三氯氢硅及合成工艺

三氯氢硅及合成工艺
三氯氢硅及合成工艺

三氯氢硅及合成

一、三氯氢硅的基本性质

三氯氢硅在常温常压下为具有刺激性恶臭、易流动、易挥发的无色透明液体。分子量:135.43,熔点(101.325kPa):-134℃;沸点(101.325kPa):31.8℃;液体密度(0℃):1350kg/m3;相对密度(气体,空气=1):4.7;蒸气压(-16.4℃):13.3kPa;(14.5℃):53.3kPa;燃点:-27.8℃;自燃点:104.4℃;闪点:-14℃;爆炸极限:6.9~70%;在空气中极易燃烧,在-18℃以下也有着火的危险,遇明火则强烈燃烧,三氯氢硅燃烧时发出红色火焰和白色烟;三氯氢硅的蒸气能与空气形成浓度范围很宽的爆炸性混合气,受热时引起猛烈的爆炸。它的热稳定性比二氯硅烷好,三氯氢硅在900℃时分解产生氯化物有毒烟雾;遇潮气时发烟,与水激烈反应;在碱液中分解放出氢气;三氯氢硅与氧化性物质接触时产生爆炸性反应。与乙炔、烃等碳氢化合物反应产生有机氯硅烷;在氢化铝锂、氢化硼锂存在条件下,三氯氢硅可被还原为硅烷。容器中的液态三氯氢硅当容器受到强烈撞击时会着火。可溶解于苯、醚等。无水状态下三氯硅烷对铁和不锈钢不腐蚀,但是在有水分存在时腐蚀大部分金属。

二、三氯氢硅的用途

用于有机硅烷和烷基、芳基以及有机官能团氯硅烷的合成,是有机硅偶联剂中最基本的单体,同时也是制备多晶硅的主要原料。将三氯硅烷与氯乙烯或氯丙烯进行合成反应,再经精馏提纯,得到乙烯基

或丙烯基系列硅烷偶联剂产品。硅烷偶联剂几乎可以与任何一种材料交联,包括热固性材料、热塑性材料、密封剂、橡胶、亲水性聚合物以及无机材料等,在太阳能电池、玻璃纤维、增强树脂、精密陶瓷纤维和光纤保护膜等方面扮演着重要的角色,并在这些行业中发挥着不可或缺的重要作用。

三、三氯氢硅生产工艺

1、主要化学反应方程式为:

Si + 3HCl = SiHCl3 + H2

Si + 4HCl = SiHCl4 + 2H2

2、生产装置主要由氯化氢干燥、三氯氢硅合成、三氯氢硅提纯和分离工序组成。生产工艺流程简述如下:

用管道送来的氯化氢气体,经冷却除水干燥、加压后依次进入氯化氢缓冲罐、-35℃石墨冷却器,酸雾脱水后,进入硫酸液环泵加压。加压后的氯化氢先经酸雾捕集器、氯化氢缓冲罐、再分别经流量调节阀、流量计、止逆阀进入三氯氢硅合成炉。外购袋装硅粉倒入硅粉池,用胶管借水环真空泵的抽力吸至硅粉干燥器,干燥后的硅粉经计量罐计量后由给料阀加入三氯氢硅合成炉,与来自氯化氢缓冲罐氯化氢在合成炉反应生成三氯氢硅和四氯化硅。

氯化氢与硅粉在三氯氢硅合成炉内反应生成三氯氢硅、四氯化硅、氢气。混合气体经沉降器、旋涡分离器、袋式过滤器、一级水冷器、二级水冷器、-35℃冷凝器,大部分三氯硅烷在膜压机前先冷凝下来,进入机前计量罐中,未冷凝的少量三氯硅烷、氯化氢和氢气进

入隔膜压缩机加压,再经机后水冷凝器、-35℃盐水冷凝器冷凝,液体经机后产品计量罐计量后进入中间产品贮罐,不凝气送尾气变压吸附回收系统回收微量的三氯氢硅和氯化氢,氢气从尾气淋洗塔顶放空。变压吸附装置吸附的三氯氢硅和氯化氢定期用干式真空泵抽真空解析、并用隔膜压缩机加压送至硫酸液循环泵后氯化氢缓冲罐与新鲜氯化氢混合后送至三氯氢硅合成炉参与反应。

中间产品贮罐中的三氯氢硅、四氯化硅混合液,借隔膜压缩机的压力,经电磁浮子流量计计量后,加入加压分离塔,通过控制塔底再沸器及塔顶冷凝器的温度和压力,将HCl、H2等低沸点物质分离,从塔顶冷凝器顶部经尾凝冷凝后排入尾气淋洗塔,合格的三氯氢硅产品经流量计进入三氯氢硅成品贮罐,塔底的混合液(大部分是四氯化硅)进入加压提纯塔,通过控制加压提纯塔的塔底再沸器及塔顶冷凝器的温度和压力,并且控制合适的回流量,塔顶冷凝器冷凝液除回流部分外,一部分进入中间计量罐,从而确保塔底四氯化硅>97%的情况下,塔底液体经计量进入四氯化硅成品贮罐。当成品贮罐液位达80%时,倒罐隔离,充N2加压装车外售。

制氮工艺流程简述:从空压装置来的干燥仪表空气(压力≥06MPa、露点:-40℃)经缓冲罐、活性炭过滤罐后、经制氮分子筛吸附氧后,进入氮气缓冲罐,经流量计进入氮气贮罐共各工序使用,富氧空气用管道引至室外排放。

3、生产工艺流程简图:

四、主要技术指标

硅粉转化率: 95%

氯化氢利用率: 99%

加压冷凝率:≥95%

三氯氢硅收率:≥98%

四氯化硅收率 -100%

冷凝产物组分:

其中:三氯氢硅含量:~83%

四氯化硅含量:~17% 提纯总收率: 95% 五、主要设备

六、三氯氢硅原料消耗:(1t三氯氢硅、0.4t四氯氢硅、250Nm3氢气

硅粉: 0.3t 11000元/t

HCl: 1.2t

蒸汽: 2.2t

电: 500 kwh

氮气: 50 Nm3

五月份三氯氢硅市场价格

四川晨光工程设计院技术原料成本在7000元左右,目前市场价格在10500-11000元,4万吨规模投资在4900万元左右。

七、国内三氯氢硅主要生产厂家及产能统计表

八、市场情况

2009 年底,国内三氯氢硅产能达到23万吨左右,三氯氢硅产量超过8万吨。2010年,产能大约为62 万t/a,预计到2012年,我国三氯氢硅总产能将达到大约85万t/a,今后几年国内三氯氢硅的供应量与50万t/a的需求量相比将要过剩。

三氯氢硅生产工艺流程

硅氢氯化法 该方法是用冶金级硅粉,作原料,与氯化氢气体反应。可使用铜或铁基催化剂。反应在200---800和0。05---3mpa下进行 2Si+HCL======HsiCL3+SiCL4+3H2 该反应所用反应器经历了从固定床、搅拌床到流化床的发展过程。工艺也从间歇发展到连续。反应器由碳钢制成,预先将归粒子加入到反应器,加热到所需地温度后,从底部连续通入氯化氢气体,产物及未反应物料被连续输出,经除尘精制后,用于生产高纯多晶硅和高纯硅烷。 上述反应是放热反应,反应热为-141。8千焦/摩尔升高温度有利于提高反应速率,但同时导致三氯氢硅选择性下降,通过优化反映温度,可明显提高三氯氢硅的选择率。例如在300---425度和2到5千帕条件下使硅和氯化氢反应,产物以600---1000千克/小时输出,三氯氢硅的选择率竟高达80—88%,副产物包括质量分数1%--2%二氯硅烷和1—4%的缩聚物,其余为四氯化硅。 氯化氢气体中的水分三氯氢硅的收率优很大影响。,因此必须严格干燥。硅与氯化氢生成三氯氢硅的反应应该是零级反应,使用纯度大于99。99%的硅原料时氢硅的收率较低。在一个微型反应器中作了研究,结果表明冶金级原料中所含杂质铝对反应有催化作用,可使反应温度降低,三氯氢硅收率提高。, 四氯化硅氢化法 3SiCL4+2H2+Si===============4HsiCL3 反应温度400-----800 压力2---4兆帕 该反应为平衡反应,为提高三氯氢硅的收率,优选在氯化氢存在下进行,原料采用冶金级产产品通过预活化除去表面的氧化物后,可进一步提高三氯氢硅的收率三氯氢硅与四氯化硅沸点差距25度,且不产生共沸物,所以比较容易分离。 三氯氢硅生产工艺流程 三氯氢硅合成。将硅粉卸至转动圆盘,通过管道用气体输送至硅粉仓,再加入硅粉干燥器,经过圆盘给料机并计量后加入三氯氢硅合成炉。在三氯氢硅合成炉内,温度控制在80—310℃,硅粉和氯化氢发生反应,生成三氯氢硅和四氯化硅。生成的三氯氢硅和四氯化硅气体经沉降器、旋风分离器和袋式过滤器除去粉尘及高氯硅烷,经水冷后经隔膜压缩机加压,再用-35℃冷媒冷凝为液体。不凝性气体通过液封罐进入尾气淋洗塔,经酸碱淋洗达标后排放。 三氯氢硅分离。三氯氢硅和四氯化硅混合料(三氯氢硅含量为80—85%)进入加压塔,采用两塔连续提纯分离,通过控制一定的回流比,最终得到三氯氢硅含量为99%以上的产品和四

三氯氢硅1

三氯氢硅

目录 (1)产品名称,物化性质,技术标准及作用;(2)原料名称及质量标准; (3)生产基本原理及反应式; (4)生产工艺流程叙述; (5)岗位操作法及控制:a.岗位操作范围;b.开车前准备;c.开停车操作;d.各岗位控制要点; (6)某些不正常现象及消除方法; (7)安全生产要点; (8 )生产过程中的三废排放和处理;

(一)产品名称,物化性质,技术标准及作用 (1)产品名称:三氯氢硅SiHCl 3 (2) 物理性质:常温下纯净的三氯氢硅是无色、透明、挥发性、可燃液体,有较 四氯化硅更强的刺鼻气味。分子式:SiHCl 3 ,分子量:135.4 ,液体密度:1.318kg/l (常温状态),气体密度:6.5g/l(标准状态),1atm下沸点:31.5℃,1atm下熔点:-128℃ (3)化学性质:易水解、潮解、在空气中强烈发烟,生成HC l 和H 2 ,HCl遇水立 即转化为盐酸,盐酸具有很强的腐蚀性;H 2 易燃易爆。 更易挥发、更易气化、更沸点低; 易着火、易爆炸、着火点28℃、着火温度220℃,燃烧时产生氯化氢和氢气; 其蒸汽具有弱毒性,与无水醋酸和二氯乙烯毒性程度相同。 (二)原料名称及质量标准 1.氯化氢(Hcl):氯化氢含量92%∽94%,氯气不过量; 2.硅粉:冶晶级多晶硅(95%∽99%),块密度约2.0×103kg/m3,硬度为7,其颗粒大小为80∽120目。 (三)生产基本原理及反应式 1. 基本原理: 80∽120目的硅粉与干燥的92%∽94%的氯化氢在催化剂(催化剂用量 si:cucl 2 =100(0.4∽1))作用下,在280∽320℃、小于0.05Mpa条件下生成三氯氢硅。合成SiHCl3必须先将硅粉预热到250℃以上。不过,该反应是放热反应,只要启动后就不再需要补充热能,而是带走热量。 2. 主要反应 Si+3HCl→SiHCl 3+H 2 +Q 当温度不再上述制控制范围内,怎发生下列副反应: A.温度大于350℃时:Si + 4HCl → SiCl 4 + 2H 2 + Q B.温度小于280℃时:Si + 4HCl → SiH 2Cl 2 + 2H 2 + Q C.硅粉与HCl反应过程中,硅粉中的少量杂质Ca、Fe、Al、Zn、Ti、P、B等主 要生成CaCl2、FeCl3、AlCl3、ZnCl2、TiCl4、PCl3、BCl3化合物,这些物质

三氯氢硅生产的火灾危险及对策实用版

YF-ED-J7614 可按资料类型定义编号 三氯氢硅生产的火灾危险 及对策实用版 Management Of Personal, Equipment And Product Safety In Daily Work, So The Labor Process Can Be Carried Out Under Material Conditions And Work Order That Meet Safety Requirements. (示范文稿) 二零XX年XX月XX日

三氯氢硅生产的火灾危险及对策 实用版 提示:该安全管理文档适合使用于日常工作中人身安全、设备和产品安全,以及交通运输安全等方面的管理,使劳动过程在符合安全要求的物质条件和工作秩序下进行,防止伤亡事故、设备事故及各种灾害的发生。下载后可以对文件进行定制修改,请根据实际需要调整使用。 三氯氢硅又称三氯硅烷、硅氯仿,英文名 称:trichlorosilane或silicochloroform, 分子式为SiHCl3,用于有机硅烷和烷基、芳基 以及有机官能团氯硅烷的合成,是有机硅烷偶 联剂中最基本的单体,也是生产半导体硅、单 晶硅的原料,随着有机硅烷偶联剂工业的发展 而出现供不应求,生产量越来越大。 一、三氯氢硅的理化特性及生产原理

三氯氢硅是采用硅粉与氯化氢气体在流化床反应器中生成。它是无色液体,易挥发,易潮解,在空气中发生反应产生白烟,遇水分解,溶于苯、醚等有机溶剂。属一级遇湿易燃物品,易燃易爆,遇水反应产生氯化氢气体;它与氧化剂发生强烈反应,遇明火、高热时发生燃烧或爆炸。 其物理特性如下:比重:1.35;相对气体密度:4.7;沸点:31.8℃;饱和蒸气压(14.5℃)53.33Kpa;闪点:-13.9℃(开杯);自燃温度:175℃;爆炸下限:6.9%;爆炸上限:70%;溶解性:溶于苯、醚等有机溶剂;具有急性毒性。

三氯氢硅的精馏

三氯氢硅的精馏 在三氯氢硅合成工序生成,经合成气干法分离工序分离出来的氯硅烷液体送入氯硅烷贮存工序的原料氯硅烷贮槽;在三氯氢硅还原工序生成,经还原尾气干法分离工序分离出来的氯硅烷液体送入氯硅烷贮存工序的还原氯硅烷贮槽;在四氯化硅氢化工序生成,经氢化气干法分离工序分离出来的氯硅烷液体送入氯硅烷贮存工序的氢化氯硅烷贮槽。原料氯硅烷液体、还原氯硅烷液体和氢化氯硅烷液体分别用泵抽出,送入氯硅烷分离提纯工序的不同精馏塔中。从原料氯硅烷贮槽送来的原料氯硅烷液体经预热器预热后,从中部送入1级精馏塔,进行除去低沸物的精馏操作。塔顶排出不凝气体和部分二氯二氢硅,送往废气处理工序进行处理;塔顶馏出液为含有低[wiki]沸点[/wiki]和高沸点杂质的三氯氢硅冷凝液,依靠压差送入2级精馏塔;塔釜得到含杂质的四氯化硅,用泵送四氯化硅回收塔进行处理。 2级精馏塔为反应精馏,是通过用湿润的氮对三氯氢硅处理,把其中易于水解的杂质化合物转化成难于挥发的形态,以便用精馏的方法除去。2级精馏为双系列生产线。2级精馏塔塔顶排出不凝气体同样送往废气处理工序进行处理;塔顶馏出三氯氢硅冷凝液,依靠压差送入沉淀槽;塔釜含悬浮物的釜液,用泵送至四氯化硅回收塔进行处理。 3级精馏目的是脱除三氯氢硅中的低沸点杂质。三氯氢硅清液经三级进料预热器后,进入3 级精馏塔中部。塔顶馏出含有二氯硅烷和三氯氢硅的冷凝液,靠位差流至二级三氯氢硅槽;塔底釜液为三氯氢硅,用泵送入4级精馏塔。 4级、5级精馏目的是分两段脱除三氯氢硅中的高沸点杂质。3级釜液送入4级精馏塔中部。4级塔顶馏出三氯氢硅冷凝液,靠位差流至5级精馏塔,进行脱除高沸点杂质的第二阶段。5级塔顶馏出的三氯氢硅冷凝液送入五级冷凝液槽,一个贮槽注满后分析三氯氢硅是否符合工业级三氯氢硅对杂质含量的要求,在分析有效的情况下,工业级精制的三氯氢硅从贮槽靠位差流至8级精馏塔。4级、5级塔釜排出的含有高沸点杂质的三氯氢硅,用泵送入二级三氯氢硅槽。 从5级塔顶馏出的三氯氢硅,在6级精馏塔进行最终脱除三氯氢硅中的高沸点杂质的过程。6级塔顶馏出物为去除了高、低沸点杂质的精制三氯氢硅,分析符合多晶硅生产的质量要求后,靠位差流至多晶硅制取工序。塔底釜液为含高沸点杂质的三氯氢硅,用泵送至二级三氯氢硅槽。 还原氯硅烷冷凝液经7级进料预热器进入7级精馏塔。塔顶馏出物为三氯氢硅,靠位差流至8级精馏塔;塔底釜液为四氯化硅,经分析符合质量要求后,用泵将其部分送去四氯化硅加氢,部分送往氯硅烷贮存工序的工业级四氯化硅贮槽。 8级精馏塔用于还原氯硅烷中高沸点杂质的脱除。塔顶馏出物是精制的循环三氯氢硅,送入8级冷凝液槽,经分析符合质量要求后,精制三氯氢硅靠位差循环回多晶硅制取工序。塔底釜液是含有高沸点馏份的三氯氢硅,用泵送至二级三氯氢硅槽。 四氯化硅氢化后的氯硅烷冷凝液,经9级进料预热器连续送入9级精馏塔。塔顶的馏出物是三氯氢硅,连续送往10级精馏塔,进行进一步精馏。塔底釜液是含有高沸点杂质的四氯化硅,用泵连续送往11级精馏塔。 9级精馏塔塔顶馏出的三氯氢硅在10级精馏塔中脱除高沸点杂质。10级精馏塔塔顶馏出物是精制的循环三氯氢硅,送入10级冷凝液槽,经分析符合质量要求后,精制三氯氢硅靠位差循环回多晶硅制取工序。塔底釜液是含有高沸点馏份的三氯氢硅,用泵送至二级三氯氢硅槽。11级精馏塔的进料为9级精馏塔釜液。塔顶馏出物是精制的循环四氯化硅,经分析符合质量要求后,用泵送去四氯化硅加氢工序。塔底釜液是含有高沸点杂质的四氯化硅,送往氯硅烷贮存工序的工业级四氯化硅贮槽。

三氯氢硅合成尾气处理工艺

三氯氢硅合成尾气处理工艺 谷文军3,孟祥考,吴军祥 (河北邢矿硅业科技有限公司,河北邢台054000) [关键词]三氯氢硅;尾气处理;变压吸附 [摘 要]介绍了几种处理三氯氢硅合成尾气的工艺,分析了各自的优缺点。 [中图分类号]T Q127.2 [文献标志码]B [文章编号]1008-133X(2009)10-0035-02 Process of trea ti n g t a il ga s from tr i chlorosil ane syn thesis G U W enjun,M EN G X iangkao,WU Junxiang (Hebei Xingkuang Silicon I ndustry Science and Technol ogy Co.,L td.,Xingtai054000,China) Key words:trichl or osilane;tail gas treat m ent;p ressure s wing ads or p ti on Abstract:So me kinds of p r ocess f or treating the tail gas fr om trichl or osilane synthesis are intr oduced, and their res pective advances and disadvantages are analyzed. 三氯氢硅合成尾气的主要成分有氯化氢、三氯氢硅(氯硅烷)、氢气,具体组成(体积分数)为:三氯氢硅5.942%,四氯化硅0.295%,氯化氢15.818%,氮气4.779%,氢气73.166%。此尾气须处理后才能排放。 1 水吸收工艺 水吸收工艺也称湿法回收技术,是把出三氯氢硅合成炉的尾气直接用水喷射泵吸收,尾气中的氯化氢被水吸收成盐酸,氯硅烷水解生成二氧化硅。二氧化硅以大量白色泡沫的形式出现,未被吸收的氢气和氮气排入大气。 2 CD I工艺 CD I工艺过程是将尾气进行低温洗涤、分离,将尾气加压冷凝,使尾气中大量的三氯氢硅冷凝下来作为回收的产品;大量的氯化氢用低温氯硅烷洗涤、分离,微量的HCl、氯硅烷采用变温吸附(TS A)干法脱除;剩下的尾气含有大量的N 2 ,再结合变压吸附 (PS A),可以生产出高纯度的H 2 。 2.1 冷凝工序 三氯氢硅合成尾气(压力为0.2MPa)含有大量的氯硅烷,如果直接排出,将会降低经济效益。冷凝工序就是将尾气冷至-5℃,有效地回收氯硅烷,降低原料消耗。 2.2 低温洗涤分离 在低温和一定压力的条件下,氯硅烷液体对氯化氢气体具有吸收能力,将尾气中大部分的氯化氢洗涤吸收分离出来,气体中少量的氯硅烷也被冷凝捕集下来。洗涤净化后的气体主要为氢气,只含有少量的氯化氢和氯硅烷,这两组分的总体积分数小于1%。富含氯化氢的氯硅烷洗液通过精馏,氯化氢等低沸物与氯硅烷分离,在塔顶得到较高纯度的氯化氢,在塔底得到纯氯硅烷液体。 2.3 TSA工序 由变温吸附的特性可知:当气体杂质组分分压高、温度低时,吸附剂的吸附容量大;当气体杂质组分分压低、温度高时,吸附剂的吸附容量低[1]。由HCl吸收工序来的1.1MPa的合成尾气进入变温吸附单元,在此单元将脱除合成尾气中除氢气、氮气以外的所有组分。 尾气干法分离工艺主要用于分离氯化氢、氢气、氯硅烷,如果合成气含有氮气等杂质气体,这些杂质气体将不会被完全分离去除,混入产品氢气中,影响 53 第45卷 第10期2009年10月 氯碱工业 Chl or2A lkali I ndustry Vol.45,No.10 Oct.,2009 3[作者简介]谷文军(1965—),男,高级工程师,毕业于河北大学,现从事化工生产管理工作。 [收稿日期]2009-07-30 [编者注]本文作者之一孟祥考为《氯碱工业》第4届编委会委员

三氯氢硅及合成工艺

三氯氢硅及合成 一、三氯氢硅的基本性质 三氯氢硅在常温常压下为具有刺激性恶臭、易流动、易挥发的无色透明液体。分子量:135.43,熔点(101.325kPa):-134℃;沸点(101.325kPa):31.8℃;液体密度(0℃):1350kg/m3;相对密度(气体,空气=1):4.7;蒸气压(-16.4℃):13.3kPa;(14.5℃):53.3kPa;燃点:-27.8℃;自燃点:104.4℃;闪点:-14℃;爆炸极限:6.9~70%;在空气中极易燃烧,在-18℃以下也有着火的危险,遇明火则强烈燃烧,三氯氢硅燃烧时发出红色火焰和白色烟;三氯氢硅的蒸气能与空气形成浓度范围很宽的爆炸性混合气,受热时引起猛烈的爆炸。它的热稳定性比二氯硅烷好,三氯氢硅在900℃时分解产生氯化物有毒烟雾;遇潮气时发烟,与水激烈反应;在碱液中分解放出氢气;三氯氢硅与氧化性物质接触时产生爆炸性反应。与乙炔、烃等碳氢化合物反应产生有机氯硅烷;在氢化铝锂、氢化硼锂存在条件下,三氯氢硅可被还原为硅烷。容器中的液态三氯氢硅当容器受到强烈撞击时会着火。可溶解于苯、醚等。无水状态下三氯硅烷对铁和不锈钢不腐蚀,但是在有水分存在时腐蚀大部分金属。 二、三氯氢硅的用途 用于有机硅烷和烷基、芳基以及有机官能团氯硅烷的合成,是有机硅偶联剂中最基本的单体,同时也是制备多晶硅的主要原料。将三氯硅烷与氯乙烯或氯丙烯进行合成反应,再经精馏提纯,得到乙烯基或丙烯基系列硅烷偶联剂产品。硅烷偶联

剂几乎可以与任何一种材料交联,包括热固性材料、热塑性材料、密封剂、橡胶、亲水性聚合物以及无机材料等,在太阳能电池、玻璃纤维、增强树脂、精密陶瓷纤维和光纤保护膜等方面扮演着重要的角色,并在这些行业中发挥着不可或缺的重要作用。 三、三氯氢硅生产工艺 1、主要化学反应方程式为: Si + 3HCl = SiHCl3 + H2 Si + 4HCl = SiHCl4 + 2H2 2、生产装置主要由氯化氢干燥、三氯氢硅合成、三氯氢硅提纯和分离工序组成。生产工艺流程简述如下: 用管道送来的氯化氢气体,经冷却除水干燥、加压后依次进入氯化氢缓冲罐、-35℃石墨冷却器,酸雾脱水后,进入硫酸液环泵加压。加压后的氯化氢先经酸雾捕集器、氯化氢缓冲罐、再分别经流量调节阀、流量计、止逆阀进入三氯氢硅合成炉。外购袋装硅粉倒入硅粉池,用胶管借水环真空泵的抽力吸至硅粉干燥器,干燥后的硅粉经计量罐计量后由给料阀加入三氯氢硅合成炉,与来自氯化氢缓冲罐氯化氢在合成炉反应生成三氯氢硅和四氯化硅。 氯化氢与硅粉在三氯氢硅合成炉内反应生成三氯氢硅、四氯化硅、氢气。混合气体经沉降器、旋涡分离器、袋式过滤器、一级水冷器、二级水冷器、-35℃冷凝器,大部分三氯硅烷在膜压机前先冷凝下来,进入机前计量罐中,未冷凝的少量三氯硅烷、氯化氢和氢气进入隔膜压缩机加压,再经机后水冷凝器、-35℃盐水冷凝器冷凝,液体经机后产品计量罐计量后进入中间产品贮罐,不凝气送尾气变压吸附回收系统回收微量的三氯氢硅和氯化氢,氢气从尾气淋洗塔顶放空。变压吸附装置吸附的三氯氢硅和氯化氢定期用干式真空泵抽真空解析、并用隔膜压缩机加压送至硫酸液循

四氯化硅制备三氯氢硅的冷氢化工艺资料

洛阳晶辉新能源科技有限公司 1、低温氢化技术方案 “低温氢化”反应原理为:四氯化硅(SiCl4)、硅粉(Si)和氢气(H2)在500℃温度和1.5MPa 压力条件下,通过催化反应转化为三氯氢硅(SiHCl3)。化学反应式为: 3SiCl4+Si+2H2=4SiHCl3 行业“低温氢化”虽然比“热氢化”具有能耗低、设备运行可靠的优点,但是尚存一些不足: (1)实际转化率偏低——四氯化硅(SiCl4)实际转化率一般在18%左右; (2)催化剂稳定性差——导致催化剂寿命短、消耗量大、成本高;特别是催化剂载体铝离子容易造成“铝污染”; (3)设备复杂、系统能耗大——工作温度高,所以氢化炉需要内或外加热,设备复杂,系统无有效的能量回收装置,系统能耗高。 3)“催化氢化”技术方案 针对上述四氯化硅(SiCl4)冷、热氢化存在的缺点和问题,洛阳晶辉新能源科技有限公司和中国工程院院士、中石化权威催

化剂和化工专家合作,在传统“低温氢化”基础上进行改良,自主创新开发出了新一代“改良低温氢化”技术——“催化氢化”。 (1)“催化氢化”技术路线 ?开发高活性多元纳米催化剂——在现有单活性金属基础上,引入第二活性金属,并采用特殊负载工艺,使活性金属呈纳米状态,提高催化剂活性;开发高稳定性催化剂载体——解决现有催化剂稳定性差问题,延长催化剂使用寿命,同时解决“铝污染”; (2)“催化氢化”技术特点 催化剂活性高,特别是反应?选择性好——四氯化硅(SiCl4)单程率达到22%,以上(最高可达25%); ?实现热量耦合、节约能源——需要的外加热量小,减少系统能源消耗;催化剂稳定性好——寿命长、用量小、避免了Al2O3分解带来的“铝污染”;反应温度进一步降低,反应炉不需要内(或外)加热,并设能量综合回收装置,降低了系统能耗; ? 系统用氢细致划分,由电解氢改良为多晶硅生产过程的回收氢气,既节约了制氢站电解氢的消耗量,同时也有利于提高多晶硅

三氯氢硅合成原理

三氯氢硅合成原理 三氯氢硅合成系统包括:1,硅粉加料装置,2,三氯氢硅合成炉,3,旋风干法除尘,4,过滤装置,5,STC湿法除尘,6,合成气分离回收(CDI)等工序。 硅粉加料装置完成向合成炉连续定量地供应硅粉;三氯氢硅合成炉是生产三氯氢硅的关键设备;旋风干法除尘、过滤装置与STC湿法除尘是回收硅粉和除去合成气的硅尘,CDI是将合成气进行分离回收,它们都是不可或缺的设备。 合成三氯氢硅的原料是硅粉与HCL气体。 3.1. 原料工业硅简介 工业硅的外观为深灰色与生铁颜色接近,也称硅铁。工业硅的块密度约2.0×103kg/m3,硬度为7,纯度一般为95%~99%,其中的主要杂质为Fe、Al、Ca。 工业硅的制备一般采用冶炼法,在冶炼炉中用还原剂将SiO2还原成单质硅(冶金硅)。通常用的还原剂有碳、镁、铝等。用镁或铝还原SiO2,如果还原剂的纯度较高得到的单质硅纯度可达3~4个“9”。不过,由于纯度较高的镁、铝价格高,会增加工业硅的生产成本,因此,目前国内的生产厂家都采用在电炉中用焦炭还原SiO2来制取单质硅(冶金硅),即把碳电极插入由焦炭(或木炭)和石英石组成的炉料中,温度控制在1600℃~1800℃还原出硅,反应式如下: 石英砂(硅石)与炭在电弧炉里还原成硅(MG-Si)

反应是在电弧炉(见图二)里的相邻电极之间发生的,该处温度超过2000℃,释放出来的SiO 和CO流到上部较冷区域(小于1500℃),形成所必要的SiC。 还原后的单质硅是以液态从反应炉中流进硅液煲,在这一过程中如Fe、Al、Ca、B、P、Cu等杂质也会以不同化合态进入液态的单质硅中,为了保证产品符合要求(一般控制在99%以上),硅液需要经过进一步处理去除其中的杂质。处理方法是利用杂质的化合态(氯化物或氧化物、硅酸盐等)在液体状态时会逐步离析到液体表面的规律,通过除去表层硅液来达到去除杂质的目的。因此,工业硅厂大都采用在硅液保温槽中通入Cl2或O2,促使大部分Fe、Al、Ca等杂质生成氯化盐或硅酸盐等物质,定期清除表层。这个过程会持续较长时间,并根据石英矿的杂质含量、成分和客户要求而定。这种方法主要是去除Fe、Al、Ca。 硅在常温下的化学性质很稳定,跟多数物质都不反应,只与部分强碱(NaOH、KOH)和酸(HF)反应。但在加热条件下(300℃±20℃)可以与多种物质反应,如与干燥的HCl气体反应生成氯硅烷,与Cl2反应生成四氯化硅,更高温度时还能和氧气反应生成氧化硅。 石灰砂(硅石) 煤、焦炭、木屑(CO、SiO、H2O)

三氯氢硅合成

目前,国内外应用最广,最主要的制备超纯硅的方法,是以三氯氢硅为原料,(即改良西门子法)。故三氯氢硅的合成在半导体材料硅的生产中引起了广泛注意,并取得不少成果。 三氯氢硅和四氯化硅的结构、化学性质相似。因此,它们的制备方法基本相似,只是前者用氯化氢气体代替氯气进行反应,在方法、设备、工艺操作等方面有共同之处,本章只介绍其特性。 三氯氢硅的制备方法很多,如: 1)用卤硅烷和过量的氢或氯化氢的混合物通过Al,Zn,或Mg的表面。 2)以氯化铝作催化剂,用氯化氢气体氯化SiH4。 3)在高温下用氢气部分还原SiCl4。 4)用干燥氯化氢气体氯化粗硅或硅合金。 前三种方法产率低、过程繁、产品沾污机会多、实用价值很小。因此,工厂和试验室多采用第4种方法制备三氯氢硅。 第一节三氯氢硅的性质 三氯氢硅(SiHCl3)又称三氯硅烷或硅氯仿。三氯氢硅是无色透明、在空气中强烈发烟的液体。极易挥发、易水解、易燃易爆、易溶于有机溶剂。有强腐蚀性、有毒,对人体呼吸系统有强烈的刺激作用。其物理化学性质见表 表3-1 三氯氢硅的物理化学性质 名称数值名称数值 分子量 135.45 氢含量% 0.74 液体密度(31.5℃) 1.318 闪点℃ 28 蒸气密度(31.5℃) 0.0055 在空气中的自燃点℃ 175 溶点℃ -128 偶极距德拜 0.85 沸点℃ 31.5 蒸发潜热kcal/mol 6.36 氯含量% 78.53 比热 kcal/kg.℃ 0.23(l) 0.132(g) 三氯氢硅在空气中的爆炸极 限% 1.2~90.5 附:四氯化硅的性质 四氯化硅(SiCl4)是无色透明、无极性、易挥发、有强烈刺激性的液体。水解后生成二氧化硅和氯化氢。可与苯、乙醚、氯仿及挥发油混合;与醇反应生成硅酸酯。因其易水解,并生成氯化氢,故它具有强腐蚀性。 表3-2 四氯化硅的性质 名称数值名称数值 分子量 169.2 蒸发热 kcal/mol 6.96 液体密度(在25℃)t/m³ 1.49 生成热 kcal/mol -153.0 蒸气密度kg/m³ 6.3 标准生成自由能kcal/mol 136.9 熔点℃ -70 临界温度℃ 206 沸点℃ 57.6 第二节三氯氢硅合成反应原理 三氯氢硅合成反应是一个放热反应,所以应将反应热及时导出,保持炉内反应温度相对稳定,以提高产品质量和收率。 化学反应(主反应):

三氯氢硅及四氯化硅的物化性质

三氯氢硅及四氯化硅的物化性质 - 我正在做一个三氯氢硅的项目设计,但三氯氢硅及四氯化硅的物化性质怎么也查不全,不知哪位高手能不吝赐教,万分感激。 TOP - 三氯氢硅又名三氯硅烷、硅氯仿,分子式SiHCl3,分子量135.45,相对密度1.34KG/L,熔点-126.5℃,沸点33.0℃,与水易分解,溶于CS2,CCl4,Cl Cl3苯,易燃,在空气中能自燃,燃点-27.8℃,自燃点104.4℃,与空气的爆炸极限:20.2~33.2%,有刺激性气体,有毒,吸入三氯氢硅蒸汽损伤呼吸道。四氯化硅的性质分子量169.90,相对密度1.483KG/L,熔点-70℃,沸点57.57℃,主要无色透明发烟液体具有难闻的窒息性气体,溅上皮肤会坏死,在潮湿的空气中水解放出HCL气体,遇氮气及氨剧烈反应生成氮化硅。 3 三氯氢硅三氯氢硅主要参数:三氯氢硅又称三氯硅烷、硅氯仿,英文名称:trichlorosilane 或silicochloroform ,分子式为SiHCl3 ,用于有机硅烷和烷基、芳基以及有机官能团氯硅烷的合成,是有机硅烷偶联剂中最基本的单体,也是生产半导体硅、单晶硅的原料,随着有机硅烷偶联剂工业的发展而出现供不应求,三氯氢硅生产量越来越大。三氯氢硅是无色液体,易挥发,易潮解,在空气中发生反应产生白烟,遇水分解,溶于苯、醚等有机溶剂。属一级遇湿易燃物品,易燃易爆,遇水反应产生氯化氢气体;它与氧化剂发生强烈反应,遇明火、高热时发生燃烧或爆炸。【CAS号】10025-78-2 【分子式】CL3-H-SI 【分子量】135.44 【比重】1.35 (0℃) 【熔点】-134 ℃【沸点】31.8 ℃【蒸汽压】400 毫米汞柱【蒸汽密度】4.7 【急性毒性】口服-大鼠LD50:1030毫克/公斤;吸入-小鼠LC50:1500毫克/立方米/2小时【毒性分级】中毒【闪点】-13.89 ℃【可燃性危险特性】遇明火、高温、氧化剂易燃;遇水或高温产生有毒氯化物烟雾【储运事项】库房通风低温干燥;与氧化剂、酸类分开存放【灭火剂】干粉、干砂、二氧化碳、泡沫三氯氢硅物理特性如下:比重:1.35 ;相对气体密度:4.7 ;沸点:31.8 ℃;饱和蒸气压(14. 5 ℃)53 .33Kpa ;闪点:-13.9 ℃(开杯);自燃温度:175 ℃;爆炸下限:6. 9 %;爆炸上限:70 %;溶解性:溶于苯、醚等有机溶剂;具有急性毒性。 7# 大中小发表于2008-12-22 08:36 只看该作者 三氯氢硅又称三氯硅烷、硅氯仿,英文名称:trichlorosilane或silicochloroform,分子式为SiHCl3,用于有机硅烷和烷基、芳基以及有机官能团氯硅烷的合成,是有机硅烷偶联剂中最基本的单体,也是生产半导体硅、单晶硅的原料,随着有机硅烷偶联剂工业的发展而出现供不应求,生产量越来越大。一、三氯氢硅的理化特性及生产原理三氯氢硅是采用硅粉与氯化氢气体在流化床反应器中生成。它是无色液体,易挥发,易潮解,在空气中发生反应产生白烟,遇水分解,溶于苯、醚等有机溶剂。属一级遇湿易燃物品,易燃易爆,遇水反应产生氯化氢气体;它与氧化剂发生强烈反应,遇明火、高热时发生燃烧或爆炸。其物理特性如下:比重:1.35;相对气体密度:4.7;沸点:31.8℃;饱和蒸气压(14.5℃)53.33Kpa;闪点:-13.9℃(开杯);自燃温度:175℃;爆炸下限:6.9%;爆炸上限:70%;溶解性:溶于苯、醚等有机溶剂;具有急性毒性。二、三氯氢硅生产的火灾危险性分析三氯氢硅生产的原料都是不燃物质,但是其生产过程中的产物大都是易燃易爆物质,如氢气、三氯氢硅、氯气等。1、电解食盐水的火灾危险性(1)电解时有强大的

三氯氢硅

一、三氯氢硅的市场发展前景 三氯氢硅是合成有机硅的重要中间体,也是制备多晶硅的主要原料,目前国内市场上三氯氢硅供不应求,缺口较大。有机硅产品是一类性能优异而独特的新型化工材料,应用范围遍及国防、国民经济乃至人们日常生活的各个领域,已发展成为技术密集、资金密集、附加值高、在国民经济中占有一定地位的新型工业体系,并使相关行业获得了巨大的经济效益。硅烷偶联剂的可水解基团可使非交联树脂实现交联固化或改性,使近年来硅烷偶联剂在玻璃纤维、铸造、高级油漆、轮胎橡胶等行业得到广泛应用,产品出口量和国内需求量较大。 三氯氢硅是生产有机硅烷偶联剂的重要原料,将三氯氢硅与氯乙烯或氯丙烯进行合成反应,再经精馏提纯,得到乙烯基或丙烯基系列硅烷偶联剂产品。硅烷偶联剂几乎可与任何一种材料交联,包括热固性材料、热塑性材料、密封剂、橡胶、亲水性聚合物以及无机材料等,在太阳能电池、玻璃纤维、增强树脂、精密陶瓷纤维和光纤保护膜等方面扮演着重要角色,并在这些行业中发挥着不可或缺的重要作用。四氯化硅是三氯氢硅生产中极为重要的原辅料,同样具有广阔的市场需求空间。 二、产业政策的符合性及行业准入条件分析 我国有机硅工业是在近几年才有所发展,有机硅产品生产厂家如雨后春笋般出现,遍布全国.国内对硅烷偶联剂产品的需求增长很快,每年均有新建企业投产,老厂也纷纷扩大规模,有机硅产业的迅猛发

展,对三氯氢硅的需求量激增,。而受技术条件等的限制,目前国内仅有几家三氯氢硅生产企业,产量不能满足市场需求,产品呈现供不应求的局面。由此可见,三氯氢硅是氯碱企业可规划的一个产值高,有发展前途的产品. 三、工艺技术方案 三氯氢硅(SiHCl3)又名硅氯仿、硅仿、三氯硅烷; 1、工艺制法 (1)在高温下Si和HCl反应。 (2)用氢还原四氯化硅(采用含铝化合物的催化剂)。 2、三氯氢硅性质 1)理化性质 分子量:135.43 熔点(101.325kPa):-134℃;沸点(101.325kPa):31.8℃;液体密度(0℃):1350kg/m3;相对密度(气体,空气=1): 4.7;蒸气压(-16.4℃):13.3kPa;(14.5℃):53.3kPa;燃点:-27.8℃;自燃点:104.4℃;闪点:-14℃;爆炸极限:6.9~70%;毒性级别:3;易燃性级别:4;易爆性级别: 2)化学性质 三氯硅烷在常温常压下为具有刺激性恶臭易流动易挥发的无 色透明液体。在空气中极易燃烧,在-18℃以下也有着火的危险,遇明火则强烈燃烧,燃烧时发出红色火焰和白色烟,生成SiO2、HCl和Cl2:

三氯氢硅合成工艺的影响因素及控制

三氯氢硅合成工艺的影响因素及控制 摘要:本文介绍了目前三氯氢硅合成工艺中工业硅粉粒度、氯化氢气体含水量及纯度、流化床生产工艺参数对合成系统的影响。本文通过生产实践发现:将硅粉的粒度控制在125~425μm之间,氯化氢合成工艺中通过工艺控制使氢气过量,合成的氯化氢气体纯度控制在90%左右,含水量控制在0.05%以下,合成炉内部温度控制在320℃左右,进出口压差在15Kpa左右,可大大提高三氯氢硅合成反应的转化率和降低生产周期。 关键词:三氯氢硅;工业硅粉;氯化氢气体;流化床;工艺控制 The influence factors and control of the process trichlorosilane synthesis Xiao RonghuiXin ChaoWan Ye China ENFI Engineering CorporationBeijing100038 Abstract:The study introduces the influence factors of the process trichlorosilane synthesis, included the size of silicon powder, themoisture content and gas purity of hydrogen chloride, the process parameters of fluidized bed. The results show that: we control the size of silicon powder between 125~425μm, gas purity of hydrogen chloride is about 90% and moisture content is below 0.05%, the temperature of synthesis furnace is about 320℃, the differential pressure of import and export is about 15kpa. It can improve the conversion rateof trichlorosilane synthesis and reduce the production cycle. Keywords: trichlorosilane; silicon powder; hydrogen chloride; fluidized bed; process control 1.引言 目前在太阳能电池生产领域中,晶体硅太阳能电池占有主导地位,有超过85%的太阳能电池为晶体硅太阳能电池。因此高纯硅材料尤其是多晶硅在今后相当长的一段时期也依然是太阳能电池的主流材料[1]。目前国际上多晶硅生产主要的传统工艺有:改良西门子法和硅烷法。但是目前大规模多晶硅生产中,80%的生产厂采用改良西门子法来生产多晶硅,其生产工艺中主要的原料就为三氯氢硅,每生产1t多晶硅,就需要补充大约5~6t三氯氢硅。因此研究三氯氢硅合成工艺、影响因素以及生产过程的控制就具有十分重要的意义。 2.三氯氢硅合成工艺流程 目前三氯氢硅合成一般采用硅氢氯化法:该生产工艺是以冶金级工业硅粉为原料,与氯化氢气体在280~350℃发生反应,其主要的化学反应式如下:

三氯氢硅合成操作规程

精氢净化岗位操作规程 (一)开车操作方法与步骤: 1、与氯碱厂调度室联系,得到可以送氢的明确指示后,马上用氮气置换系统。置换顺序: ①将氮气重入缓冲罐与阻火器之间的管道,从缓冲罐与阻火器下部排空阀放空。 ②打开阻火器后阀,将氮气赶入1#冷凝器,从下部把排水阀放空。 ③依次赶入2#、3#、4#冷凝器放空。 ④最后分别赶入4组氢气干燥器放空。置换结束后,将氮气压力保持0.03MPa。 2、置换好氮气后,请化学公司送氢气,氢气经氢气泵、缓冲罐、阻火器放空5分钟后进入1#冷凝器放空,依次进入2#、3#、4#冷凝器与4组氢气干燥器。 3、氢气在本系统正常后,开启本系统盐水、冷却水。 4、与氯化岗位联系,开启总出口阀,将氢气送人氯化,并做好开车记录。(二)工作职责: 1、氢气缓冲罐、冷凝器排水阀每10分钟排水一次; 2、氢气缓冲罐、泵、冷凝器、氢气进出处的压力表每30分钟记录一次; 3、氢气纯度>98%,氢气露点≤-25℃; 4、氢气进口压力在0.01~0.03MPa,出口压力在0.07~0.08 MPa; 5、泵里水保持在~范围内。 (三)硅胶倒组操作:(A→B) 1、缓慢开完B组氢气干燥器进口阀,关闭放空阀,排压2-3次后打开干燥器之间连接阀和氢气出口阀; 2、当B组氢气干燥器进行正常后,关闭A组氢气出口阀、干燥器之间连接阀; 3、打开B组干燥器冷却水进出口阀,使干燥器夹套及蛇管内保持冷却。 (四)氢气干燥器组再生操作: 1、干燥器停用2小时后进行再生操作; 2、关闭干燥器冷却水出口阀,排完蛇管及夹套余水; 3、打开干燥器蒸汽进出口阀,微量打开干燥器上方氢气进出口阀,并打开干燥器下部放空阀、空气平衡阀; 4、再生结束后(达72小时以上),关闭蒸汽进出口阀,干燥器下部放空阀,干燥器组氢气进出口阀。 (五)开泵及倒泵: 1、开泵前打开冷却水及进口阀,再缓慢打开口流阀,再按按钮开关; 2、倒泵时先打开备用出口,再打开冷却水; 3、按上述操作开泵;

三氯氢硅生产性质

三氯氢硅生产性质 Company Document number : WTUT-WT88Y-W8BBGB-BWYTT-19998 —?氯气 1氯气的理化性质 (1)物理性质:氯气在常温常压下为黄绿色有刺激性气味的有毒气体。密度为,是 空气的倍。易溶于碱溶液、二硫化碳和四氯化碳,难溶于饱和食盐水。在常温

下,氯气被加压到~或在常压下冷却到-3H4crc时就能液化为黄绿色透明液体。 液氯的密度为,熔点-i02r.沸点 (2)化学性质:氯气的化学性质很活泼,是一种活泼的非金属。 2液氯的用途 用于农药、塑料、增塑剂、合成橡胶、合成纤维、消毒漂白、炼镁和稀有金属等行业。 3氯气泄漏爆炸的危害 液氯为第二类危险化学品,人体吸入浓度为m3的氯气时,就会死亡。氯气爆炸的危害包括两部分:爆炸本身造成的危害及泄漏的氯气造成的二次危害。 4化学性爆炸 氯气中含有XC13. H2,在一定浓度、条件下可引起爆炸;氯气与有机物、氨及金属粉末反应易引起爆炸。 0腐蚀 氯气微溶于水,在温度°C时溶解度为理,部分氯与水反应生成HC1和 HC10,故湿氯具有强氧化性。当氯中含水量小于%时,碳钢的腐蚀速率小于6 亦即干燥氯对碳钢基本上不腐蚀。当氯中含水量大于%时,不仅会腐蚀碳钢,而且还会腐蚀不锈钢,氯会破坏不锈钢表面的钝化膜而产生孔蚀或应力腐蚀破裂。在一定范围内,随着氯气含水量增大,对碳钢、不锈钢的腐蚀速率也随着增大。 液氯产品含有~%的水量,会对金属贮槽产生腐蚀,长期使用能引起局部器壁变薄、强度下降,可导致贮槽开裂发生液氯蒸气爆炸。 —■鑫气 1、氢是无色、无嗅的可燃气体。它是已知最轻的气体。其沸点为一c。。 2、化学性质 在环境温度下,虽然氢相对而言不是十分活泼,但在高温下,它可以和几乎所有别的元素发生反应。通常?氢和氧在高温下的反应异常激烈升高温度,氢可以还原金属氧化物。 三?氯化氢 1氯化氢的理化性质 (1)物理性质:氯化氢在常温常压下为具有刺激性臭味的无色有毒气体。盐酸为氯化氢的水溶液,是无色或微黄色的液体。空气中不燃烧,热稳定,到约 1500C。才分解。与氟激烈反应,与许多金属反应生成氯化物和氢,与氨激烈反应生成氯化钱白烟,与乙烯混合形成爆炸性气体。氯化氢与水不反应但易溶于水,空气中常以盐酸烟雾的形式存在。浓盐酸因氯化氢蒸气而在空气中发烟。易溶于乙醇和醯,也能

三氯氢硅提纯工艺综述

三氯氢硅提纯工艺综述 摘要三氯氢硅是多晶硅生产的一种基础原料,有效的控制精制三氯氢硅的质量,是提高多晶硅产品质量的关键。而影响精制三氯氢硅质量的因素又是方方面面的,因此深挖影响精制三氯氢硅质量的因素,规范生产操作及加强过程的管控,并在技术上不断创新、突破,是保证精制三氯氢硅质量,进一步保证多晶硅质量的必经之路。本文结合改良西门子法生产多晶硅的实际工艺情况,介绍了三氯氢硅提纯的各种工艺方法,重点对三氯氢硅精馏提纯法作了详细介绍,并阐述了精馏提纯三氯氢硅过程中应注意的问题。 关键词三氯氢硅;提纯;精馏 精制三氯氢硅在还原炉内与氢气发生化学气相沉积反应生成多晶硅。可见,在整个改良西门子法生产工艺流程中,精馏提纯工艺是实现提高多晶硅产品质量的关键。如何能够连续稳定的生产合格的精三氯氢硅产品,仍是国内大部分多晶硅企业的难点和方向。由于三氯氢硅和四氯化硅沸点相差25℃,并且不形成共沸物,比较容易去除,关键是氯硅烷混合液中含有微量的金属杂质、硼磷化合物及含碳杂质等较难去除,如不去除将会带进多晶硅产品中降低多晶硅质量。 1 概述 1.1 改良西门子法简介 改良西门子法是一种化学方法,又称闭环式三氯氢硅氢还原法,是在传统西门子工艺的基础上增加了尾气回收和四氯化硅氢化工艺,实现了原材料的循环利用,具备节能降耗、生产成本低、对环境无污染等明显优势,是“综合素质”最优的多晶硅生产工艺,短时间内被其他工艺替代的可能性很小。 1.2 三氯氢硅的性质 三氯氢硅又名三氯硅烷或硅仿,英文名Trichlorosilane 或Silicochloroform,工业上一般采用硅氯氢化(工业硅粉与HCl气体在高温合成炉内合成SiHCl3)法和四氯化硅氢还原(SiCl4与Si和H2在Cu作催化剂条件下反应生成SiHCl3)法制取,两种方法涉及的反应式(1)和(2)。纯净的SiHCl3常温下为无色透明液体,沸点为31.8℃,闪点为-13.9℃,在空氣中的爆炸极限为6.9%~70%,属易燃易爆物品[1]。 2 三氯氢硅提纯工艺简介 目前提纯SiHCl3的方法主要有精馏法、络合物法、固体吸附法以及多步精制法[5]。由于精馏提纯法简单而有效,又避免引进任何试剂,绝大多数杂质都能被完全分离,是目前应用最广泛的提纯方法。

三氯氢硅合成知识

三氯氢硅合成知识 三氯氢硅 2008-01-31 12:35 1 三氯氢硅合成工艺 三氯氢硅合成的基本反应式为Si+3HCl=SiHCl3+H2。在三氯氢硅合成过程中,氯化氢的转化率一般为80%,有约20%的氯化氢未参加反应。生成的三氯氢硅气体,在冷媒温度为-40℃冷凝器中,冷凝效率为85%左右,约15%的三氯氢硅气体未冷凝。未冷凝的三氯氢硅气体、低沸物、未参加反应的氯化氢、氢气等组成尾气。尾气中含有大量的氯化物,如果处理不当必定会对环境产生不良的影响。 三氯氢硅合成工艺流程图见图1(略)。 2 合成炉尾气特性 三氯氢硅合成尾气各主要成分的体积分数分别为,HCl 30%;H2 64.2%;SIHCl3 5.4%;其他0.2%。 很明显,合成炉尾气均为可回收的产品或可循环使用的原料。对尾气进行有效的治理,不仅可以提高原料的利用率,还可以降低三废的排放量。为了合理治理尾气,必须根据尾

气的特性、成分、压力等,选择适当的工艺流程和技术条件。 3 治理 3.1 治理原理 三氯氢硅合成尾气的主要成分是氯化氢和氢气,占尾气的94.4%,其余是少量的三氯氢硅和二氯二氢硅等。虽然三氯氢硅的沸点为31.8℃,很易被冷凝,但是它在尾气中的体积分数仅为5.4%。按照道尔分压定律,气体混合物的总压等于混合气体中每种气体的分压之和,经计算,在尾气压力为0.11-0.12 MPa时,其分压仅为0.00594-0.00648 MPa。如此低的分压在常温或不太低的温度下,很难被冷凝。三氯氢硅饱和蒸气压与温度的关系为: 1g(P/0.133)=7.838-1503/T 式中:P-三氯氢硅饱和蒸气压,kPa; T-温度,K。 当尾气中三氯氢硅的分压为0.005 94-0.00648MPa时,其对应的温度为-28~-30℃。可见,如果想将尾气中大部分三氯氢硅冷凝下来,就要有很低的温度,这样就必定会消耗大量的能源,并且回收装置体积也较大。 根据三氯氢硅饱和蒸气压与温度的关系式可以看出,适当地提高尾气的压力就可以提高三氯氢硅的分压,与分压对应的温度也就比较高,也就是说,在较高的压力和不太低的温度下,将大部分三氯氢硅冷凝。不同尾气总压及各组分分

三氯氢硅生产工艺

三氯氢硅生产工艺 三氯氢硅的生产大多采用沸腾氯化法,主要包括氯化氢合成、三氯氢硅合成、三氯氢硅精制等工序。氯气和氢气在氯化氢合成炉内通过燃烧反应生成氯化氢,氯化氢气体经空冷、水冷、深冷和酸雾捕集脱水后进人氯化氢缓冲罐,然后送三氯氢硅合成炉。硅粉经过干燥后加入到三氯氢硅合成炉,与氯化氢在300℃左右的高温下反应,生成三氯氢硅和四氯化硅。生成的粗三氯氢硅气体经过旋风分离和除尘过滤后,进入列管冷凝器进行水冷和深冷,不凝气通过液封送入尾气洗涤塔,处理后达标排放,冷凝液蒸馏塔分离提纯,通常采用二塔连续提纯,一塔塔顶排低沸物,二塔塔底排高沸物四氯化硅,同时塔顶出三氯氢硅产品。 第一节 氯化氢合成工艺 氯化氢的性质 氯化氢是无色有刺激性气体,熔点为-114.2℃,沸点为85℃,比热容为\kg℃,临界温度为51.28℃,临界压力为8266kPa。干燥的氯化氢气体不具有酸的性质,化学性质不活泼,只有在高温下才发生反应。氯化氢极易溶于水。在标准情况下1体积水可溶解500体积氯化氢,溶于水后即得盐酸。由于三氯氢硅生产主要需要氯化氢气体,所以本文对盐酸性质不做深入研究。 氯化氢合成条件 氯化氢的合成是在特制的合成炉中进行的。未了确保产品中不含有游离氯,氢气要较氯气过量15%~20%。实际生产的炉中火焰温度在200℃左右。由于反

应是一个放热反应,为了不使反应温度过高,工业生产通过控制氯气和氢气的流量和在壁炉外夹套间通冷却水的办法控制氯化氢出炉温度小于350℃。 在生产中为确保安全生产,要求氢气纯度不小于98%和含氧不大于%;氯气纯度不小于65%和含氢不大于3%。 氯化氢合成工艺 氯化氢合成方程式: Cl2+H2→2HCl 氯气经涡轮流量计计量氯气(氯气含量97%,压力为含量进入氯气缓冲罐。 氢气经涡轮流量计计量氢气(含量98%,压力为含量经分水罐脱水与循环氢经涡轮流量计进入氢气缓冲。 经过计量的氯气和氢气进行流量调节,调节氯气和氢气的比值为1:~(体积比),送入二合一氯化氢石墨合成炉进行反应,反应生成的热量通过合成炉夹套中的循环水带走,反应生成氯化氢气体,通过3.6米长的石墨套管冷却器,氯化氢气体温度降到165℃以下,送入石墨冷却器用循环水冷却,冷却后氯化氢气体温度降至45℃左右,通入机前深冷气经冷冻水进一步冷却到-20℃~-30℃脱水。

相关文档
最新文档