三氯氢硅合成
三氯氢硅发展史

三氯氢硅发展史
三氯氢硅(也称为氯硅烷)是一种无机化学物质,化学式为SiCl₃H。
它是用于制备硅橡胶、硅塑料等硅基材料的重要中间体化合物。
三氯氢硅的发展史可以追溯到20世纪初。
以下是三氯氢硅发展史的主要里程碑:
1. 1909年:法国化学家G. Friedel和A. Sabatier首次合成了三氯氢硅。
他们使用镁作为催化剂将金属硅与氯化氢反应,从而得到了三氯氢硅。
2. 1914年:美国化学家F. S. Kipping首次用氯化硅(SiCl₄)与分子氯反应制备三氯氢硅。
这一方法取代了之前使用金属硅的合成方法,成为了三氯氢硅的主要合成路线。
3. 1940年代:随着有机硅化合物的研究和应用的推进,三氯氢硅开始被用作硅基高分子材料的合成中间体。
这标志着三氯氢硅在材料科学中的重要地位。
在此后的几十年里,三氯氢硅的应用领域不断扩大,涉及到硅橡胶、硅塑料、硅胶等多个领域。
4. 1960年代-1970年代:三氯氢硅的制备技术得到了进一步改进和创新。
生产规模不断扩大,合成方法也越来越高效,使得三氯氢硅的产量和应用进一步增加。
总结起来,三氯氢硅的发展史可以概括为:早期合成方法的发
现和改进,应用范围的逐渐扩大,以及生产技术的不断发展。
随着材料科学和化工技术的进步,三氯氢硅在硅基材料制备中的地位愈发重要。
试说明三氯氢硅的合成原理

试说明三氯氢硅的合成原理
三氯氢硅的合成原理如下:
1. 制备原料:将硅粉和氯化氢进行反应,制备出三氯化硅。
Si + 3HCl →SiCl3 + H2
2. 氯化氢和硅源反应:将三氯化硅和氢气进行反应,在高温下制备出三氯氢硅。
SiCl3 + H2 →H3SiCl
3. 精制和稳定化处理:三氯氢硅经过精制和稳定化处理后,即可成为工业上所使用的三氯氢硅。
三氯氢硅的合成原理,主要就是通过氯化氢和硅源的反应,制备出三氯化硅,再经过氢气还原后得到三氯氢硅。
整个反应过程需要在高温下进行,并需要精制和稳定化处理,以保证制备出的三氯氢硅的纯度和质量。
三氯氢硅生产工艺流程

硅氢氯化法该方法是用冶金级硅粉,作原料,与氯化氢气体反应。
可使用铜或铁基催化剂。
反应在200---800和0。
05---3mpa下进行2Si+HCL======HsiCL3+SiCL4+3H2该反应所用反应器经历了从固定床、搅拌床到流化床的发展过程。
工艺也从间歇发展到连续。
反应器由碳钢制成,预先将归粒子加入到反应器,加热到所需地温度后,从底部连续通入氯化氢气体,产物及未反应物料被连续输出,经除尘精制后,用于生产高纯多晶硅和高纯硅烷。
上述反应是放热反应,反应热为-141。
8千焦/摩尔升高温度有利于提高反应速率,但同时导致三氯氢硅选择性下降,通过优化反映温度,可明显提高三氯氢硅的选择率。
例如在300---425度和2到5千帕条件下使硅和氯化氢反应,产物以600---1000千克/小时输出,三氯氢硅的选择率竟高达80—88%,副产物包括质量分数1%--2%二氯硅烷和1—4%的缩聚物,其余为四氯化硅。
氯化氢气体中的水分三氯氢硅的收率优很大影响。
,因此必须严格干燥。
硅与氯化氢生成三氯氢硅的反应应该是零级反应,使用纯度大于99。
99%的硅原料时氢硅的收率较低。
在一个微型反应器中作了研究,结果表明冶金级原料中所含杂质铝对反应有催化作用,可使反应温度降低,三氯氢硅收率提高。
,四氯化硅氢化法3SiCL4+2H2+Si===============4HsiCL3反应温度400-----800压力2---4兆帕该反应为平衡反应,为提高三氯氢硅的收率,优选在氯化氢存在下进行,原料采用冶金级产产品通过预活化除去表面的氧化物后,可进一步提高三氯氢硅的收率三氯氢硅与四氯化硅沸点差距25度,且不产生共沸物,所以比较容易分离。
三氯氢硅生产工艺流程三氯氢硅合成。
将硅粉卸至转动圆盘,通过管道用气体输送至硅粉仓,再加入硅粉干燥器,经过圆盘给料机并计量后加入三氯氢硅合成炉。
在三氯氢硅合成炉内,温度控制在80—310℃,硅粉和氯化氢发生反应,生成三氯氢硅和四氯化硅。
三氯氢硅合成

目前,国内外应用最广,最主要的制备超纯硅的方法,是以三氯氢硅为原料,(即改良西门子法)。
故三氯氢硅的合成在半导体材料硅的生产中引起了广泛注意,并取得不少成果。
三氯氢硅和四氯化硅的结构、化学性质相似。
因此,它们的制备方法基本相似,只是前者用氯化氢气体代替氯气进行反应,在方法、设备、工艺操作等方面有共同之处,本章只介绍其特性。
三氯氢硅的制备方法很多,如:1)用卤硅烷和过量的氢或氯化氢的混合物通过Al,Zn,或Mg的表面。
2)以氯化铝作催化剂,用氯化氢气体氯化SiH4。
3)在高温下用氢气部分还原SiCl4。
4)用干燥氯化氢气体氯化粗硅或硅合金。
前三种方法产率低、过程繁、产品沾污机会多、实用价值很小。
因此,工厂和试验室多采用第4种方法制备三氯氢硅。
第一节三氯氢硅的性质三氯氢硅(SiHCl3)又称三氯硅烷或硅氯仿。
三氯氢硅是无色透明、在空气中强烈发烟的液体。
极易挥发、易水解、易燃易爆、易溶于有机溶剂。
有强腐蚀性、有毒,对人体呼吸系统有强烈的刺激作用。
其物理化学性质见表表3-1 三氯氢硅的物理化学性质名称数值名称数值分子量 135.45 氢含量% 0.74液体密度(31.5℃)1.318 闪点℃ 28蒸气密度(31.5℃)0.0055 在空气中的自燃点℃ 175溶点℃ -128 偶极距德拜 0.85沸点℃ 31.5 蒸发潜热kcal/mol 6.36氯含量% 78.53 比热 kcal/kg.℃ 0.23(l)0.132(g)三氯氢硅在空气中的爆炸极限% 1.2~90.5附:四氯化硅的性质四氯化硅(SiCl4)是无色透明、无极性、易挥发、有强烈刺激性的液体。
水解后生成二氧化硅和氯化氢。
可与苯、乙醚、氯仿及挥发油混合;与醇反应生成硅酸酯。
因其易水解,并生成氯化氢,故它具有强腐蚀性。
表3-2 四氯化硅的性质名称数值名称数值分子量 169.2 蒸发热 kcal/mol 6.96液体密度(在25℃)t/m³ 1.49 生成热 kcal/mol -153.0蒸气密度kg/m³ 6.3 标准生成自由能kcal/mol 136.9熔点℃ -70 临界温度℃ 206沸点℃ 57.6第二节三氯氢硅合成反应原理三氯氢硅合成反应是一个放热反应,所以应将反应热及时导出,保持炉内反应温度相对稳定,以提高产品质量和收率。
三氯氢硅还原反应方程式

三氯氢硅还原反应方程式
摘要:
一、三氯氢硅还原法简介
二、三氯氢硅的制备反应
三、三氯氢硅氢还原法制备多晶硅的反应过程
四、氢气还原三氯化硼的反应方程式
五、总结
正文:
一、三氯氢硅还原法简介
三氯氢硅还原法,又称西门子法,是一种制备多晶硅的常用方法。
该方法以冶金级硅和氯化氢(HCl)为原料,通过催化合成反应生成三氯氢硅。
三氯氢硅在化工工业上可用于制取一系列有机硅材料,在半导体工业上则是生产多晶硅的重要原料。
二、三氯氢硅的制备反应
三氯氢硅(SiHCl3)的制备反应如下:
Si + 3HCl → SiHCl3
在这个过程中,硅粉和氯化氢在300℃和0.45mpa的条件下,经过催化合成反应生成三氯氢硅。
三、三氯氢硅氢还原法制备多晶硅的反应过程
三氯氢硅氢还原法的基本反应过程如下:
SiHCl3 + 2H2 → Si + 3HCl
在这个过程中,三氯氢硅在氢还原炉内进行CVD反应,生成高纯度多晶硅。
四、氢气还原三氯化硼的反应方程式
氢气还原三氯化硼(BCl3)的反应方程式如下:
3H2 + 2BCl3 → 2BH3 + 3HCl
此反应中,氢气与三氯化硼在高温条件下反应,生成硼氢化物和氯化氢。
五、总结
综上所述,三氯氢硅氢还原法是一种制备多晶硅的高效方法。
它以冶金级硅和氯化氢为原料,经过催化合成反应生成三氯氢硅,然后在氢还原炉内进行CVD反应,最终得到高纯度多晶硅。
此外,氢气还可以用于还原其他化合物,如三氯化硼等。
三氯氢硅合成尾气处理工艺

三氯氢硅合成尾气处理工艺谷文军3,孟祥考,吴军祥(河北邢矿硅业科技有限公司,河北邢台054000) [关键词]三氯氢硅;尾气处理;变压吸附[摘 要]介绍了几种处理三氯氢硅合成尾气的工艺,分析了各自的优缺点。
[中图分类号]T Q127.2 [文献标志码]B [文章编号]1008-133X(2009)10-0035-02Process of trea ti n g t a il ga s from tr i chlorosil ane syn thesisG U W enjun,M EN G X iangkao,WU Junxiang(Hebei Xingkuang Silicon I ndustry Science and Technol ogy Co.,L td.,Xingtai054000,China)Key words:trichl or osilane;tail gas treat m ent;p ressure s wing ads or p ti onAbstract:So me kinds of p r ocess f or treating the tail gas fr om trichl or osilane synthesis are intr oduced, and their res pective advances and disadvantages are analyzed. 三氯氢硅合成尾气的主要成分有氯化氢、三氯氢硅(氯硅烷)、氢气,具体组成(体积分数)为:三氯氢硅5.942%,四氯化硅0.295%,氯化氢15.818%,氮气4.779%,氢气73.166%。
此尾气须处理后才能排放。
1 水吸收工艺水吸收工艺也称湿法回收技术,是把出三氯氢硅合成炉的尾气直接用水喷射泵吸收,尾气中的氯化氢被水吸收成盐酸,氯硅烷水解生成二氧化硅。
二氧化硅以大量白色泡沫的形式出现,未被吸收的氢气和氮气排入大气。
三氯氢硅生产操作规程精选全文完整版

可编辑修改精选全文完整版平安操作规程一、概述1.三氯氢硅的用途三氯氢硅是生产半导体用硅的主要中间体,是有机硅行业中硅烷偶联剂的主要原材料。
随着光伏产业的迅猛开展,太阳能电池对多晶硅的需求量大幅增长,三氯氢硅是改进西门子法生产多晶硅的主要原材料。
2.三氯氢硅的生产机理枯燥的硅粉和枯燥的氯化氢气体在320℃pa左右的工艺条件下,在三氯氢硅合成炉内以流化的形式反响生成三氯氢硅,其化学反响方程式如下:Si + 3HCL = SiHCL3 + H2+ 50千卡在上述工艺条件下,硅粉及氯化氢反响还会产生四氯化硅,其化学反响方程式如下:Si + 4HCL = SiCl4 + 2H23.三氯氢硅的物性分子式: SiHCl3分子量: 135.5熔点: -134℃沸点(101.325kPa):℃相对密度: (水=1)1.35、爆炸极限:6.9---70.0%。
三氯硅烷在常温常压下是具有刺激性恶臭、易流动、易挥发的无色透明液体,易水解,溶于有机溶剂,水解时产生氯化氢气体而具有强刺激性,空气中能燃烧。
4.四氯化硅的物性分子式: SiCl4分子量:沸点(101.325kPa):℃相对密度: (水=1)、(空气=1)四氯化硅为无色或淡黄色发烟液体,有刺激性气味,易潮解,性质稳定,可混溶于苯、氯仿、石油醚等多数有机溶剂。
四氯化硅属酸性腐蚀品,主要用于制取纯硅、硅酸乙酯等,也用于制取烟幕剂。
二、氯化氢枯燥岗位操作法1.流程表达来自氯碱厂氯碱氯化氢工段的氯化氢气体以管输的形式进入氯化氢厂房内石墨冷凝器进展深冷脱水处理,除雾后经石墨预热器将深冷后的氯化氢气体升至常温以上,进入硫酸枯燥塔作进一步的脱水枯燥处理。
枯燥后pa 去三氯氢硅厂房。
2.岗位任务2.1氯化氢厂房及三氯氢硅贮罐区、四氯化硅贮罐区所有设备、管线的巡检;2.2盐酸、稀硫酸的装车操作及浓硫酸的卸车操作;2.3硫酸枯燥塔换酸操作;2.4三氯氢硅、四氯化硅槽车的装车操作;3.主要工艺指标氯化氢纯度≥92.0% 压力≥0.01 Mpa;石墨冷凝器出口温度:-12℃;石墨预热器出口温度:45℃;pa;浓硫酸纯度≥98.0%;硫酸枯燥塔内硫酸纯度≥95.0%;三氯氢硅贮罐、粗品贮罐操作温度≤25℃压力≤0.05Mpa;粗品贮罐液位:5--48m3;四氯化硅贮罐操作压力≤0.05Mpa;四氯化硅贮罐液位:40--630m3;4.开车前的准备和检查4.1系统用氮气置换完毕,无泄漏;4.2公用系统运行正常:4.2.1石墨冷凝器盐水畅通;4.2.2热水槽温度≥90℃pa,石墨预热器热水畅通;4.2.3浓硫酸贮罐及硫酸枯燥塔内硫酸贮存量适宜,硫酸泵运行正常;4.2.4氯化氢压缩机循环冷却水畅通、油泵工作正常,盘车正常;4.2.5氮气贮罐、仪表风贮罐压力正常,确认贮罐进出口阀门处于开启状态;4.3确认石墨冷凝器、盐酸酸雾捕集器、石墨预热器排净口处于开启状态,盐酸贮槽进口管线阀门、平衡管线阀门处于开启状态;4.4三氯氢硅贮罐、粗品贮罐、四氯化硅贮罐进出口阀门及氮气阀、放空阀均处于关闭状态,贮罐压力正常;4.5仪表引线阀均处于开启状态,DCS运行、指示正常;4.6工器具及操作运行记录齐全;4.7三氯氢硅合成岗位已作好开车准备,三氯氢硅合成炉硅粉温度已达工艺指标,氯化氢分配器相应的氯化氢管线上阀门处于开启状态,工艺流程畅通;5.岗位操作法5.1硫酸枯燥塔换酸操作当硫酸枯燥塔内硫酸浓度降至95%时,需要对硫酸枯燥塔内硫酸进展换酸操作。
三氯氢硅合成原理

三氯氢硅合成原理三氯氢硅合成系统包括:1,硅粉加料装置,2,三氯氢硅合成炉,3,旋风干法除尘,4,过滤装置,5,STC湿法除尘,6,合成气分离回收(CDI)等工序。
硅粉加料装置完成向合成炉连续定量地供应硅粉;三氯氢硅合成炉是生产三氯氢硅的关键设备;旋风干法除尘、过滤装置与STC湿法除尘是回收硅粉和除去合成气的硅尘,CDI是将合成气进行分离回收,它们都是不可或缺的设备。
合成三氯氢硅的原料是硅粉与HCL气体。
3.1. 原料工业硅简介工业硅的外观为深灰色与生铁颜色接近,也称硅铁。
工业硅的块密度约2.0×103kg/m3,硬度为7,纯度一般为95%~99%,其中的主要杂质为Fe、Al、Ca。
工业硅的制备一般采用冶炼法,在冶炼炉中用还原剂将SiO2还原成单质硅(冶金硅)。
通常用的还原剂有碳、镁、铝等。
用镁或铝还原SiO2,如果还原剂的纯度较高得到的单质硅纯度可达3~4个“9”。
不过,由于纯度较高的镁、铝价格高,会增加工业硅的生产成本,因此,目前国内的生产厂家都采用在电炉中用焦炭还原SiO2来制取单质硅(冶金硅),即把碳电极插入由焦炭(或木炭)和石英石组成的炉料中,温度控制在1600℃~1800℃还原出硅,反应式如下:石英砂(硅石)与炭在电弧炉里还原成硅(MG-Si)反应是在电弧炉(见图二)里的相邻电极之间发生的,该处温度超过2000℃,释放出来的SiO 和CO流到上部较冷区域(小于1500℃),形成所必要的SiC。
还原后的单质硅是以液态从反应炉中流进硅液煲,在这一过程中如Fe、Al、Ca、B、P、Cu等杂质也会以不同化合态进入液态的单质硅中,为了保证产品符合要求(一般控制在99%以上),硅液需要经过进一步处理去除其中的杂质。
处理方法是利用杂质的化合态(氯化物或氧化物、硅酸盐等)在液体状态时会逐步离析到液体表面的规律,通过除去表层硅液来达到去除杂质的目的。
因此,工业硅厂大都采用在硅液保温槽中通入Cl2或O2,促使大部分Fe、Al、Ca等杂质生成氯化盐或硅酸盐等物质,定期清除表层。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
目前,国内外应用最广,最主要的制备超纯硅的方法,是以三氯氢硅为原料,(即改良西门子法)。
故三氯氢硅的合成在半导体材料硅的生产中引起了广泛注意,并取得不少成果。
三氯氢硅和四氯化硅的结构、化学性质相似。
因此,它们的制备方法基本相似,只是前者用氯化氢气体代替氯气进行反应,在方法、设备、工艺操作等方面有共同之处,本章只介绍其特性。
三氯氢硅的制备方法很多,如:1)用卤硅烷和过量的氢或氯化氢的混合物通过Al,Zn,或Mg的表面。
2)以氯化铝作催化剂,用氯化氢气体氯化SiH4。
3)在高温下用氢气部分还原SiCl4。
4)用干燥氯化氢气体氯化粗硅或硅合金。
前三种方法产率低、过程繁、产品沾污机会多、实用价值很小。
因此,工厂和试验室多采用第4种方法制备三氯氢硅。
第一节三氯氢硅的性质三氯氢硅(SiHCl3)又称三氯硅烷或硅氯仿。
三氯氢硅是无色透明、在空气中强烈发烟的液体。
极易挥发、易水解、易燃易爆、易溶于有机溶剂。
有强腐蚀性、有毒,对人体呼吸系统有强烈的刺激作用。
其物理化学性质见表表3-1 三氯氢硅的物理化学性质名称数值名称数值分子量 135.45 氢含量% 0.74液体密度(31.5℃)1.318 闪点℃ 28蒸气密度(31.5℃)0.0055 在空气中的自燃点℃ 175溶点℃ -128 偶极距德拜 0.85沸点℃ 31.5 蒸发潜热kcal/mol 6.36氯含量% 78.53 比热 kcal/kg.℃ 0.23(l)0.132(g)三氯氢硅在空气中的爆炸极限% 1.2~90.5附:四氯化硅的性质四氯化硅(SiCl4)是无色透明、无极性、易挥发、有强烈刺激性的液体。
水解后生成二氧化硅和氯化氢。
可与苯、乙醚、氯仿及挥发油混合;与醇反应生成硅酸酯。
因其易水解,并生成氯化氢,故它具有强腐蚀性。
表3-2 四氯化硅的性质名称数值名称数值分子量 169.2 蒸发热 kcal/mol 6.96液体密度(在25℃)t/m³ 1.49 生成热 kcal/mol -153.0蒸气密度kg/m³ 6.3 标准生成自由能kcal/mol 136.9熔点℃ -70 临界温度℃ 206沸点℃ 57.6第二节三氯氢硅合成反应原理三氯氢硅合成反应是一个放热反应,所以应将反应热及时导出,保持炉内反应温度相对稳定,以提高产品质量和收率。
化学反应(主反应):除主反应外,还伴随着一些副反应:2Si+7HCl=SiHCl3+SiCl4+3H2随着反应温度的升高,SiCl4的生成量也随之增加。
由化学反应式可以看出,硅粉和氯化氢的反应是相当复杂的,除了生成三氯氢硅外,还生成四氯化硅及各种氯硅烷等副反应。
为了有效加快主反应速度,抑制副反应,提高三氯氢硅的产量和纯度,通常采用添加催化剂的方法;同时,以氢气稀释氯化氢气体,以及控制适宜的反应温度是完全必要的。
在制备SiHCl3时普遍应用催化剂。
催化剂作用:1)降低Si与HCl的反应温度;2)提高反应速率和产量;3)避免少量氧气和水分的有害影响。
催化剂分类:按其存在形态可以为:1)元素及其化合物;2)硅合金(Mg,Fe特别是Cu的硅合金);3)硅合金与粗硅的烧结块;按其机理可分为:1)活化氯化氢;2)活化硅;下面举几个实例:1)通常用含Cu5%的硅合金已能获得良好的效果,更多的Cu是不必要的(Cu过多即浪费,如果Cu不纯易引进杂质)。
采用该催化剂后,反应温度必须严格控制,最佳反应温度在240℃左右,必须低于250℃。
2)如果用Si的金属间化合物和硅的烧结块作催化剂(金属间化合物中的金属为Ni,Mn和Co等)。
它们在硅中几乎不固溶,对氯的亲和力又比硅小,此时,反应中只起催化作用而不会被氯化。
金属间化合物的添加量以1~10%为最好,此时反应温度较低,约在250~375℃左右,反应在烧结块表面徐徐进行,因而温度比较平稳,SiHCl3实收率高(85%),杂质进入反应产物中的可能性也大大减少。
上述为活化硅的两种方法,虽然合金和烧结块的制造在技术上没有什么困难,但操作必须在高温下进行(合金在1000℃左右,烧结块在750~850℃)难免引进杂质。
同时在制备SiHCl3前合金和烧结块不能象硅粉那样用酸洗法提纯。
因此,产品纯度较低,成本高。
3)用金属Cu和CuCl2作催化剂,活化HCl分子。
活化机理:可能是由于存在HCu2Cl2型络合物的缘故。
如果在炉内放置重量为原料0.1%的铜丝,反应速度将提高。
在300℃时SiHCl3的产率比没有催化剂时增加了1.5倍,反应温度还可进一步提高,此时反应速率增加很快,而副反应也得到有效抑制。
用沸腾床生产SiHCl3时,可预先向反应器内加硅粉和3~6%的铜粉混合,或硅铜合金混合物,反应开始后,再向反应器连续补充相当于被转化和损失的硅粉及铜粉。
铜可以是金属粉末或硅铜合金粉末,反应温度250℃左右,TCS产率可高达90~98%(重量)。
另外,在粗硅中加入铝,也可使三氯氢硅产品同时得到提纯。
如,向粗硅中掺入0.8~2%,的铝,在210~330℃与氯化氢气体反应,将生成的三氯氢硅气体冷到露点以上,然后与三氯化铝分离。
由于AICl3是杂质(特别是Ⅲ,Ⅴ族化合物)的有效络合剂,因而,就能制得很纯的三氯氢硅产品。
第三节三氯氢硅合成工艺及设备一、三氯氢硅合成工艺流程附图3-1如图所示,干燥后的氯化氢气体先经缓冲罐(1),再经转子流量计以适当流量进入合成炉(4)中,与经干燥器(2)干燥后的硅粉在280~300℃的温度范围内发生反应。
反应过程中,可随时调节合成炉的温度。
硅粉由加料器(3)不断加入合成炉,以补充反应过程所消耗的硅粉。
反应生成的三氯氢硅气体由合成炉上部排出,再经旋风过滤除尘器(5)除去夹带的粉尘(粉尘进入硅粉干燥器利用),然后进入列管冷凝器(6)冷凝成为液体,列管冷凝器的冷却剂温度通常在-40℃左右。
冷凝液经计量器(7)放入储槽(8)中。
未冷凝的气体经液封器(9)送至废气淋洗塔(10)处理后排入大气。
生产中要求定时测量出料速度及冷凝液的比重,定时取样测定冷凝液中三氯氢硅的含量,来指导合成条件的调整,以保证稳定生产出足量高品质三氯氢硅产品。
图3-1 三氯氢硅合成工艺流程二、三氯氢硅合成炉图3-2三氯氢硅合成炉结构示意图第四节三氯氢硅合成的技术条件1.反应温度对三氯氢硅的生成影响较大,温度过低则反应缓慢,温度过高(大于450℃)则产品中三氯氢硅含量降低,四氯化硅含量升高。
附图3-3,因此生产过程中必须选择合适的反应温度以提高三氯氢硅含量,实践证明温度控制在280~300℃较为合适。
2.氧和水分游离氧及水分对反应极为有害,由于Si-O键比Si-Cl键更稳定,反应产物极易发生氧化或水解,使三氯氢硅产率降低;水解产生的硅胶会堵塞管道,影响正常操作;游离氧或水分还可在硅表面逐渐形成一层致密的氧化膜,从而降低反应速率甚至中断化学反应。
总而言之,硅粉和氯化氢含水量愈大,产物中三氯氢硅含量愈低。
如氯化氢含水量为0.1%时,三氯氢硅含量小于80%;氯化氢含水量为0.01%时,三氯氢硅含量为90%左右。
见图3-4.所以生产操作中须用氮气将反应器内的空气彻底排除,且硅粉和氯化氢必须预先干燥脱水。
3.氢气与氯化氢的配比反应气氛对产物的组成会产生影响,氯化氢气体通常用不参加反应的氢气稀释,其稀释比为H2:HCl=1:3~5。
在反应温度360℃时,三氯氢硅产率为60%,当向氯化氢中加入12%的H2,则三氯氢硅产率将提高到82%。
硅粉和氯化氢的反应是一个放热反应,在无冷却装置的合成设备中,稀释氢气可以带走大量反应热,起到冷却作用。
4.催化剂制备三氯氢硅时,需在硅粉中添加催化剂氯化亚铜粉,能显著降低合成温度,提高反应速率和三氯氢硅产率,同时能避免少量氧与水分的有害影响。
一般配比为:Si:Cu2Cl2=100:0.4~1,而反应温度为280℃左右,三氯氢硅含量可高达85~90%。
5.硅粉料层高度及氯化氢流量对三氯氢硅合成的影响硅粉静止料层高度按下式计算:式中:H-硅粉静止料层高度,米Dsi-硅粉堆积密度,kg/m³QSi—硅粉的重量,kgF―沸腾床合成炉截面积,㎡例如:向合成炉(150*5600)中加入20kg硅粉,并用不同的氯化氢流量在固定温度下,进行到物料反应完为止,考察一下硅粉料层高度及氯化氢流量变化的影响:本例所用硅粉堆积密度1.2~1.3t/m³,沸腾床面积0.0178㎡,每公斤硅粉的静止料层高度值为0.045m。
由图3-5可见,随料层高度降低,炉内剩余硅粉量到8~9公斤以后,合成炉中、下部温差增大,随后温度急剧下降。
图3-6表明,随料层高度降低,冷凝液中三氯氢硅含量有所增加。
二图还表明,随氯化氢流量增加,反应温度升高的时间相应缩短,产物中三氯氢硅的含量略有增加。
由以上情况可看出:料层高度维持在10~12公斤较为合适。
料层过高非但没有好处,反而要求过高的氯化氢压力,同时炉内硅粉易被气流带出,给生产带来困难;料层过低,虽可提高三氯轻硅的含量,但反应温度不易控制。
所以说:维持较低料层高度,适当提高气体流量,均可提高三氯氢硅含量。
依本例,氯化氢流量在10m³/小时左右较为合适。
6.硅粉粒度对反应的影响粒度大小及粒度分布范围对产物质量、传热、传质等影响极大。
实际生产中,硅粉粒度范围一般要求在80~200目。
第五节流化床(沸腾炉)合成三氯氢硅的操作过程一、正常操作1.开车准备整个系统要求密闭,并进行过管道试压,通入氮气保持压力在4~5㎏/cm2,15分钟内压降不超过0.5㎏/cm2即为合格。
检查所有仪表、电路是否正常,防爆装置及所有阀门是否好用,防空管是否畅通。
开车前将硅粉由加料口加入炉内,用300℃左右氮气干燥6小时以上。
正常操作时硅粉由螺旋加料器连续加入炉内。
2.开车操作合成炉升温以后,炉体中下部温度保持在300℃左右,过滤器、冷凝器温度分别为80℃及-40℃时,即可通氯化氢进三氯氢硅合成炉,开始进行反应。
反应过程中将干燥好的硅粉(干燥温度一般在300℃左右)经螺旋加料器连续加入炉内,以保持料层稳定。
氯化氢压力一般在0.3~0.5㎏/cm2左右。
温度控制:合成炉中段温度控制在300℃左右,炉顶温度180-200℃,除尘器温度80℃,冷凝器温度-40℃或更低。
3.停车操作停供氯化氢气体,同时通入氮气,直至冷凝器无冷凝液流出为止。
对除尘系统用表压1.5㎏/cm2氮气进行反吹3-5min,将残渣吹出。
停止电加热,整个系统压力维持在0.5㎏/cm2 (表压),以防空气倒吸入炉。
二、三氯氢硅合成的事故及处理方法1.系统发生堵塞由于反应设备及原料干燥不够,少量水分导致合成产品发生水解,积累在管道、阀门、接头及过滤器等处所致。