数控系统故障诊断技术
数控系统故障诊断方法

数控系统故障诊断方法以下是 8 条关于数控系统故障诊断方法:1. 观察不就行吗?就像医生看病先观察症状一样,咱面对数控系统故障,先仔细观察啊!比如机床运行时是不是有异常响声,或者某些指示灯是不是不正常闪烁。
你说这观察重不重要?例子:上次厂里那台机床出问题,我啥也没干,就先站那儿观察了一会儿,嘿,还真就发现了点蛛丝马迹。
2. 测试一下也很关键呀!你想想,要是人生病了还得各种检查呢,数控系统也是呀!可以进行一些简单的功能测试。
这不就像给它做个体检嘛!例子:那次我们发现加工精度有问题,赶紧进行了几项针对性的测试,一下子就找到问题所在啦。
3. 系统报错信息可不能忽视哦!这就好比有人直接告诉你哪里不舒服,多直接呀!一定要认真对待这些报错信息。
难道不是吗?例子:有一回就是靠那报错信息,我们顺藤摸瓜,很快就解决了故障。
4. 互相交流多好呀!和同事们一起讨论讨论,说不定别人就有好点子呢!这就像头脑风暴一样,众人拾柴火焰高嘛!例子:那次遇到个难题,我和老李一交流,他的一个想法就给了我很大启发。
5. 查看历史记录呀!这可是它的过去经历呢,了解了这些,可不是能更容易找到问题所在嘛!这跟了解一个人的过往是不是很像?例子:有次故障,我们翻看历史记录,发现之前也有类似情况,照着上次的解决方法一试,还真行!6. 零部件检查也不能忘啊!数控系统就是由这些零部件组成的呀,就像大楼是由一块块砖建成的。
有问题的零部件就得赶紧换掉。
对吧?例子:有个小零件松动了,就导致整个系统不稳定,换了个新的就好了。
7. 软件更新也很有必要呢!你想想,咱手机软件还经常更新呢,数控系统也得与时俱进呀!这不是很重要吗?例子:有次就是因为软件版本太低,导致出现一些莫名其妙的问题,更新后立马就好了。
8. 有时候还得靠经验呀!经验这东西可神奇了,就像一位无声的导师。
有经验的人往往能更快地判断出问题所在。
这没错吧?例子:老张干了这么多年,很多故障他一看就大概知道是怎么回事了。
数控机床典型故障诊断与维修

数控机床典型故障诊断与维修一、数控机床常见故障及其原因1. 通讯故障通讯故障是数控机床中比较常见的故障之一。
通讯故障的主要原因包括通讯电缆连接不良、通讯软件设置错误、通讯卡故障等。
这些原因导致的通讯故障会导致数控机床无法正常与上位机进行通讯,从而影响数控机床的工作效率。
2. 电气故障电气故障是数控机床常见的故障之一,主要原因包括电气元件老化、电气接线错误、电气元件损坏等。
电气故障会影响数控机床的正常电气供电,导致数控机床无法正常工作。
3. 传感器故障数控机床中的传感器故障也比较常见,主要原因包括传感器损坏、传感器灵敏度调整不当、传感器连接错误等。
传感器故障会导致数控机床无法准确感知工件位置或运动状态,从而影响数控机床的加工精度。
4. 润滑系统故障润滑系统故障是数控机床常见的故障之一,主要原因包括润滑油不足、润滑系统堵塞、润滑泵故障等。
润滑系统故障会导致数控机床在运行过程中出现摩擦增大、温升过高等问题,影响数控机床的工作效率和使用寿命。
5. 机械传动系统故障二、数控机床故障诊断方法硬件故障诊断是数控机床故障诊断的重要内容之一。
硬件故障诊断主要通过检查、测量、比对数控机床的各个硬件部件来发现故障原因。
比如通过检查通讯电缆连接状态、检测传感器输出信号、测量电气元件的电压电流等方法来诊断数控机床的硬件故障。
3. 综合故障诊断综合故障诊断是数控机床故障诊断的综合性方法,主要通过对数控机床的硬件、软件以及工艺加工情况进行综合分析,找出故障的根本原因。
综合故障诊断需要运用多种故障诊断方法,结合数控机床的实际工作情况进行综合分析,以确保找出故障的准确原因。
硬件故障维修是数控机床故障维修的重要内容之一。
硬件故障维修主要通过更换损坏的硬件部件、重新连接电气接线、调整机械传动系统等方法来修复数控机床的硬件故障。
数控机床故障诊断与维修是数控机床维护管理工作的重要内容,对于保证数控机床的正常工作、提高数控机床的使用寿命具有重要意义。
华中数控系统常见故障及诊断办法

华中数控系统常见故障及诊断办法目录一.系统类故障判断维修1.故障现象一:系统不能正常启动z屏幕没有显示;z屏幕没有显示但工程面板能正常控制z DOS 系统不能启动z不能进入数控主菜单z进入数控主菜单后黑屏z运行或操作中出现死机或重新启动z开机后系统报坐标轴机床位置丢失2.故障现象二:急停和复位3.故障现象三:系统跟踪误差过大或定位误差过大4.故障现象四:回零(回参考点)故障5.故障现象五: 伺服电机抱闸失效6.故障现象六: 手摇故障二.伺服电机类故障判断维修三.变频或伺服主轴运转故障判断维修z主轴超速或不可控四.机床运行故障判断维修z刀架运转故障五.附表:系统内部报警信息一.系统类故障判断维修1.故障现象一:系统不能正常启动z屏幕没有显示故障原因 措施 参考系统电源不正确 1.检查电源插座(XS1)2.检查输入电源是否正常,应该为AC24V 或DC24V接线极性是否正确参见《世纪星连结说明书》2.3 节亮度调整太低或太高调整亮度调节开关 仅限HNC-18i/19i硬件板卡损坏 需更换系统或送厂维修z屏幕没有显示但工程面板能正常控制故障原因 措施 参考 亮度调整太低或太高调整亮度调节开关 仅限HNC-18i/19i 主板分辨率设置太高 调整主板COMS分辨率参数为640X480液晶屏损坏 需更换系统或送厂维修z DOS 系统不能启动故障原因 措施 参考文件被破坏1.软盘运行系统2.用杀毒软件检查软件系统3.重新安装系统软件CF卡、电子盘物理损坏 更换CF卡、电子盘z不能进入数控主菜单故障原因 措施 参考 系统文件被破坏1.用杀毒软件检查系统2.重新安装系统软件CF卡、电子盘物理损坏 更换CF卡、电子盘z进入数控主菜单后黑屏故障原因 措施 参考接线电源不正确1.检查电源插座2.检查电源电压3.确认电源的负载能力应该不低于100W 参见《世纪星连结说明书》2.3 节系统文件被破坏1.用杀毒软件检查系统2.重新安装系统软件z运行或操作中出现死机或重新启动故障原因 措施 参考参数设置不当重新启动后在急停状态下检查参数,检查坐标轴参数、PMC 用户参数作为分母的参数不应该为0参见《世纪星连结说明书》3.7.3、3.7.7 节1.操作同时运行了系统以外的其 他内存驻留程序2.调用较大的程序3.调用已损坏程序 1.等待2.中断零件程序的调用系统文件被破坏1.用杀毒软件检查系统2.重新安装系统软件 DOS 系统配置文件CONFIG.SYS 中,同时打开的文件数量过少设置为50 或更多FILES=50电源功率不够 1.检查电源插座2.检查电源电压3.确认电源的负载能力应该不低于100W参见《世纪星连结说明书》2.3 节硬件板卡损坏 需更换系统或送厂维修z开机后系统报坐标轴机床位置丢失故障原因 措施 参考18i\19i系统没有专门位置存储芯片任意移动一个坐标轴 仅限HNC-18i/19i坐标轴正在移动中突然关闭系统(非必然性)任意移动一个坐标轴2.故障现象二:急停和复位z系统始终保持急停状态不能产生复位信号故障原因 措施 参考急停回路没有闭合1.检查超程限位开关的常闭触点2.检查急停按钮的常闭触点,若未装手持单元或手持单元上无急停按钮,XS8 接口中的4 和17 脚应短接参见《世纪星连结说明书》2.10 节未向系统发送复位信息 1.检查’’外部运行允许’’的输入端口2.检查PMC 用户参数P[50]是否对应’’外部运行允许’’的输入点PLC软件 检查PLC 程序硬件板卡损坏 需更换系统或送厂维修z系统始终保持复位状态故障原因 措施 参考系统复位需要完成的信号未满足要求1.检查输入端口2.检查电路3.检查电源模块4.检查驱动模块5.检查主轴模块6.检查伺服动力电源空气开关参数设置不当 检查PMC 用户参数P[51]-P[63]是否对应输入点PLC软件 检查PLC 程序硬件板卡损坏 需更换系统或送厂维修z系统可以手动运行但无法切换到自动或单段状态故障原因 措施 参考坐标轴超程检查超程限位开关 参见《世纪星连结说明书》2.10 节系统信号未满足要求 1.检查输入端口2.检查电路3.检查电源模块4.检查驱动模块5.检查主轴模块6.检查刀具夹紧/松开信号7.检查伺服动力电源空气开关参数设置不当 检查PMC 用户参数P[51]-P[63],P[77]是否对应输入点PLC软件 检查PLC 程序硬件板卡损坏 需更换系统或送厂维修3.故障现象三:系统跟踪误差过大或定位误差过大故障原因 措施 参考伺服驱动器未上强电 1.检查电路2.检查电源模块3.检查驱动模块4.检查伺服动力电源空气开关电机编码器反馈电缆与电机强电电缆不一一对应检查电机接线数控装置与伺服驱动器之间的坐标轴控制电缆未接好 检查坐标轴控制电缆 (XS30 XS31 XS32 XS33)坐标轴控制电缆受干扰 1.坐标轴控制电缆应采用双绞屏蔽电缆2.坐标轴控制电缆屏蔽可靠接地3.坐标轴控制电缆尽量不要缠绕4.坐标轴控制电缆与其他强电电缆尽量远离且不要平行布置伺服驱动器特性参数调得太硬或太软 检查伺服驱动器有关增益调节的参数,仔细调整参数参见《伺服驱动器使用手册》伺服驱动器参数错 1.检查伺服驱动器控制方式2.检查伺服驱动器脉冲形式3.检查伺服驱动器电机极对数4.检查伺服驱动器电机编码器反馈线数参见《伺服驱动器使用手册》伺服驱动器未上使能 1.检查输出端口 2.检查电路 3.检查驱动模块系统特性参数不当 2.检查坐标轴的加减速时间常数3.检查坐标轴的反馈电子分子/分母3.检查坐标轴参数中的最高快移速度是否超出了电机额定转速伺服驱动器/电机选型错误 需更换伺服驱动器/电机伺服驱动器/电机损坏 需更换伺服驱动器/电机硬件板卡损坏 需更换系统或送厂维修机械卡死 调整机械4.故障现象四:回零(回参考点)故障z回零(回参考点)时报硬件故障故障原因 措施 参考 伺服电机编码器损坏需更换伺服电机电机编码器反馈电缆未接好或断路 1.检查电机编码器反馈电缆2.需更换电机编码器反馈电缆数控装置与伺服驱动器之间的坐标轴控制电缆未接好或断路 1.检查坐标轴控制电缆2.需更换坐标轴控制电缆硬件板卡损坏 需更换系统或送厂维修z回零(回参考点)时坐标轴无反应故障原因 措施 参考系统参数错1.检查坐标轴参数中的回参考点方式,通常对伺服电机应设为2(+-+)2.检查坐标轴参数中的回参考点快移和定位速度伺服驱动器未上使能 1.检查输出端口2.检查电路3.检查驱动模块伺服驱动器未上强电 1.检查电路2.检查电源模块3.检查驱动模块4.检查伺服动力电源空气开关数控装置与伺服驱动器之间的坐标轴控制电缆未接好或断路 1.检查坐标轴控制电缆2.需更换坐标轴控制电缆PLC软件 检查PLC 程序z回零(回参考点)时坐标轴反向低速移动直到压到超程限位开关 故障原因 措施 参考坐标轴回零(回参考点)开关始终保持闭合 1.检查坐标轴回零(回参考点)开关2. 需更换坐标轴回零(回参考点)开关系统开关量输入电缆接错或短路 1.检查开关量输入电缆2. 需更换开关量输入电缆PLC软件 检查PLC 程序硬件板卡损坏 需更换系统或送厂维修z回零(回参考点)精度差故障原因 措施 参考坐标轴控制电缆受干扰 1.坐标轴控制电缆应采用双绞屏蔽电缆2.坐标轴控制电缆屏蔽可靠接地4.标轴控制电缆尽量不要缠绕5.坐标轴控制电缆与其他强电电缆尽量远离且不要平行布置电机没有可靠接地 检查电机强电电缆电机编码器反馈电缆不可靠 1.需更换电机编码器反馈电缆,应采用双绞屏蔽电缆2.加粗位置反馈电缆中的电源线线径,如采用多根线并用3.电缆屏蔽层可靠接地4.电缆两端加磁环伺服电机编码器损坏需更换伺服电机硬件板卡损坏 需更换系统或送厂维修机械机械连接不可靠 调整机械连接z两次回参考点机床位置相差一个整螺距故障原因 措施 参考坐标轴回零(回参考点)开关信号与进给电机编码器Z 脉冲位置太近调整坐标轴回零(回参考点)开关位置5.故障现象五: 伺服电机抱闸失效z打开急停开关后升降轴自动下滑故障原因 措施 参考参数设置不当 检查PMC 用户参数P[68],增大数值机械配重或平衡装置失效或工作不可靠检查配重或平衡装置伺服电机抱闸机构损坏 需更换伺服电机z伺服电机抱闸无法打开或不稳定故障原因 措施 参考抱闸机构电源不正确 1.检查抱闸机构电源是否正常,应该为DC24V.必须采用 稳定的开关电源供电形式, 严禁采用简易桥式电路供电 2. 接线极性是否正确无开抱闸输出 1.检查输出端口2.检查开关量输出电缆3.检查电路伺服电机抱闸机构损坏 需更换伺服电机PLC软件 检查PLC 程序硬件板卡损坏 需更换系统或送厂维修6.故障现象六: 手摇故障z系统无手摇工作方式故障原因 措施 参考 手持单元未连结到XS8 接口检查XS8 接口手持单元电缆未接好或断路 检查手持单元电缆硬件板卡损坏 需更换系统或送厂维修PLC软件 检查PLC 程序z系统有手摇工作方式但手摇无反应故障原因 措施 参考手持单元电缆未接好或断路1.检查XS8 接口2.检查手持单元电缆 6.检查手摇脉冲发生器5V 电源手摇脉冲发生器损坏 需更换手摇脉冲发生器 手持单元的轴选择开关或倍率开关损坏需更换手持单元 硬件板卡损坏 需更换系统或送厂维修 PLC软件 检查PLC 程序参数设置错 1.检查硬件配置参数:部件型号:5301标识:31配置[0]:72.检查PMC系统参数中手摇0部件号是否与硬件配置参数对应。
数控机床系统故障诊断与维修

数控机床系统故障诊断与维修摘要:本文主要介绍了数控机床系统故障诊断与维修相关的知识。
首先,介绍了数控机床的基本概念和应用领域。
然后,探讨了数控机床系统的结构和工作原理,重点介绍了数控系统的主要组成部分。
接着,讨论了数控机床故障的分类和诊断方法。
最后,介绍了数控机床故障维修的基本步骤和注意事项。
关键词:数控机床;系统结构;故障分类;诊断方法;维修步骤正文:一、数控机床的基本概念和应用领域数控机床是一种利用数字控制技术实现数控运动的机床,它可以实现高精度、高效率、高自动化的加工过程。
数控机床广泛应用于航空航天、汽车、电子、微电子、光学等制造领域,成为现代工业生产的重要装备之一。
二、数控机床系统的结构和工作原理数控机床系统主要由数控系统、电气系统、机械系统、液压系统组成。
其中,数控系统是整个系统的核心,它控制着机床的运动、加工和现场控制等操作。
电气系统负责调节机床的电气信号和电动机的转速、转向等参数。
机械系统则是机床的机械部分,包括工作台、主轴、进给机构等。
液压系统主要是用来控制机床液压元件的工作。
三、数控机床故障的分类和诊断方法数控机床的故障分类主要包括电气故障、机械故障、液压故障、数控系统故障等。
诊断方法一般分为四个步骤:信息采集、现象分析、故障定位、原因分析。
四、数控机床故障维修的基本步骤和注意事项数控机床故障维修一般分为五个步骤:现场查看、设备检查、故障排除、恢复正常加工、故障分析。
在进行维修时,需要注意安全措施、操作规程、使用工具等,以避免二次故障的发生。
综上所述,数控机床系统故障诊断与维修是数控技术应用过程中不可避免的一部分,只有熟练掌握故障诊断和维修技巧,才能更好地保障生产效率和质量,为工业现代化做出积极贡献。
五、数控机床系统故障维修的总结与展望数控机床作为现代制造业的重要装备,已成为实现高精度、高效率、高自动化生产的关键技术。
然而,由于其复杂的结构和工作原理,故障和维修也成为了其使用和维护过程中难以避免的问题。
专题一:数控机床故障与诊断

轨上
图2-7 滚珠导轨的预紧
例9
由某龙门数控铣削中心加工的零件,在检验中发
现工件Y轴方向的实际尺寸与程序编制的理论数据存在不 规则的偏差。该数控机床布局如图2-8所示。
图2-8 龙门数控铣削中心
从数控机床控制的角度来说,零件在Y轴方向的尺寸 偏差是由机床的Y轴在进给过程中产生的偏差所造成。该 机床数控系统为SINUMERIK 810M,伺服系统为SIMODRIVE 611A驱动装臵,Y轴进给电动机为带内装式ROD302编码器 的1FT5交流伺服电动机。 1)通过检查Y轴有关位臵参数(如反向间隙、夹紧允许
2)因导轨、主轴等运动部件的干涉、摩擦过大等原因引 起的故障。 3)因机械零件的损坏、连接不良等原因引起的故障等。
(2)电气控制系统故障
电气控制系统故障通常分为“强电”故障和“弱电”
故障两大类 ;“弱电”故障又有硬件故障与软件故障之 分
2.按故障的性质分类
(1)确定性故障
确定性故障是指控制系统主机中的硬件损坏或只 要满足一定的条件,数控机床必然会发生的故障。 (2)随机性故障 随机性故障是指数控机床在工作过程中偶然发生
的故障。
3.按故障的指示形式分类
(1)有报警显示的故障
1)指示灯报警显示
2)显示器报警显示
(2)无报警显示的故障 4.按故障产生的原因分类 (1)数控机床自身故障 (2)数控机床外部故障
1.2
数控机床故障诊断原则
1.先外部后内部 2.先机械后电气
3.先静态后动态
4.先简单后复杂
1.3
数控机床的故障诊断技术
1.5 数控机床维修后的开机调试
1.6 维修调试后的技术处理
练习
1.1 数控机床故障分类
数控机床典型故障诊断与维修

数控机床典型故障诊断与维修一、数控机床典型故障1. 伺服电机故障:伺服电机是数控机床的主要驱动元件,如伺服电机出现故障,会导致机床无法正常工作。
常见的伺服电机故障包括:电机运行异常、电机发热、电机无法正常启动等。
2. 数控系统故障:数控系统是数控机床的核心,一旦出现故障,会导致整个数控机床无法正常工作。
常见的数控系统故障包括:程序执行错误、操作界面死机、通讯故障等。
3. 传感器故障:传感器在数控机床中起着重要的作用,它能够感知机床状态并将信息反馈到数控系统。
常见的传感器故障包括:传感器信号异常、传感器损坏等。
4. 润滑系统故障:数控机床在工作过程中需要进行润滑,以减少摩擦、降低磨损。
润滑系统故障会导致机床零部件磨损加剧,影响加工精度和机床寿命。
5. 电气元件故障:数控机床中包含大量的电气元件,如断路器、接触器、继电器等。
这些元件一旦出现故障,会直接影响机床的正常运行。
1. 故障现象分析:当数控机床出现故障时,首先要对故障现象进行分析。
包括故障出现的时间、频率、程度等方面,有助于确定故障的性质和范围。
2. 信息收集:通过观察、询问、检测等方式,收集与故障相关的信息,包括数控系统显示的报警信息、机床运行时的异常声音、异味等。
3. 故障检测:根据故障现象和信息收集的结果,对机床进行检测,包括物理检测和电气检测。
物理检测可以发现机床结构的故障,电气检测可以发现电气元件的故障。
4. 故障定位:通过检测结果,确定故障发生的位置和原因,例如伺服电机故障、数控系统故障、传感器故障等。
5. 分析解决方案:根据故障定位结果,分析可能的解决方案,并进行相应的维修或调整。
1. 伺服电机维修:伺服电机故障通常需要专业的维修人员进行处理,首先要对电机进行检测和分析,确定故障原因,然后进行修复或更换。
2. 数控系统维修:数控系统故障可能是软件问题或硬件问题,软件问题可以通过重新设置参数、升级或更换软件来解决,硬件问题则需要更换故障部件。
数控机床常见故障诊断及排除方法

数控机床常见故障诊断及排除方法不同的数控系统虽然在结构和性能上有所区别,但随着微电子技术的发展,在故障诊断上有它的共性。
1、数控机床故障诊断原则在故障诊断时应掌握以下原则:(1)先外部后内部数控机床是集机械、液压、电气和光学为一体的机床,故其故障的发生也会由这四者综合反映出来。
维修人员应先由外向内逐一进行排查。
尽量避免随意地启封、拆卸机床,否则会扩大故障,使机床大伤元气,丧失精度,降低性能。
(2)先机械后电气一般来说,机械故障较易发觉,而数控系统故障的诊断则难度较大些。
在故障检修之前,首先注意排除机械性的故障,往往可达到事半功倍的效果。
(3)先静后动先在机床断电的静止状态,通过了解、观察测试、分析确认为非破坏性故障后,方可给机床通电。
在运行工况下,进行动态的观察、检验和测试,查找故障。
而对破坏性故障,必须先排除危险后,方可通电。
(4)先简单后复杂当出现多种故障互相交织掩盖,一时无从下手时,应先解决容易的问题,后解决难度较大的问题。
往往简单问题解决后,难度大的问题也可能变得容易。
2、数控机床的故障诊断技术数控系统是高技术密集型产品,要想迅速而正确的查明原因并确定其故障的部位,要借助于诊断技术。
随着微处理器的不断发展。
诊断技术也由简单的诊断朝着多功能的高级诊断或智能化方向发展。
诊断能力的强弱也是评价CNC数控系统性能的一项重要指标。
目前所使用的各种CNC系统的诊断技术大致可分为以下几类:1. 启动诊断(Start Up Diagnostics)启动诊断是指CNC系统每次从通电开始,系统内部诊断程序就自动执行诊断。
诊断的内容为系统中最关键的硬件和系统控制软件,如CPU、存储器、I/O等单元模块,以及MDI/CRT单元、纸带阅读机、软盘单元等装置或外部设备。
只有当全部项目都确认正确无误之后,整个系统才能进入正常运行的准备状态。
否则,将在CRT画面或发光二极管用报警方式指示故障信息。
此时启动诊断过程不能结束,系统无法投入运行。
数控机床故障诊断与维修技术

第一章现代数控机床故障诊断与维修技术数控系统是数控机床的核心,数控机床根据功能和性能的要求配置不同的数控系统。
目前,我国数控机床行业占主导地位的数控系统有日本FANUC、德国的SIEMENS等公司的数控系统及相关产品。
本书以FANUC系列为例,探讨数控机床故障诊断与维修方法,使读者掌握现代数控机床维修技术。
1.1 FANUC 0i系列数控系统的特点FANUC数控系统以其高质量、低成本、高性能等特点适用于各种机床,在市场的占有率远远超过其他的数控系统,其中以FANUC公司中档产品0i系列为主要代表。
i代表产品的硬件集成度高,通信功能强,并采用高速矢量控制(HRV 控制),最快的响应时间是62.5us,特别适应加工模具。
现代FANUC系统产品的发展趋势如下图:1-1全功能、可靠性FANUC—OC系列 FANUC-18系统FANUC-OiA系统FANUC-18i FANUC-16i(分离型系统)(一体型系统)FANUC—21i系统 FANUC—OiC图1-1 现代FANUC系统发展趋势0i系列用于中小型加工中心、铣床和车床,车床和铣床的许多有用的CNC 功能包含在一个标准包中提供给用户。
0iC系列数控系统的基本配置如下:・最大控制轴数 4 轴・最大控制主轴电机数 2个・可连接的伺服电机αi S 伺服电机・可连接的主轴电机αi主轴电机・伺服接口 FANUC 串行伺服总线 (FSSB)・显示单元 7.2”单色LCD8.4” /10.4”彩色LCD・简单的操作编程支持工具:MANUAL GUIDE 0i・针对磨床的独特控制功能・以太网功能・数据服务器功能FANUC—16i/18I/21i系列是具有网络接口的超小型CNC,CNC控制单元装在LCD显示器后面,主要功能和特点如下:(1)通过使用高速RISC处理器,可以在进行纳米插补的同时,以适合于机床性能的最佳进给速度进给加工。
(2)超高速伺服串行通信(FSSB) 利用光导纤维将CNC控制单元和多个伺服放大器连接起来的高速串行总线,可以实现高速度的数据通信并减少连接电缆。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
▪ 电路板上刷有阻焊膜,不要任意铲除;测线路间 阻值时,先切断电源。每测一处均应红黑笔对调 一次,以阻值大的为参考值
▪ 不应随意切断印刷电路 ▪ 在无把握确定某一元件为故障元件时,不要随意
拆卸,更换故障元件时避免同一焊点的长时间加 热和对故障元件的硬取 ▪ 查清电路板的电源配置及种类,按检测需要,采 取局部供电或全部供电
▪ 先静后动
➢ 不盲目动手
了解故障发生的过程及状态 查阅说明书、系统资料 先在机床断电的静止状态,观察、分析 确认无恶性故障或破坏性故障,方可给机床通电,进行动态观察检验和测试 恶性故障或破坏性故障先排除故障才通电诊断
▪ 先公用后专用
➢ 如CNC、PLC、电源、液压等公用部分
▪ 先简单后复杂 ▪ 先一般后特殊
三、故障自诊断技术
▪ CNC系统的自诊断:向被诊断的部件或装置写入一串成 为测试码的数据,然后观察系统相应的输出数据(校验 码),根据事先已知的测试码、校验码与故障的对应关系, 通过对观察结果的分析以确定故障。
每年更换一次
电池的更换应在数控系统供 电的状态下进行,以免参数 丢失
➢ ➢
有操作规程 不宜长期封存不用
每周通电1-2次,每次空运行1 小时左右
➢
数控系统长期不用时的维护 经常给数控系统通电 对于直流电动机应将电刷取
▪ 数控系统的维护
出,以免腐蚀换向器
➢ 严格遵守操作规程和日常维护制度 ➢ 备用电路板的维护
二、数控机床的维护
▪ 数控机床使用中应注意的问题
➢ 定时清扫数控柜的散热通风系统
➢ 使用环境:
➢ 定期检查和更换直流电动机电刷
避免阳光的直射和其他辐射 ➢ 经常监视数控系统的电网电压
避免太潮湿或粉尘过多的场所 ➢ 定期更换存储器用电池
避免有腐蚀气体的场所 要远离振动大的设备 ➢ 电源要求: 允许波动±10%
➢ PLC编程器 ➢ IC测试仪
离线快速测试集成电路的好坏
➢ IC在线测试仪
在线对电路板上的芯片直接进行功能、状态和外特性测试,确认其 逻辑功能是否失效
➢ 短路追踪仪 ➢ 逻辑分析仪
专门用于测量多路数字信号的测试仪器,可同时显示8、16、64个 道的逻辑方波信号
▪ 维修工具
➢ 电烙铁 ➢ 吸锡器 ➢ 螺丝刀 ➢ 钳类工具 ➢ 扳手 ➢ 其他
➢ 建立专业维修组织和维修协作网 ▪ 点检管理:按有关文件的规定,对设备进行定点、定时的检查和维护
➢ 点检的内容:定点、定标、定期、定项、定人、定法、检查、记录、 处理、分析
➢ 分类: 日常点检:对机床一般部件的点检,处理和检查机床在运行过程 中出现的故障,由机床操作人员进行 专职点检:对机床关键部位和重要部件按周期进行重点点检和 设备状态监测与故障诊断,制定点检计划,做好诊断记录,分析维 修结果,提出改善设备维护管理的建议,由专职维修人员进行
第三节 数控系统故障诊断
▪ 一、故障分类
➢ 有报警显示的故障
硬件报警显示的故障:各单元装置上的报警灯 软件报警显示故障:CRT显示器上显示出来的报警号报警信息
来自NC的报警和来自PLC的报警
➢ 存储器报警 ➢ 过热报警 ➢ 伺服系统报警 ➢ 轴超程报警 ➢ 程序出错报警 ➢ 主轴报警 ➢ 过载报警 ➢ 断线报警
数控系统故障诊断技术
第一节 数控机床的维护 第二节 数控系统维修技术 第三节 数控系统故障诊断
第一节 数控机床的维护
▪ 一、数控机床维修管理的特点:
➢ 选择合理的维修方式 维修方式有:事后维修、预防维修、改善维修、预知维修或 状态监测维修、维修预防 从修理费用、停产损失、维修组织工作和修理效果等方面去 衡量
➢ 无报警显示的故障
无任何硬件或软件的报警显示,分析难度较大
二、故障诊断原则
▪ 先外部后内部
➢ 外部的行程开关、按钮开关、液压气动元件、印刷电路板间的连接部位, 接触不良,是产生数控机床故障的重要因素
➢ 尽量避免随意地启封、拆卸,以避免扩大故障,降低机床性能
▪ 先机械后电气
➢ 机械故障容易察觉 ➢ 大部分故障是机械部件失灵造成的
▪ 化学用品
➢ 松香、纯酒精、清洁触点用喷剂、润滑油
三、必要的技术资料和技术准备
▪ 数控装置部分 ▪ PLC装置部分
➢ PLC装置及其编程器的连接、编程、操作方面的技术说明书 ➢ PLC用户程序清单或梯形,I/O地址及意义清单、报警文本及PLC的外部
连接图
▪ 伺服单元
➢ 进给和主轴伺服单元原理、连接、调整和维修方面的技术说明书 ➢ 包括:伺服单元的电气原理图、接线图、故障的报警显示、重要的调整
▪ MTBF=总工作时间/总故障次数 ▪ 2、平均修复时间(Mean Time To Restore)指数控机床
在寿命范围内,每次从出现故障开始维修,直至能正常工 作所用的平均时间。(该时间越短越好) ▪ MTTR=总故障时间/总故障次数 ▪ 有效度(Availability)是考核数控机床可靠性和可维修性 的指标。(A是一个小于1的数,越接近1越好。) ▪ A=MTBF/(MTBF+MTTR)
第二节 数控系统维修技术
▪ 一、数控系统现场维修要求
➢ 现场维修的基本条件 必要的维修工具 必要的技术资料和技术准备 必要的备件
➢ 现场维修的阶段划分与工作步骤 ➢ 维修中的元器件替代
▪ 二、必要的维修用器具
▪ 测量仪器、仪表 ➢ 万用表 ➢ 逻辑测试笔和脉冲信号笔 使用TTL和CMOS逻辑电平通用型 ➢ 示波器 频带宽度为10~100MHZ范围内的双通道示波器 测电平、脉冲上下沿、脉宽、周期、频率、两信号的相位和 电平幅度的比较
➢ 应尽量少开数控柜和强电柜的门 ➢ 做好维修前的准备工作:技术准备 ➢ 数控系统的输入/输出装置的定期 \工具准备\备件准备
维护
三、数控机床的可靠性指标
▪ 1、平均无故障时间(Mean Time Between Failure):指 数控机床在两次故障之间能正常工作的时间的平均值。 (该时间越长越好)
点和测试点,伺服单元参数的意义和设置
▪ 机床部分
➢ 机床安装、使用、操作和维修的技术说明 ➢ 机床的操作面板布置及其操作说明 ➢ 机床电气原理图、布置图、接线图 ➢ 液压回路图和气动回路图
▪ 其他
➢ 元器件技术资料——元器件清单、备件清单、通用元器件手册 ➢ 数据程序备份 ➢ 故障维修记录
四、维修中注意事项