高中数学指数与指数幂的运算
高中数学指数与指数幂的运算教案

高中数学指数与指数幂的运算教案教学目标1.理解指数和幂的概念;2.掌握指数的基本运算法则;3.掌握指数幂的计算方法。
教学重难点1.掌握指数的基本运算法则;2.掌握指数幂的计算方法。
教学内容1. 指数的概念指数是数学中一个重要的概念,用于表示一个数的幂次。
指数通常写在一个数的右上角,如a n,其中a是底数,n是指数。
指数的计算可以用重复乘法的方法进行。
2. 指数的基本运算法则2.1. 指数相加、相减指数相加时,如果底数相同,则可以将指数相加,即 $a^m \\times a^n =a^{m+n}$。
指数相减时,如果底数相同,则可以将指数相减,即$\\dfrac{a^m}{a^n} = a^{m-n}$。
2.2. 指数相乘、相除指数相乘时,如果底数相同,则可以将指数相乘,即(a m)n=a mn。
指数相除时,如果底数相同,则可以将指数相除,即 $\\dfrac{a^m}{a^n} = a^{m-n}$。
2.3. 幂函数的运算幂函数是一种特殊的函数,它具有y=ax n的形式。
幂函数的运算可以用指数的基本运算法则进行,例如(x m)n=x mn和 $x^m \\times x^n = x^{m+n}$。
3. 指数幂的计算方法指数幂的计算方法包括以下几种。
3.1. 同底数幂的乘方运算当底数相同时,两个幂相乘可以将指数相加,即 $a^m \\times a^n =a^{m+n}$。
例如,$5^3 \\times 5^4 = 5^{3+4} = 5^7$。
3.2. 不同底数幂的乘方运算当底数不同时,两个幂相乘可以先将底数相乘,再将指数相加。
例如,$3^4 \\times 2^4 = (3 \\times 2)^4 = 6^4$。
3.3. 同底数幂的除法运算当底数相同时,两个幂相除可以将指数相减,即 $\\dfrac{a^m}{a^n} = a^{m-n}$。
例如,$\\dfrac{5^7}{5^3} = 5^{7-3} = 5^4$。
高中数学 2.1.11《指数与指数幂的运算》课件 新人教A版必修1

第七页,共13页。
当n为奇数(jī shù)时,a的n次方n 根a
是当n为偶数时。,正数a的n次方根(fānggēnna)
是
,
负0的数任没何有(偶rè次nh方é)根次(方fā根ng都gē是n)。n,0即 0
。
试试:b4 a, 则a的4次方根为____; b3 a, 则a的3次方根为____;
y (1 7.3%)x 1.073x (x N*, x 20)
y (1 7.3%)10 1.07310
第三页,共13页。
实例 3:我们(wǒ men)知道考古学家是通过生 物化石的研究判断生物的发展和进化的,他 们究竟是怎样判断生物所处的年代呢?
当生物死亡后,体内碳14每过5730年大约
-125的3次方根是____;
10000的4次方根是____。
第八页,共13页。
思考(sīkǎo)1:
知识(zhī shi)探 究(分三别)等于什么?
一般地,
等于什么? ( n a )n a
思考2:
分别等于什么?
一般地,n an 等于什么?
当n是奇数时, n an a
{ 当n是偶数时, n an | a |
第 sh知ù)识(zhī shi)探 模实型例应(sh用ílì背) 1景:某市人口平均究年增(长一率)为
1.25℅,1990 年人口数为a 万,则 x年后人
口数为多少y 万a?(11.25%)x 1.0125x a(x N )
实例2:国务院发展研究中心在2000 年分 析,我国未来20年GDP(国内生产总值) 年平均增长率达7.3℅, 则x年后GDP 为 2000年的多少倍?10年后呢?
指数与指数幂的运算

在经济学中,指数函数和指数幂运算可以用于描 述商品价格和需求量之间的关系。
人口增长
在研究人口增长时,指数函数和指数幂运算可以 用于描述人口随时间的变化趋势。
THANKS
指数与指数幂的运算
$number {01} 汇报人:
2023-12-28
目录
• 指数幂的定义与性质 • 指数的性质与运算 • 指数幂的运算 • 复合指数幂的运算 • 指数与指数幂的应用
01
指数幂的定义与性质
定义
指数幂的定义
指数幂是一种数学运算方式,表示一 个数以另一个数为底数的幂次方。例 如,a^b表示a的b次方。
详细描述
在复合指数幂的运算中,需要遵循幂的乘法法则、除法法则、乘方和开方等基本 运算规则。例如,a^(m^n) = (a^m)^n,a^(mn) = (a^m)^n 等。
复合指数幂的简化
总结词
简化复合指数幂的过程主要是通过提 取公因子、合并同类项和化简表达式 等方式。
详细描述
在简化复合指数幂时,可以提取公因 子,将同类项合并,化简表达式,使 其更易于理解和计算。例如, a^(m+n) = a^m * a^n,a^(m-n) = a^m / a^n 等。
指数幂的性质
指数幂具有一些基本性质,如 a^(m+n)=a^m×a^n,a^(mn)=( a^m)^n等。
性质
1 3
非零数的0次幂为1
对于任何非零数a,有a^0=1。
任何数的1次幂等于它本身
2
对于任何数a,有a^1=a。
负数的偶次幂为正,奇次幂为负
对于任何负数a,有a^(2n)=(a^2)^n>0,a^(2n+1)=(a^2)^n<0(n为自然数)。
高一数学人必修课件指数与指数幂的运算

在不考虑固定资产预计净残值的情况下,根据每年年初固定资产净值和
双倍的直线法折旧率计算固定资产折旧额的一种方法。这种方法前期折
旧额较大,后期较小。
04
指数函数及其性质
指数函数的图像与性质
指数函数的定义
形如$y=a^x$($a>0$,$aneq 1$)的函数叫做指数函数。
指数函数的图像
指数函数的图像是一条从原点出 发,沿x轴正向或负向无限延伸 的曲线。当$a>1$时,图像上升 ;当$0<a<1$时,图像下降。
高一数学人必修课件 指数与指数幂的运算
汇报人:XX
20XX-01-21
目录
• 指数与指数幂的基本概念 • 指数与指数幂的运算法则 • 指数与指数幂在实际问题中的应用 • 指数函数及其性质 • 指数方程与不等式
01
指数与指数幂的基本概念
指数的定义及性质
指数是正整数时,表示相同因 数的连乘,如a^n = a × a × ... × a(n个a)。
注意运算时底数和指数的范围,以及 运算结果的合理性。
运算规则包括同底数幂相乘、幂的乘 方和积的乘方。
指数函数的定义及性质
指数函数的定义
y = a^x(a > 0且a ≠ 1)是指数函数。
指数函数的性质包括
函数图像过定点(1,1),当a > 1时,函数在R上是增函数;当0 < a < 1时, 函数在R上是减函数。
$A = P(1 + frac{r}{n})^{nt}$,其中$A$表示未来值,$P$表示本金,$r$表示年 利率,$n$表示每年计息次数,$t$表示时间(年)。通过该公式可以计算投资在 复利下的未来值。
连续复利
当计息次数趋于无穷大时,即$n to infty$,复利公式变为$A = Pe^{rt}$,其中 $e$是自然对数的底数。连续复利更适用于连续增长的情境。
高一数学指数与指数幂的运算2(1)

② 当n为任意正整数时,( a ) a .
n n
复习引入
3. 引例:当a>0时, ① ② ③
5
a
10
(a ) a a ;
5 2 5 2
10 5
④
是否可以呢?
讲授新课
1. 正数的正分数指数幂的意义:
m n
a a
n
m
(a>0, m, n∈N*, 且n>1).
讲授新课
1. 正数的正分数指数幂的意义:
(3) 0的负分数指数幂无意义.
3. 有理数指数幂的运算性质:
a a a
m n
mn
( m , n Q ),
( m , n Q ),
(a ) a
m n
mn
( ab ) a b ( n Q ).
n n n
4. 例题与练习:
例1 求值:
1 3 16 8 , 100 , ( ) , ( ) . 4 81
1 2
1 3
1 6
5 6
练习:教材P.54练习第3题.
4. 例题与练习: 例4 已知x x 1 3,求x x 的值.
1 2 1 2
课堂小结
1. 分数指数幂的意义;
2. 分数指数幂与根式的互化;
3. 有理数指数幂的运算性质.
课后作业
1.阅读教材P.50-P.52; 2.《习案》作业十六.
2. 对正数的负分数指数幂和0的分数指数 幂的规定:
(1) a
m n
1 a
m n
(a>0, m, n∈N*, 且n>1).
(2) 0的正分数指数幂等于0;
2. 对正数的负分数指数幂和0的分数指数 幂的规定:
人教A高中数学必修一2.1.1指数与指数幂的运算

练一练
3 3 27
2 3 8
2 5 32
22 4
3 2 9 2 416
视察思考:你能得到什么结论?
得出结论
3 3 27 2 3 8
2 5 32
x5 11
3 3 27 2 3 8 2 5 32
x 5 11
结论:当 n为奇数时,记为 x n a
得出结论
22 4 3 2 9 2 4 16
2.根式的概念:式子n a 叫做根式,其中 n 叫做根指
数,a 叫做被开方数.
3.根式的性质:(1)当 n a有意义时,(n a)n a
(2)当 n 是奇数时, n an a
n 当
是偶数时,n an
a
a(a 0) a(a 0)
选做题: 化简计算:
a
(3) 5 a b5 ;
(4) 6 (a b)6
课堂练习二:化简下列各式 :
(1) 5 32
(2) (3)4 (3) ( 2 3)2 (4)
52 6 化简计算: 3 2 2 3 2 2
课时小结
本节课同学们有哪些收获呢?
1. n次方根的概念: 一般地,如果xn a ,那么 x 叫 a的 n次方根,其中 n 1 且 n N*.
第二章 基本初等函数(Ⅰ)
2.1 指数函数 2.1.1 指数与指数幂的运算
第1课时 根式
学习目标
1.理解n次方根及根式的概念,掌握根式性质. 2.能利用根式的性质对根式进行化简.
平方根
如果 x2 a,那么 x 叫做 a的平方根,
正数的平方根有两个,它们互为相反数.
记作 a
如:4的平方根是±2,即 2 4
n 次方根存在吗?有几个?怎么表示? 若 a是负数呢?
高中数学公式大全指数与对数的幂运算与对数运算公式

高中数学公式大全指数与对数的幂运算与对数运算公式数学是一门具有广泛应用的学科,不论是在学术研究还是实际生活中,数学公式都扮演着重要的角色。
在高中数学中,指数与对数是两个重要的概念,它们的公式在解题过程中经常被用到。
本文将为您提供高中数学公式大全,重点介绍指数与对数的幂运算与对数运算公式。
1. 指数与幂运算公式指数与幂运算是指数函数的基本运算法则,它包括以下几个公式:1.1 指数幂运算法则(1)指数相同,底数相乘:a^m × a^n = a^(m+n)。
例子:2^3 × 2^4 = 2^(3+4) = 2^7。
(2)幂相同,底数相乘:a^m × b^m = (a × b)^m。
例子:2^3 × 3^3 = (2 × 3)^3 = 6^3。
(3)指数的乘方:(a^m)^n = a^(m×n)。
例子:(2^3)^4 = 2^(3×4) = 2^12。
(4)幂的乘方:(a × b)^m = a^m × b^m。
例子:(2 × 3)^4 = 2^4 × 3^4 = 16 × 81。
1.2 指数的乘法法则(1)指数相加:a^m × a^n = a^(m+n)。
例子:2^3 × 2^4 = 2^(3+4) = 2^7。
(2)底数相乘:(a × b)^m = a^m × b^m。
例子:(2 × 3)^4 = 2^4 × 3^4 = 16 × 81。
2. 对数运算公式对数是指数的逆运算,它有以下几个重要的运算公式:2.1 对数幂运算法则(1)底数相同,幂相加:loga(x × y) = loga(x) + loga(y)。
例子:log2(4 × 8) = log2(4) + log2(8)。
(2)幂的乘方:loga(x^m) = m × loga(x)。
指数与指数幂的运算必修一

04 复杂指数幂运算技巧
同底数幂相乘相除法则
同底数幂相乘
当底数相同时,指数相加, 即$a^m times a^n = a^{m+n}$。
同底数幂相除
当底数相同时,指数相减, 即$a^m div a^n = a^{m-n}$。
特别注意
当指数为0时,任何非零数 的0次幂都等于1,即 $a^0=1$(a≠0)。
06 总结与拓展
知识点总结回顾
指数幂的定义和基本性质
包括同底数幂的乘法、除法,幂的乘方和积的乘方等基本运算法 则。
指数函数的图像与性质
掌握指数函数的图像特征,了解指数函数的单调性、过定点等性质。
对数与对数运算
理解对数的概念,掌握对数的基本运算法则,如换底公式等。
典型例题分析讲解
指数幂运算的例题
02
对数在科学计算中的作用
讲解对数在科学计算中的重要作用,如地震震级、声音分贝等。
03
指数与对数在其他数学分支中的应用
简要介绍指数与对数在微积分、概率论等其他数学分支中的应用。
学习建议和方法分享
重视基础,打好根基
强调指数与对数基础知识的重要性,建议学生多做基础练习,巩 固基础。
善于归纳,总结规律
鼓励学生在学习过程中善于归纳总结,发现指数与对数的运算规 律。
最值问题
对于某些函数,如二次函数,可以通 过观察其图像顶点位置来判断函数的 最值。
利用函数图像解决不等式问题
不等式求解
对于形如$f(x)>0$或$f(x)<0$的不等式,可以通过观察函数图像与$x$轴的交 点来求解。
不等式组求解
对于由多个不等式组成的不等式组,可以通过分别观察每个不等式的解集,再 求其交集来求解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课题 指数与指数幂的运算(三)
课 型:练习课
教学目标:
n 次方根的求解,会用分数指数幂表示根式, 掌握根式与分数指数幂的运算.
教学重点:掌握根式与指数幂的运算.
教学难点:准确运用性质进行计算.
教学过程:
一、复习提问: (学生回答,老师板演)
1. 提问:什么叫做根式? 运算性质?
2. 提问:分数指数幂如何定义?运算性质?
3. 基础习题练习: (口答下列基础题)
① n 为
时,(0)
||...........(0)x x x ≥⎧=⎨<⎩.
② 求下列各式的值:
681; 62)2(-; 1532-; 48x ; 642b a 二、教学典型例题:
例1.(P 52,例4)计算下列各式(式中字母都是正数)
(1)2115
11336622(2)(6)(3)a b a b a b -÷-
(2)3
1
884()m n -
例2.(P 52例5)计算下列各式
(1
)(2
2
(a >0
)
例3..已知1
1
22a a -+=3,求下列各式的值:
(1)1-+a a ; (2)22-+a a ; (3)3
3
22
1122
a a a a ---- .
三、巩固练习:
1. 化简:)()(41412121y x y x -÷-.
2. 已知12(),0x f x x x π=⋅>,试求
)()(21x f x f ⋅的值
3. 用根式表示2134()m n -, 其中,0m n >.
4. 已知x +x -1=3,求下列各式的值:.)2(,)1(23232121--++x x x
x
5. 求值:2325; 2327; 3236()49; 3225()4-
6. 已知32x a b --=+, .
7.从盛满1升纯酒精的容器中倒出31升,然后用水填满,再倒出3
1升,又用水填满,这样进行5次,则容器中剩下的纯酒精的升数为多少?
四、小结:
1. 熟练掌握有理指数幂的运算法则,化简的基础.
2.含有根式的式子化简,一般要先把根式转化为分数指数幂后再计算.
五,作业
化简:(1)2932)-
(2
(3)
后记:。