数字干涉测量方法及面形的三维干涉测量及评价
干涉检查、间隙检查 孔对齐检查

干涉检查、间隙检查孔对齐检查引言概述:在工程和制造领域中,干涉检查、间隙检查和孔对齐检查是非常重要的步骤。
这些检查方法可以确保零件的质量和精度,避免潜在的问题和故障。
本文将详细介绍干涉检查、间隙检查和孔对齐检查的原理和方法。
一、干涉检查1.1 干涉检查的定义和原理干涉检查是一种用于确定零件之间是否存在干涉的方法。
干涉是指两个或多个零件在组装或运动过程中相互干扰的现象。
干涉检查的原理是通过对零件进行三维模型或物理模型的比对,确定是否存在干涉。
1.2 干涉检查的方法- 使用三维建模软件进行干涉检查:通过将设计好的零件模型导入三维建模软件,进行组装模拟,检查是否存在干涉。
- 物理模型干涉检查:通过制作实物模型,进行组装和运动模拟,观察是否存在干涉。
1.3 干涉检查的应用干涉检查广泛应用于汽车、航空航天、机械制造等领域。
在汽车制造中,干涉检查可以确保发动机和车身的组装精度,避免零件的干涉;在航空航天领域,干涉检查可以确保航天器的各个部件在发射和运行过程中不会发生干涉。
二、间隙检查2.1 间隙检查的定义和原理间隙检查是一种用于确定零件之间是否存在过大或过小间隙的方法。
间隙是指两个零件之间的间距,过大或过小的间隙都可能导致零件的不正常运行或失效。
间隙检查的原理是通过测量和比对零件之间的间隙大小,确定是否符合设计要求。
2.2 间隙检查的方法- 使用测量工具进行间隙检查:利用千分尺、游标卡尺等测量工具,测量零件之间的间隙大小,与设计要求进行比对。
- 光学测量方法:利用光学测量仪器,如激光扫描仪、投影仪等,对零件进行扫描和测量,得到间隙数据。
2.3 间隙检查的应用间隙检查在机械制造、电子制造和航空航天等领域中具有重要应用。
在机械制造中,间隙检查可以确保零件之间的配合间隙符合要求,避免零件的卡死或松动;在电子制造中,间隙检查可以确保电子元件之间的间隙符合要求,避免电路的短路或断路。
三、孔对齐检查3.1 孔对齐检查的定义和原理孔对齐检查是一种用于确定零件上的孔是否与其他零件上的孔对齐的方法。
数字干涉测量方法及面形的三维干涉测量及评价

测量及评价
【二】实验原理
随着电子技术与计算机技术的发展,并与传统的干涉检测方法结合,
产生了一种新的位相检测技术数字干涉技术,这是一种位相的实
时检测技术。这种方法不仅能实现干涉条纹的实时提取,而且可以利
用波面数据的存储功能消除干涉仪系统误差,消除或降低大气扰动及
【四】实验记录
被测工件:平面镜
序号
PV
RMS
EM
等高图(凹 或凸)
1
2
3
4
6
U R a exp[ i2k(s li )]
I (x, y,li ) a2 b2 2ab cos 2k[w(x, y) li ]
a2 b2 2ab cos 2kwcos 2kli sin 2kwsin 2kli
Ut b exp{i2k[s w(x, y)]}
指标,如下图所示。
表面形貌
PV
RMS
面形精度的评价
1.PV值:是表面形貌的最大峰谷值 2.RMS值:是表面形貌的均方根值,RMS的定义是:
RMS v2
N 1
v xi T
T xi
N
xi单次测值 N重复测定次数
5
【)
干涉场中任意一点的光强基本上li的余弦函数。由于li随时间 变化,因此光强是一个时间周期函数,可用傅里叶级数展开。
I (x, y, li ) a0 a1 cos 2kli b1 sin 2kli
a0
2 n
n i 1
I (x,
y,li )
a1
2 n
n i 1
激光干涉仪检测球面光学零件面形精度分析

激光干涉仪检测球面光学零件面形精度分析作者:权艳红来源:《中国高新技术企业》2010年第16期摘要:文章通过使用激光球面干涉仪对不同光学零件面形的测量从而作出其精度测量的分析,探讨了实验中产生问题的原因,并对实验数据加以讨论,以找出误差产生的规律。
关键词:激光球面干涉仪;等厚干涉;光学零件面形;干涉仪器;精度分析中图分类号:TH744文献标识码:A文章编号:1009-2374 (2010)24-0191-031检测仪器1.1激光球面干涉仪1.1.1干涉仪的分类干涉仪的设计方式有许多种,按照形成干涉的光束数目分为双光束及多光束两大类,双光束干涉仪所产生的条纹其亮度多呈正弦曲线的分布情形。
其基本原理都是通过各种光学元件形成参考和检测光路的方法。
就是采用了一种常见的干涉方式制成的,一般称为菲索干涉仪,这种干涉仪一般用来检测元件表面或光学系统的波相差。
由于所用激光的带宽很窄,因此它的相干长度很长可以在光程差很大的情况下得到干涉图样,对待测物体放置的要求不是很严格。
泰曼格林干涉仪、菲索干涉仪、麦克詹达干涉仪及麦克森干涉仪,皆属于此种双光束干涉方式。
1.1.2干涉仪检测光学零件表面的优点其一,它是非接触监测,不会损伤被探测物体表面。
其二,它获取数据的信息量大,图样本身是一个连续变化的过程,有着极高的分辨率。
其三,测量范围大,它可以同时对一个很大表面进行并行的分析和处理。
局限性:因为是分析反射光,所以有足够的反射才能得到干涉图样进行分析。
这就对光源和被探测物体的表面粗糙度提出了条件。
1.1.3干涉仪的应用光学仪器中的透镜、棱镜等,其表面质量要求很高,通常要求磨制面与理想几何形状间的误差不超过光波波长的数量级,用干涉法可检验出微小的误差(小于波长的几十分之一)。
所以在光学系统评价、表面的粗糙度、面形和元件的微小偏移的测量都采用了干涉仪进行分析。
1.2OSI-75TQ型激光球面干涉仪OSI-75TQ型激光球面干涉仪(如图1)是用稳频的氦氖激光器作为光源,由于它的相干长度很大,干涉仪的测量范围可以大大的扩展;而且由于它的光束发散角小,能量集中,因而它产生的干涉条纹可以用光电接收器接收,变为电讯号,并由计数器一个不漏的记录下来,从而提高了测量速度和测量精度。
光的干涉实验观察干涉条纹的现象

汇报人:
分析结果:根据测量结果分析干涉条纹的形成原因和规律
测量方法:使用干涉显微镜、干涉仪等仪器进行测量
实验果分析和讨论
03
数据记录和处理
处理数据,消除误差和异常值
记录干涉条纹的间距、宽度和亮度
计算干涉条纹的周期和相位差
分析数据,得出结论和推论
实验结果与理论预测的比较
干涉条纹的出现:实验结果与理论预测一致
干涉条纹的间距:实验结果与理论预测一致
干涉条纹的亮度:实验结果与理论预测一致
干涉条纹的稳定性:实验结果与理论预测一致
干涉条纹的消失:实验结果与理论预测一致
实验结果的解释:理论预测与实验结果相符,说明光的干涉现象真实存在
误差分析和实验改进
误差来源:仪器误差、环境误差、人为误差等
误差分析:对实验数据进行统计分析,找出主要误差来源
光的干涉实验的意义和价值
光的干涉实验是物理学中的基本实验,可以帮助我们理解光的性质和传播规律。
光的干涉实验在光学、光电子学、量子力学等领域有着广泛的应用,如激光技术、光纤通信、全息摄影等。
光的干涉实验还可以帮助我们理解其他波的性质和传播规律,如声波、水波等。
光的干涉实验对于培养学生的科学素养和实验能力也有着重要的作用。
实验器材:光源、双缝、观察屏、测量仪器等
实验步骤:调整光源、双缝和观察屏的位置,观察干涉条纹的变化
实验设备和材料
安全防护设备:护目镜或安全眼镜
辅助工具:三脚架或固定支架
测量工具:毫米尺或游标卡尺
记录工具:白纸或记录本
光源:激光笔或单色光源
干涉仪:迈克尔逊干涉仪或菲涅耳干涉仪
实验步骤和操作
准备实验器材:光源、双缝、观察屏、测量工具等
三维面形测量系统的基本原理

三维面形测量系统的基本原理三维面形测量系统是用于测量物体表面形状和几何尺寸的一种技术。
其基本原理是通过光学、激光、摄像等方式将物体表面上的点或曲线形状信息转换为数字信号,然后通过处理和分析这些数字信号,最终得到物体的三维形状和几何尺寸。
在三维面形测量系统中,光学或激光技术是常用的测量原理之一、光学技术利用投影测量和成像原理,通过将光束投射到物体表面并接收反射或散射的光来确定物体表面形状。
光线的投影和接收可以通过使用相机或其他光学装置进行。
光学技术可分为白光投影法、干涉投影法、多光束投射法等。
白光投影法是使用彩色光源投射多个不同颜色的光束到物体表面,并通过相机或其他探测器收集反射光。
通过测量不同颜色光束之间的偏差,可以计算出物体表面上各点的高度差,从而构建出物体的三维形状。
干涉投影法利用干涉原理,在物体表面上投射一束激光和参考光束,并通过光的干涉现象来测量物体表面的形状。
激光通过物体表面后,与参考光束进行干涉,产生干涉带纹理。
通过记录干涉带的图像并进行分析,可以计算出物体表面上各点的高度差,从而得到三维形状。
摄像技术是另一种常用的测量原理,通过相机记录物体表面投影图像,并通过分析图像来推断物体的三维形状。
在摄像技术中,常用的方法有结构光投影和立体视觉。
结构光投影利用光条或光栅对物体表面进行投影,并通过相机记录投影图像。
根据投影图像中的形变信息,可以计算出物体表面上各点的三维坐标。
结构光投影方法通常使用激光扫描或投影仪进行。
立体视觉利用相机组成的立体视觉系统来记录物体表面的多个视角图像,并通过相机之间的视差信息来计算物体表面上各点的三维坐标。
立体视觉方法通常需要对相机进行校准,以获得准确的视差测量结果。
除了光学和摄像技术,还有其他一些三维面形测量方法,如激光雷达、电容测量、激光干涉计等。
这些方法的原理基本上是通过测量物体表面上点或曲线的位置、形变或电容值等来反推物体的三维形状。
总之,三维面形测量系统的基本原理是通过光学、激光、摄像等方式将物体的表面形状信息转换为数字信号,并通过处理和分析这些数字信号,最终得到物体的三维形状和几何尺寸。
三维测量方法总结

三维测量方法总结概述:三维测量是指通过测量对象在三个方向上的空间坐标,来获取对象的三维形状和位置信息的过程。
它在工程、制造、建筑等领域中广泛应用,能够提供高精度、全面的测量数据,为各行各业的设计、分析和生产提供重要支持。
传统三维测量方法:传统的三维测量方法主要包括直接测量法和间接测量法。
直接测量法是通过使用测量仪器直接测量对象的空间坐标来获取其三维信息,常见的仪器有全站仪、激光测距仪等。
间接测量法则是通过测量对象的相关参数,并利用数学模型计算得到其三维信息。
传统的三维测量方法在一定程度上受限于测量精度、测量范围和测量效率等问题。
现代三维测量方法:随着科技的发展,现代三维测量方法不断涌现,使得测量精度和效率有了更大的提升。
以下介绍几种常见的现代三维测量方法。
1. 光学三维测量法:光学三维测量法是利用光学原理进行测量的方法,常见的技术包括结构光投射、视觉测量、干涉测量等。
其中,结构光投射是通过投射编码光纹或光栅到被测物体上,然后通过相机捕捉图像,利用图像处理算法计算出物体的三维坐标。
视觉测量则是通过相机拍摄物体的影像,通过对图像进行处理和分析,得到物体的三维形状和位置信息。
干涉测量则是利用光的干涉原理来测量物体表面的形貌和位移信息。
2. 激光雷达测量法:激光雷达测量法是一种利用激光束扫描地面或物体来获取其三维信息的方法。
激光雷达通过发射激光束,并接收反射回来的激光信号,通过计算激光的飞行时间和光的速度,可以确定目标物体的距离。
通过扫描多个角度,可以获取物体在三维空间的坐标信息。
激光雷达具有高精度、长测量距离和快速测量速度等优点,被广泛应用于地形测量、建筑物测量和无人驾驶等领域。
3. 三维扫描测量法:三维扫描测量法是利用激光扫描仪或光学扫描仪对物体进行扫描,获取其表面的三维点云数据。
通过对点云数据进行处理和重建,可以得到物体的三维形状和位置信息。
三维扫描测量法具有非接触、全面性和高精度等特点,适用于复杂形状和大范围的测量任务,被广泛应用于逆向工程、文物保护和数字化建模等领域。
一种检测光学元件面形的新方法

一种检测光学元件面形的新方法苏海;刘缠牢;穆绵【摘要】随着光学元件的广泛应用,对光学元件面形检测提出了更严格的要求.目前常用的检测光学元件面形的方法有数字刀口检测技术和干涉检测技术,比较这两种方法的检测原理及优缺点,提出了一种适用于工厂在线检测的三维检测方法——投影检测技术.用该方法的检测原理和关键技术对光学元件进行实验验证,证明了投影检测技术这一新方法具有实际应用价值.【期刊名称】《光学仪器》【年(卷),期】2014(036)004【总页数】6页(P295-299,310)【关键词】面形检测;数字刀口检测技术;干涉检测技术;投影检测技术【作者】苏海;刘缠牢;穆绵【作者单位】陕西华星电子集团有限公司,陕西咸阳 712099;西安工业大学光电工程学院,陕西西安 710021;陕西华星电子集团有限公司,陕西咸阳 712099;西安工业大学光电工程学院,陕西西安 710021【正文语种】中文【中图分类】TN247引言随着光学技术的发展,光学元件的应用日益广泛,因此对光学元件的质量检测提出了更严格的要求。
分析目前常用的检测光学元件面形的方法——数字刀口检测技术和干涉检测技术,并针对市场的需求提出一种基于结构光的三维检测方法,目前这种方法多用于检测高反射率的物体,因此将此方法运用于检测光学元件面形是一种新的尝试。
基于结构光的三维检测方法对于周围的检测环境要求较低,可用于工厂实现光学元件面形的在线检测,具有广泛的社会需求和较好的发展前景。
1 数字刀口检测技术1.1 检测原理数字刀口检测法采用的是波像差基本原理,如图1所示。
由于被检光学元件表面可看作是由无数个点集合而成的,所以若能够得到每个点的波相差就可以得到每个点的光程差,这是因为波像差为实际波面和理想波面之间的光程差,通过这样的方法就可得到被测光学元件表面的整个面形信息。
刀口在会聚光束的交点附近步进式地沿某一方向动态切割弥散斑,获得连续的切割图像,通过计算机分析处理就可以获得光学元件表面的面型特征。
数字干涉测量方法及面形的三维干涉测量及评价-文档资料

0
i1 n
i
2 n 2 n
n
i1
I ( x , y , li ) c o s 2 k li I ( x , y , li ) s in 2 k li
3
i1
从而求得被测波面,由下式给出:
n 2 I ( x ,,) y l is i n 2 k l i b 1 1 n 11 1 i 1 w ( x , y ) t g t g l i ,i 0 , 1 , 2 , 3 i n 2 k a k 2 n 2 1 2 I ( x ,,) y l ic o s 2 k l i n i 1
U a exp[ i 2 k ( s l )] R i
2 2 I ( x ,,) y l ab 2c a b o s 2 k [( w x ,) yl ] i i
2 2 ab 2 a b c o s 2c k w o s 2 k l s i n 2s k w i n 2 k l i i U b exp{ i 2 k [ s w ( x , y )]} t
为进一步降低噪声,提高测量精度,可用P个周期进行驱动 扫描,测量数据作累加平均,即
2 np I(x ,y ,li )sin 2 kl i 1 1 n i 1 w (x ,y ) tg np 2 2 k I(x ,y ,li )cos 2 kl i n i 1
上式说明孔径内任意一点的位相可由该点上的 n×p个光强 的采样值计算出来,因此,可获得整个孔径上的位相。除 实现自动检测外,还可以测定被测件的三维形貌。
7
RMS
v
2
v x T i
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
I (x, y,li ) sin 2kli I (x, y,li ) cos2kli
上式说明孔径内任意一点的位相可由该点上的n×p个光强 的采样值计算出来,因此,可获得整个孔径上的位相。除 实现自动检测外,还可以测定被测件的三维形貌。
4
采用数字干涉测量原理进行面形的三维测量,与前面所不
同的是测量中采用了扫描技术,因而可以实现面形的三维
a0
2 n
Байду номын сангаас
n i 1
I (x,
y,li )
I (x, y, li ) a0 a1 cos 2kli b1 sin 2kli
2 n
a1
n
i 1
I (x,
y,li ) cos 2kli
b1
2 n
n i 1
I (x,
y,li ) sin 2kli
3
从而求得被测波面,由下式给出:
2 n I (x, y,li) sin 2kli
4. 你知道测量表面三维形貌有什么意义和作用吗?试比较本方法与你 了解的其它方法(例如轮廓探针法,三坐标测量机法,共焦法等) 的优缺点。
5. 为什么说本方法可以消除干涉仪自身的系统误差,而普通干涉仪则 不可能,只能靠加工水平来保证。
6. 光圈数N,局部光圈数ΔN,EM的物理意义以及与PV,RMS的大致 关系。
7
U R a exp[ i2k(s li )]
I (x, y,li ) a2 b2 2ab cos 2k[w(x, y) li ]
a2 b2 2ab cos 2kwcos 2kli sin 2kwsin 2kli
Ut b exp{i2k[s w(x, y)]}
干涉场中任意一点的光强都是li的余弦函数。由于li随时间变 化,因此光强是一个时间周期函数,可用傅里叶级数展开。
w(x,
y)
1 2k
tg 1
b1 a1
1 2k
tg 1
n 2
i 1 n
I (x,
y,li) cos 2kli li
2n
i,
n i1
i
0,1, 2,3L
L
为进一步降低噪声,提高测量精度,可用P个周期进行驱动 扫描,测量数据作累加平均,即
w(x,
y)
1 2k
tg 1
2 n 2 n
n p
i 1 n p
测量。高精度光学平面零件的面形精度可用下列二个评价
指标,如下图所示。
表面形貌
PV
RMS
面形精度的评价
1.PV值:是表面形貌的最大峰谷值 2.RMS值:是表面形貌的均方根值,RMS的定义是:
RMS v2
N 1
v xi T
T xi
N
xi单次测值 N重复测定次数
5
三、实验光路
同实验——精密位移量的激光干涉测量方法及实验(加PZT)
数字干涉测量方法 及面形的三维干涉测量及评价
一、实验目的 1. 了解激光干涉的近代方法数字干涉技术的原
理和方法; 2. 掌握干涉的实时检测技术; 3. 了解数字干涉方法的特点及应用场合; 4. 了解表面三维形貌的高精度实时测量原理; 5. 实测一个平面光学零件的表面形貌并对评价指标
PV,RMS的定义有所掌握。
四、实验记录
被测工件:平面镜
序号
PV
RMS
EM
等高图(凹 或凸)
1
2
3
4
6
五、思考题
1. 采用下列方法可以提高测量精度吗? a. 增加一个周期内的台阶数(n); b. 增加扫描的周期数(p)
2. 测量精度一般由测量正确性和测量重复性组成,试分析增加n或p的 作用以及利弊关系
3. 试分析决定数字干涉仪测量准确性的因素和提高测量准确性的主要 方法
1
二、实验原理
随着电子技术与计算机技术的发展,并与传统的干涉检测方法结合, 产生了一种新的位相检测技术数字干涉技术,这是一种位相的实 时检测技术。这种方法不仅能实现干涉条纹的实时提取,而且可以利 用波面数据的存储功能消除干涉仪系统误差,消除或降低大气扰动及 随机噪声,使干涉技术实现/100的精度,这是目前干涉仪精度最高的
近代方法。
4
光源
L1
L2 1
2
3
驱动器
计算机
软件
数字干涉系统
L1准直物镜,L2成像物镜,1被测件,2参考镜, 3压电器件(PZT),4成像光电器件(CMOS)
2
参考镜2由压电陶瓷PZT驱动,产生位移。此位移的频率与 移动量由计算机控制。设参考镜的瞬时位移为li,被测表面 的形貌(面形)为w(x,y),则参考光路和测试光路可分别 用下式表示: