号进行卷积运算可以得到系统的输出信号。

8.系统的稳定性系统的稳定性是指对于有界输入信号,系统的输出是否有界。

稳定系统的输出信号不会无限增长,而不稳定系统的输出信号可能会无限增长。

信号与系统知识点整理

信号与系统知识点整理

信号与系统知识点整理信号与系统是电子、通信、自动化等领域中的基础课程之一,主要研究信号的产生、传输、处理和分析等内容。

下面是信号与系统的知识点整理。

1.信号的分类:-连续信号:在时间和幅度上都是连续的信号,如声音、电压波形等。

-离散信号:在时间上是离散的信号,如数字音频、数字图像等。

-周期信号:在一定时间周期内重复出现的信号,如正弦信号、方波等。

-非周期信号:在一定时间段内不重复出现的信号,如脉冲信号、矩形波等。

2.基本信号:-阶跃信号:在其中一时刻突然跃变的信号。

-冲击信号:在其中一时刻瞬间出现并消失的信号。

-正弦信号:以正弦函数表示的周期信号。

-方波信号:由高电平和低电平构成的周期信号。

3.系统的分类:-时不变系统:输出不随时间变化而变化的系统。

-线性系统:满足叠加性质的系统。

-因果系统:输出仅依赖于当前和过去的输入的系统。

-稳定系统:有界的输入产生有界的输出的系统。

4.线性时不变系统的特性:-线性性质:满足叠加性质。

-时不变性:系统的输出只取决于输入信号的当前和过去的值。

-冲激响应:线性时不变系统对单位冲激信号的响应。

5.离散时间系统的表示:-差分方程:用差分方程表示离散时间系统。

-传输函数:用传输函数表示系统的输入和输出之间的关系。

6.离散时间信号的分析:-Z变换:将离散时间信号从时域变换到Z域的方法。

-序列的频率表示:幅度谱、相位谱和角频率。

7.连续时间系统的表示:-微分方程:用微分方程表示连续时间系统。

-传递函数:用传递函数表示系统的输入和输出之间的关系。

8.连续时间信号的分析:-傅里叶级数:将连续时间周期信号分解成一系列正弦和余弦函数的和。

-傅里叶变换:将连续时间非周期信号从时域变换到频域。

9.信号处理的应用:-通信系统:对信号进行调制、解调、编码、解码等处理。

-图像处理:对图像进行滤波、增强、压缩等处理。

-音频处理:对音频信号进行降噪、消除回声、变声等处理。

-生物医学信号处理:对生理信号如心电图、脑电图等进行分析和识别。

信号与系统基本知识

信号与系统基本知识

信号与系统基本知识信号与系统是电子信息类专业中的重要基础课程,它涉及信号的产生、传输、处理和分析等方面。

通过学习信号与系统,可以帮助我们理解和分析各种实际问题,并为解决这些问题提供方法和工具。

我们来了解一下信号的概念。

信号可以理解为一种随时间或空间变化的物理量,它可以是连续的或离散的。

在通信系统中,常见的信号有模拟信号和数字信号。

模拟信号是连续变化的信号,可以用连续函数表示;数字信号是离散的信号,它是由连续信号经过采样和量化得到的。

信号的产生可以是自然界中的物理现象,也可以是人工产生的。

自然界中的信号有声音、光线、温度等,而人工产生的信号有电压、电流、数字编码等。

在工程中,我们常常需要对信号进行处理和分析,以满足特定的需求。

接下来,我们来了解一下系统的概念。

系统是对信号进行处理的装置或方法。

它可以是物理系统,如滤波器、放大器等;也可以是数学模型,如差分方程、传输函数等。

系统可以对信号进行放大、滤波、调制等操作,改变信号的特性。

在信号与系统中,我们主要研究信号在系统中的传输和变换规律。

对于连续信号,我们使用微分方程或微分方程组来描述系统的行为;对于离散信号,我们使用差分方程或差分方程组来描述。

通过对系统进行分析,我们可以得到系统的频率响应、幅频特性等信息,从而了解系统对不同频率信号的处理能力。

在信号与系统中,还有一些重要的概念和工具,如傅里叶变换、拉普拉斯变换、离散傅里叶变换等。

这些工具可以将信号从一个域(如时域、频域)转换到另一个域,从而方便我们对信号进行分析和处理。

傅里叶变换是一种将信号从时域转换到频域的方法,它可以将信号分解为不同频率的正弦和余弦函数。

通过傅里叶变换,我们可以得到信号的频谱信息,从而了解信号中不同频率成分的贡献。

拉普拉斯变换是一种将信号从时域转换到复频域的方法,它可以将微分方程转换为代数方程。

通过拉普拉斯变换,我们可以方便地分析系统的稳定性、零极点分布等特性。

离散傅里叶变换是一种将离散信号从时域转换到频域的方法,它可以将离散信号分解为不同频率的正弦和余弦函数。

信号与系统基础及应用第1章 信号与系统基础知识

信号与系统基础及应用第1章 信号与系统基础知识

1 xe (t) 2 [x(t) x(t)]
1 xo (t) 2 [x(t) x(t)]
2.信号分解为基本信号的有限项之和 xa (t) t[u(t) u(t 1)] [u(t 1) u(t 2)]
xa (t) tu(t) (t 1)u(t 1) u(t 2)
t


2

Gτ t
1
O
2
t
2
⦿其他函数只要乘以门函数,就只剩下门内的部分。
3.符号函数(Signum)
1,t 0 sgn(t) 1,t 0
sgnt
O
t
sgn(t) u(t) u(t) 2u(t) 1
u(t) 1 [sgn(t) 1] 2
1.3.1 信号的相加和相乘
1
0 1
0
1
信号的和
0
1
信号的积
0
1.3.2 信号的微分与积分
积分 原信号 微分
1.3.3 信号的平移、翻转与展缩
时移
右移
左移
展缩
x(t) t[u(t) u(t 1)] [u(t 1) u(t 2)] x(2t) 2t[u(t) u(t 0.5)] [u(t 0.5) u(t 1)] x( t ) t [u(t) u(t 2)] [u(t 2) u(t 4)]
《信号与系统基础及应用》
• 第1章 信号与系统基础知识 • 第2章 连续时间信号分析 • 第3章 连续时间系统分析 • 第4章 离散时间信号分析 • 第5章 离散时间系统分析 • 第6章 离散傅里叶变换及应用 • 第7章 数字滤波器设计
第1章 信号与系统基础知识

信号与系统基础知识

信号与系统基础知识

信号与系统基础知识嘿,朋友们!今天咱来聊聊信号与系统基础知识这玩意儿。

你说信号像不像我们生活中的各种消息呀?就好比你和朋友之间说的话,或者手机收到的通知,这都是信号呢!而系统呢,就像是一个大管家,专门来处理这些信号。

比如说家里的电路系统吧,电就是一种信号,那些电线、开关啥的就是系统的一部分。

电信号通过电线跑来跑去,开关就像个小指挥官,决定啥时候让电通过,啥时候不让。

再想想我们的手机,手机接收的各种信息也是信号呀,而手机本身就是一个超级复杂的系统。

它得把接收到的信号处理得妥妥当当,然后再以我们能看懂的方式呈现出来,比如屏幕上显示的画面或者发出的声音。

那信号与系统的知识有啥用呢?这用处可大了去啦!没有这些知识,那些高科技的玩意儿咋能做得出来呢?就像盖房子得先有稳固的地基一样,信号与系统就是科技大厦的根基呀!你想想,如果工程师们不懂信号与系统,那通信设备能好用吗?我们打电话的时候岂不是会乱套,说不定这边说的话到那边就变成外星人语啦!还有那些智能家电,要是没有对信号与系统的深入理解,它们怎么能乖乖听我们的指挥呢?学习信号与系统就像是打开了一扇通往神奇科技世界的大门。

你可以了解到信号是怎么传播的,系统是怎么工作的。

这就好像你知道了魔术背后的秘密,是不是很有意思呢?而且哦,这可不是什么高深莫测、遥不可及的东西。

就像我们每天走路、吃饭一样自然,只要用心去学,肯定能搞明白。

比如说,信号的频率就像是人的心跳速度,不同的频率就代表着不同的“性格”。

有的信号频率高,就像个急性子,跑得飞快;有的信号频率低,就像个慢性子,慢悠悠的。

再看看那些滤波器,它们就像是个筛子,把有用的信号留下来,把没用的信号给筛掉。

这多神奇呀!总之呢,信号与系统基础知识是个超级有趣又超级有用的东西。

我们生活中的好多高科技都离不开它呢!大家可别小瞧了它,好好去探索一番,说不定你会发现一个全新的世界呢!这可不是我在吹牛哦,不信你自己去试试看!。

信号与系统的基础理论与应用

信号与系统的基础理论与应用

信号与系统的基础理论与应用信号与系统是电子信息工程中的核心基础课程,它涉及到了从噪声到网络线路的控制和处理,从而在电子信息系统的开发和设计中发挥着重要作用。

本文将从信号与系统的基础理论和应用两个方面进行探讨。

一、信号与系统的基础理论1. 信号在信号与系统中,信号是指随时间或空间变化而变化的物理量或信息的载体,可以分为模拟信号和数字信号两种。

模拟信号是连续的信号,它在任意时刻都可以取到任意值,在信号处理时需要进行采样和量化。

数字信号则是离散的信号,它在某个时刻只能取到有限个值,因此可以用计算机等离散系统处理。

2. 系统系统是指任何接受几个输入信号,并通过某种处理机制产生一个输出信号的过程。

在系统中,可以将输入信号表示为x(t),输出信号表示为y(t),系统可以表示为y(t)=f[x(t)],其中f表示系统的处理过程。

在信号与系统中,可以对系统进行分类,比如线性系统、时不变系统等。

线性系统的输入输出之间遵循叠加原理,时不变系统是指系统在时间轴上的平移不会影响系统的输出。

3. 傅里叶变换傅里叶变换是一种将时间域信号转换到频域的数学工具。

通过傅里叶变换,可以将模拟信号和数字信号转换为复数域中的函数,方便进行信号分析和处理。

同时,傅里叶变换还有反变换,可以将频域信号转换为时域信号。

因此,傅里叶变换在信号处理和通信系统中有着广泛的应用。

二、信号与系统的应用1. 数字图像处理在数字图像处理中,需要进行图像采集、噪声去除、滤波等处理。

其中滤波是一个重要的步骤,它可以提高图像的质量、清晰度和保真度。

滤波可以使用很多信号处理方法,比如中值滤波、高斯滤波、维纳滤波等。

通过信号与系统的知识,可以选择合适的滤波器,并对图像进行优化和增强。

2. 音频信号处理在音频信号处理中,需要进行音频采集、音调处理、混响效果添加等处理。

其中,音频滤波是一个重要的步骤,可以过滤掉杂音和失真,使音频更清晰、更优质。

此外,在音频信号处理中,还需要进行谱分析和频谱设计。

信号与系统基础知识-精选.pdf

信号与系统基础知识-精选.pdf

时间(电压从 10%上升至 90%的时间)和过冲(百分比)等特征量,表述测量系统的特性,上升时间和过
冲越小,系统特性越好。其中电压上升时间反映了系统的响应速度,小的上升时间对应快的响应速度。如果
被测电压快速变化,而测量系统的响应特性相对较慢,则必然产生较大的测量误差。
信号与系统分析的另一种方法是频域分析。信号频域分析的基本原理是把信号分解为不同频率三角信
f (t) 0
F (k 1) k1
t
0
图 1-2 周期矩形波信号的时域和频域
信号和系统分析还有复频域分析的方法,对于连续信号和系统,基于拉普拉斯变换,称为
s 域分析;对
于离散信号和系统,基于 z变换,称为 z 域分析。基于复频域分析,能够得到信号和系统响应的特征参数,
即频率和衰减,分析系统的频率响应特性和系统稳定性等;复频域分析也能简化系统分析,将在时域分析
信号和系统分析的最基本的任务是获得信号的特点和系统的特性。系统的分析和描述借助于建立系统
输入信号和输出信号之间关系,因此信号分析和系统分析是密切相关的。
系统的特性千变万化,其中最重要的区别是线性和非线性、时不变和时变。这些区别导致分析方法的
重要差别。本课程的内容限于线性时不变系统。
我们最熟悉的信号和系统分析方法是时域分析, 即分析信号随时间变化的波形。 例如, 对于一个电压测
f a (t ) 是一个电压信号或电
流信号,它作用在一个 1Ω 电阻上时所消耗的能量为信号能量。
一个离散信号 f d ( n) 的能量定义为
Ed
n
2
fd (n)
当 f d ( n) 为复信号时,
2
fd (n)
f d (n) fd (n) 。

信号与系统知识点

信号与系统知识点

信号与系统知识点信号与系统是电子工程及相关学科中的重要基础知识,其主要研究对象是信号的产生、传输、处理和分析,以及系统的特性和响应。

本文将探讨一些与信号与系统相关的重要知识点。

一、信号的分类信号是信息的表达方式,可以分为连续信号和离散信号。

连续信号是在时间和幅度上都是连续变化的,如模拟音频信号。

离散信号则是在时间或幅度上存在着间隔,如数字音频信号。

二、信号的表示和性质信号可以用数学函数进行表示,常见的信号类型有周期信号和非周期信号。

周期信号以某种周期性重复出现,如正弦信号;非周期信号则无规则的重复性。

信号还具有幅度、频率和相位等性质,这些性质对信号的分析和处理非常重要。

三、系统的响应系统是对输入信号做出某种处理的过程,系统的响应可以分为时域响应和频域响应。

时域响应是指系统对输入信号随时间的响应过程,可以通过巴特沃斯滤波器等工具进行分析。

频域响应则是指系统对不同频率的输入信号的响应情况,可以通过傅里叶变换等方法进行分析。

四、系统的特性系统的特性是描述系统行为的重要指标,主要包括线性与非线性、时不变与时变、稳定与不稳定等。

线性系统具有叠加性和比例性,输入和输出之间存在着线性关系;非线性系统则没有这种特性。

时不变系统的性质不随时间变化,稳定系统的输出有界且收敛于有限值,而不稳定系统则可能产生无界的输出。

五、卷积与相关卷积和相关是信号与系统分析中常用的运算符号。

卷积表示两个信号的叠加与重叠,它可以用于系统的输入与输出之间的关系描述。

相关则是通过计算信号之间的相似性,用于信号的匹配与识别。

六、傅里叶变换傅里叶变换是信号与系统分析中最重要的数学工具之一。

它可以将信号从时域转换到频域,使得信号的频率特性更加清晰。

傅里叶变换有连续傅里叶变换和离散傅里叶变换两种形式,分别适用于连续信号和离散信号的频域分析。

七、采样与重构采样和重构是数字信号处理中常用的技术。

采样是将连续信号转换为一系列离散的采样点,重构则是通过这些离散采样点还原出原始信号。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

f (t ) K sin(t )
f t
K

三要素: 振幅:K 角频率:ω(周期:T 频率: f ) 初相:θ
T

O



t
衰减正弦信号: K e t sin t f (t ) 0
第1-15页

t0 t0
0
©淮南师范学院电气信息工程学院
信号与系统 电子教案
第1-26页

©淮南师范学院电气信息工程学院
信号与系统 电子教案
1.2 信号的描述和分类
例3 判断下列序列是否为周期信号,若是,确定其周期。 (1)f1(k) = sin(3πk/4) + cos(0.5πk) (2)f2(k) = sin(2k)
解 (1)sin(3πk/4) 和cos(0.5πk)的数字角频率分别为 β1 = 3π/4 rad, β2 = 0.5π rad 由于2π/ β1 = 8/3, 2π/ β2 = 4为有理数,故它们的周期分别为N1 = 8 /3,可找到M=3,使M N1=8为整数; N2 = 4,故f1(k) 为周期序 列,其周期为N1和N2的最小公倍数8。 (2)sin(2k) 的数字角频率为 β1 = 2 rad;由于2π/ β1 = π为无理 数,故f2(k) = sin(2k)为非周期序列 。 由上面几例可看出:①连续正弦信号一定是周期信号,而正弦 序列不一定是周期序列。②两连续周期信号之和不一定是周期 信号,而两周期序列之和一定是周期序列。
一、信号的描述
信号是信息的一种物理体现。它一般是随时间 或位置变化的物理量。 信号按物理属性分:电信号和非电信号。它们 可以相互转换。电信号容易产生,便于控制,易于 处理。本课程讨论电信号---简称“信号”。 电信号的基本形式:随时间变化的电压或电流。 描述信号的常用方法(1)表示为时间的函数 (2)信号的图形表示--波形 “信号”与“函数”两词常相互通用。
第1-7页

©淮南师范学院电气信息工程学院
信号与系统 电子教案
1.1 绪论
3. 信号(signal):
信号是信息的载体。通过信号传递信息。 为了有效地传播和利用信息, 常常需要将信息转换成便于传输 和处理的信号。 信号我们并不陌生,如刚才铃 声—声信号,表示该上课了; 十字路口的红绿灯—光信号, 指挥交通; 电视机天线接受的电视信息— 电信号; 广告牌上的文字、图象信号等 等。
第1-6页

©淮南师范学院电气信息工程学院
信号与系统 电子教案
第一章 信号与系统
1.1 绪论
一、信号的概念
1. 消息(message):
人们常常把来自外界的各种报道统称为消息。
2. 信息(information): 它是信息论中的一个术语。
通常把消息中有意义的内容称为信息。 本课程中对“信息”和“消息”两词不加严格 区分。
第1-8页

©淮南师范学院电气信息工程学院
信号与系统 电子教案

1.1 绪论
二、系统的概念
信号的产生、传输和处理需要一定的物理装置, 这样的物理装置常称为系统。 一般而言,系统(system)是指若干相互关联的 事物组合而成具有特定功能的整体。 如手机、电视机、通信网、计算机网等都可以 看成系统。它们所传送的语音、音乐、图象、文字 等都可以看成信号。信号的概念与系统的概念常常 紧密地联系在一起。 系统的基本作用是对输 入信号进行加工和处理,将 其转换为所需要的输出信号。 激励
信号与系统 电子教案
1.2 信号的描述和分类
3. 周期信号和非周期信号
周期信号(period signal)是定义在(-∞,∞)区 间,每隔一定时间T (或整数N),按相同规律重复 变化的信号。 连续周期信号f(t)满足 f(t) = f(t + mT),m = 0,±1,±2,… 离散周期信号f(k)满足 f(k) = f(k + mN),m = 0,±1,±2,… 满足上述关系的最小T(或整数N)称为该信号的周期。 不具有周期性的信号称为非周期信号。
第1-12页

©淮南师范学院电气信息工程学院
信号与系统 电子教案
1.信号的数学建模 用现代数学研究信号与 系统,首先要将它们用 数学语言来描述------数 学建模
几种典型信号及数 学描述
(
1)指数信号
f (t ) K e
第1-13页
t

©淮南师范学院电气信息工程学院
信号与系统 电子教案
单边指数信号
生物医学信号处理应用举例
滤波以前干扰严重
滤波以后干扰祛除
第1-3页

©淮南师范学院电气信息工程学院
信号与系统 电子教案
长电力传输线的故障检测
第1-4页

©淮南师范学院电气信息工程学院
信号与系统 电子教案
故障诊断——电动机鼠笼断条
第1-5页

©淮南师范学院电气信息工程学院
信号与系统 电子教案
谐波分析
f1(t) = sin(π t) 1 1 o -1
第1-20页

f2(t)
值域连 续
值域不 连续
o 1 2 t
1
2
t -1
©淮南师范学院电气信息工程学院
信号与系统 电子教案
1.2 信号的描述和分类
离散时间信号: 仅在一些离散的瞬间才有定义的信号称为离散时间 信号,简称离散信号。实际中也常称为数字信号。 这里的“离散”指信号的定义域—时间是离散的, 它只在某些规定的离散瞬间给出函数值,其余时间无定 义。 如右图的f(t)仅在一些离散时刻 f(t) tk(k = 0,±1,±2,…)才有定义, 其余时间无定义。 2 2 1 相邻离散点的间隔Tk=tk+1-tk可 1 以相等也可不等。通常取等间隔T, o t 1 t2 t 3 t4 t 1 t 离散信号可表示为f(kT),简写为 f(k),这种等间隔的离散信号也常 -1.5 称为序列。其中k称为序号。
(3)复指数信号
s j
f (t ) Ke
讨论
st
( t )
t
为复数,称为复频率
Ke cos t jKe sin t , 均为实常数
t
0, 0 直流 0, 0 升指数信号 0, 0 衰减指数信号
周期信号的判别和计算?
第1-24页

©淮南师范学院电气信息工程学院
信号与系统 电子教案
1.2 信号的描述和分类
模拟复合信号判断是否周期信号:两个周期信号x(t),y(t)的周 期分别为T1和T2,若其周期之比T1/T2为有理数,则其和信号 x(t)+y(t)仍然是周期信号,其周期为T1和T2的最小公倍数。 例1 判断下列信号是否为周期信号,若是,确定其周期。 (1)f1(t) = sin2t + cos3t (2)f2(t) = cos2t + sinπt 解:(1)sin2t是周期信号,其角频率和周期分别为 ω1= 2 rad/s , T1= 2π/ ω1= πs cos3t是周期信号,其角频率和周期分别为 ω2= 3 rad/s , T2= 2π/ ω2= (2π/3) s 由于T1/T2= 3/2为有理数,故f1(t)为周期信号,其周期为T1和T2的 最小公倍数2π。 (2) cos2t 和sinπt的周期分别为T1= πs, T2= 2 s,由于T1/T2为无 理数,故f2(t)为非周期信号。
第1-21页

©淮南师范学院电气信息工程学院
信号与系统 电子教案
离散信号的三种表达方式
1.2 信号的描述和分类
k 1 1, 2, f(k) k 0 1.5, k 1 2 2 1 1 f ( k ) 2, k2 0, o k 3 -1 12 3 4 k 1, k 4 -1.5 或写为 0, 其他k f(k)= {…,0,1,2,-1.5,2,0,1,0,…} ↑ k=0
sin t π dt , t 2
(6)sinc(t ) sin π t π t
©淮南师范学院电气信息工程学院
第1-17页
信号与系统 电子教案
(5)钟形信号(高斯函数)
f (t ) Ee
t
2
exp(-t2) 1 0.9 0.8 0.7 0.6
f(t)
(1)Sa t Sa t 偶函数
(2) t 0 ,Sa(t ) 1,即limSa(t ) 1
t 0
(3)Sa(t ) 0,
(4)
0
t nπ ,n 1, 2,3
sin t t d t π


(5) limSa(t ) 0
t
0, 0 等幅 0, 0 增幅振荡 0, 0 衰减
的量纲为1 /s , 的量纲为rad/s
第1-16页

©淮南师范学院电气信息工程学院
信号与系统 电子教案
(4)抽样信号(Sampling Signal)
sin t Sa(t ) t
第1-19页

©淮南师范学院电气信息工程学院
信号与系统 电子教案
1.2 信号的描述和分类
2. 连续信号和离散信号 根据信号定义域的特点可分
为连续时间信号和离散时间信号。 (1)连续时间信号: 在连续的时间范围内(-∞<t<∞)有定义的信号 称为连续时间信号,简称连续信号。实际中也常称 为模拟信号。 这里的“连续”指函数的定义域—时间是连续 的,但可含间断点,至于值域可连续也可不连续。
第1-9页

输入
输出
系统
响应
相关文档
最新文档