30000风量烟气换热脱白计算技术方案及图纸
燃气热水锅炉烟气余热利用及消白雾技术分析与热能计算

区域供热2019.5期1引言为解决传统区域集中供热与环境污染之间的矛盾,燃气锅炉供热被广泛应用于区域集中供热工程。
但是,天然气供热具有燃料成本高、烟气水蒸气含量大、排烟温度较低等特点。
同时,日益提高的环保要求对燃气锅炉运行过程中产生的湿烟羽现象也有了更高的要求。
因此燃气锅炉烟气具有很大的后处理空间,对烟气余热进行深度利用,回收烟气中的冷凝水,从而达到提高能源利用率与资源回收率的目的,并取得烟气消湿羽的效果。
在燃气热水锅炉烟气余热利用及消白雾技术中,烟气焓值及冷凝水量对具体工艺方案起到决定性作用。
因此,准确的烟气焓值分燃气热水锅炉烟气余热利用及消白雾技术分析与热能计算中国中元国际工程有限公司王皓李军王霄楠北京市特得热力技术发展有限责任公司宋磊【摘要】近年来随着节能、环保要求的逐渐提高,烟气余热利用与消白雾技术在燃气热水锅炉得以大量应用。
本文简要说明了烟气余热及消白雾的技术原理,并通对烟气成分的分析,结合空气焓湿图计算公式,拟合计算烟气的凝结水量、含湿量、烟气比焓和再热状态点,进而计算系统不同阶段的热量变化和系统热效率,为燃气热水锅炉烟气余热利用及消白雾技术的研究和应用提供了参考。
【关键词】烟气;余热回收;消白雾;冷凝;供热DOI编码:10.16641/11-3241/tk.2019.05.022Absrtact:In recent years,with the gradual improvement of energy saving and environmental protection requirements,flue gas waste heat utilization and white fog elimination technology have been widely used in gas-fired hot water boilers.In this paper,the technical principle of utilization of Waste Heat from Flue Gaswaste and the elimination of white fog is briefly explained.Based on the analysis of flue gas composition and the calculation formula of air enthalpy-humidity diagram,the of condensation water content,moisture content,specific enthalpy of flue gas and reheat state points of flue gas are fitted and calculated,and then the heat change and system thermal efficiency at different stages of the system are calculated.It provides a reference for the research and application of gas hot water boiler flue gas waste heat utilization and white fog elimination technology. Keywords:flue gas;waste heat recovery;white fog elimination;condensation;heating139--区域供热2019.5期析与冷凝水量计算是燃气热水锅炉烟气余热利用及消白雾技术的核心,对于燃气锅炉烟气余热利用的工程实践及技术发展具有重要意义。
烟气换热器结构及工作原理ppt课件

4
MGGH原烟气冷却器内部一整组管束图
5
MGGH内部管束冲洗水管布置图
6
MGGH原烟气冷却器
7
MGGH净烟气再热器整组管束
8
MGGH净烟道顶部管路布置
9
循环水系统
该系统的功能是保证循环水在水侧管道系统内不断循环以实现“热量的转移”。循 环水水质为除盐水或凝结水,系统主要由循环水泵,充水泵,稳压系统,以及相关管道, 阀门组成。
1819序号名称规格型号技术性能生产厂家循环水泵双吸卧式离心流量900th扬程25m90kw充水泵单吸立式离心管道泵流量15th扬程70m75kw清洗水泵立式离心泵流量120th扬程110m75kw烟气冷却器氟塑料材质总换热器面积12046m烟气再热器改性塑料材质沃斯坦热力技术北京有限公司20管式换热器的工作原理烟气热转移系统hds是一种以水为中间换热媒介的热量转移系统用来取代传统的回转式ggh
烟气换热器结构 及工作原理
1
系统概述
2
烟气换热器本体
包括原烟气冷却器和净烟气再热器两组热交换器, 该系统功能为完成烟气和水之间的换热。系统由烟 气侧前后过渡段,烟气换热器本体,以及烟气换热 器范围内循环水侧的管道,阀门,仪表等组成。换 热器管内走水,管外走烟气。每组管束水侧均设有 进出口检修用的隔离阀。 每组烟气冷却器设1个安 全阀。管束为U型垂直布置,每组管束均设有若干 个放气阀以满足充水时排气的需要。烟气冷却器和 再热器各设有一个旁路,以满足系统启动初期或长 期停机投运前,清洗管道用(防止杂质进入管束)
3
烟气换热器的结构
烟气烟冷器管 束
6组
活性炭吸附脱附催化燃烧结构设计CAD图

烟气余热回收计算doc资料

0.95 1320965.88 315492.21
366.85 80.00 5.00 14970.00 1.093 1.005 80.33 254412.92 66.42 535.61 535606.14
投入成本 成本回收期 SO2减排量 CO2减排量 氮氧化物减排量 CO减排量
给定 查表 查表 计算
Qh/Qd/η
Bj*W*0.0085 Bj*W*2.6
Bj*W*0.0074 Bj*W*0.0005
92600.00 2.07 13.55
4144.57 11.80 0.86
20.00 9000.00 55.05 15000.00 21.03
0.40 143.60 2738.49 482.37 254412.92 78.87 636.03 636032.29 200000.00 3.77 16.09 4921.68 14.01 0.95
SO2减排量
Sj
CO2减排量
Cj
氮氧化物减排量
Nj
CO减排量
NCj
Mpa ℃ KJ/kg Kg/h 万kCal/h kg/h 吨/年 元 元 月 kg/d kg/d kg/d kg/d
Bj*W*0.0085 Bj*W*2.6
Bj*W*0.0074 Bj*W*0.00054
给定 给定 计算(大概值) 给定 Qh/V给水
m3/kg Vα*(273+165)/273
kg/m3 kJ /(kg·ºC )
m3/h kg/h Kg m3/h
查表 查表 计算 计算 计算 经验计算
实际烟气体积流量
实际烟气质量流量
排烟温度
燃气锅炉烟气余热深度回收技术及应用分析方案

燃气锅炉烟气余热深度回收技术及应用分析1、概述燃气锅炉作为主要的采暖设备,燃烧产生的烟气温度通常很高,这些烟气含有大量的显热和潜热,如果不经处理直接排放到大气中会造成能量浪费。
排烟温度越高,排烟热损失越大,一般排烟温度升高15~20 ℃,就会使排烟热损失增加1%,如果能将这部分热量回收利用起来,不仅节约能源,而且提高了锅炉热效率。
目前,烟气余热回收技术主要有两种:热泵式烟气余热回收技术和换热器式烟气余热回收技术。
热泵式烟气余热回收技术前期投资成本高,所需安装空间较大;换热器式烟气余热回收技术一般仅在锅炉尾部烟囱上加装烟气余热回收装置,但受被加热介质温度等方面的限制,处理后的低温烟气温度仍然较高,大部分水蒸气汽化潜热未被回收利用,造成能源浪费和环境污染。
由于天然气成分绝大部分为烃,燃气锅炉排烟中水蒸气的体积分数较高,烟气可利用的热能中,水蒸气的汽化潜热所占份额相当大,若将烟气冷却到露点温度以下,并深度回收利用天然气燃烧时产生的水蒸气凝结时放出的大量潜热,可进一步提升燃气锅炉热效率。
2、冷凝热回收计算锅炉烟气显热的回收量主要体现在锅炉排烟的温降幅度,而潜热回收量主要体现在烟气中水蒸气的凝结量,即当排烟温度低于露点温度,有水蒸气凝结时,烟气的放热量应用烟气的焓差表示。
不同地区燃气成分不同,不同锅炉燃烧工况不同,所以燃烧产物即烟气的成分和状态各不相同,特别是烟气中水蒸气含量各异,使得烟气热回收潜力存在差异。
选取过量空气系数α=1.1,相应露点温度为 58.15℃的工况进行相关参数的计算。
根据供热系统实际运行工况,相对于锅炉本体排烟温度(一级余热回收装置进口烟温)为 110 ℃时,不同排烟温度下显热回收量、潜热回收量、水蒸气冷凝率以及锅炉热效率增量的计算结果。
由计算结果可知,排烟温度越低,水蒸气冷凝率越高,潜热和显热回收量也相应越高。
当排烟温度低于 60 ℃(接近烟气露点温度)时,回收总热量及锅炉热效率的变化值迅速增大,这主要是由于排烟温度低于露点温度,烟气中水蒸气的汽化潜热得以回收;当排烟温度继续降至40℃时,水蒸气冷凝率65% ,每燃烧 1 m3 天然气所回收的显热为 1 090 kJ,潜热为2650 kJ,锅炉热效率可提高10.17% 。
烟气余热回收技术方案

烟气余热回收技术方案1.引言:随着工业化的发展,许多工业过程会产生大量的烟气余热。
如果这些余热不加以利用,不仅对环境造成负面影响,还会浪费能源资源。
因此,烟气余热回收技术的研发和应用变得至关重要。
本文将探讨一些常见的烟气余热回收技术方案。
2.烟气余热回收技术方案:2.1烟气热交换器烟气热交换器是一种常见的烟气余热回收技术方案。
烟气热交换器的原理是通过传导、对流、辐射等方式,将烟气中的热量传递给工作介质(如水或空气),从而提高工作介质的温度。
具体来说,烟气经过烟气热交换器后,冷却,而介质则被加热,可以用于供暖、工业热水等。
2.2高温烟气直接回收在一些高温烟气的情况下,可以直接回收其中的热能。
例如,高温烟气可以用于直接发电或驱动蒸汽涡轮机,从而产生电力或机械功。
这种烟气直接回收技术方案不仅能够有效回收热能,还能够实现能源的多次利用。
2.3烟气余热利用系统烟气余热利用系统是一种集成化的烟气余热回收技术方案。
该系统由多个组件组成,包括烟气余热锅炉、热交换器、余热净化装置等。
其工作原理是将从工业烟气中回收的余热传递给工作介质,并进一步利用该余热进行供热、发电等用途。
2.4烟气余热发电系统烟气余热发电系统是一种通过回收烟气中的热能来发电的技术方案。
该系统在烟气热交换器中通过热能传递的方式将烟气中的热量传递给工作介质,使其达到足够高的温度和压力,从而驱动蒸汽涡轮机产生电力。
3.烟气余热回收技术方案的应用和优势:3.1工业领域应用3.2环境保护优势3.3节能效益4.结论烟气余热回收技术方案在工业生产和环境保护中具有重要的意义。
通过采用适当的技术方案,可以有效回收烟气中的热能,提高能源利用效率,降低能源消耗和环境污染。
值得注意的是,不同的行业和工艺过程可能需要采用不同的烟气余热回收技术方案,因此在具体应用中需要根据实际情况进行选择和调整。
烟气脱硝(SCR)技术及相关计算

第四页,共22页。
3. 减少氮氧化物排放(pái fànɡ)的方法
根据NOx生成机理,世界上控制NOx的技术主要包括 燃烧时尽量避免NOx的生成技术和NOx生成后的烟气 脱除技术。 1、低NOx燃烧技术 通过控制燃烧区域的温度和空气量,达到阻止NOx生 成及降低其排放浓度的目的,也可以称为低氮燃烧技 术。 2、烟气脱硝 随着环保要求不断提高(tí gāo),各种低氮燃烧技术降 低NOx的排放不能满足环保的要求,需采取燃烧后的 烟气脱硝处理。
第三页,共22页。
2. 氮氧化物生成(shēnɡ chénɡ)机理
1、燃料型NOx 燃料型NOx是指燃料中氮的化合物在燃烧过程中被氧化所 生成的NOx。燃料型NOx是燃煤电厂锅炉产生NOx的主要 途径(tújìng),大约占NOx总量的75%-90%。
2、热力型NOx 热力型NOx是指空气中的氧气和氮气在燃料燃烧时的高温 环境下生成NO和NO2的总和。反应式如下: N2 + O2→2NO
第十五页,共22页。
氨逃逸率 控制氨逃逸率小于3ppm,因为烟气中部
分SO2会转化为SO3,
NH3+ SO3+H2O——(NH4)SO4/ NH4HSO4
NH4HSO4沉积温度150-200℃,粘度大 ,加剧对空预器换热元件(yuánjiàn)的堵塞 和腐蚀。
第十六页,共22页。
催化剂堵塞和失效
4NO + 4NH3 + O2→ 4N2+ 6H2O 2NO2 + 4NH3 + O2→ 3N2 + 6H2O
第八页,共22页。
SCR反应(fǎnyìng)原理示意图
第九页,共22页。
4.3 SCR工艺流程(ɡōnɡ yì liú chénɡ)
烟气除尘脱硫设计方案(石灰法)

烟气除尘脱硫设计方案(石灰法)烟气除尘、脱硫设计方案技术方案主要内容●系统配置:一炉一塔系统设计;●脱硫烟气处理:一套石灰桨制备系统、一套脱硫系统●除尘脱硫塔采用GT-TL-51高效脱硫塔,脱硫效率大于92%。
塔体采用大径塔,不锈钢塔体结构,耐腐、耐磨,密封性好,经久耐用,以保障除尘稳定、经济,低运行成本;脱硫剂采用石灰作为脱硫剂,实现优良脱硫效果。
●脱硫系统吸收塔循环液搅拌采用脉冲悬浮搅拌系统,运行电耗低,搅拌充分,使用寿命长,易于维修且维护工作量低,还可避免搅拌器的轴封处浆液渗漏,轴承、轴封易腐蚀、磨损等缺陷。
●采用空气氧化工艺,及时将循环液中的不稳定盐类转化为化学性能稳定的盐类;目录第1章. 设计背景 (4)1.1. 设计依据 (4)1.2. 设计原则 (5)第2章. 设计内容 (6)2.2. 设计规模 (6)2.2.1. 烟气排放量 (6)2.2.2. 原烟气指标 (6)2.2.3. 烟气治理目标 (6)2.3. 工程布局 (7)第3章. 运行费用估算与经济分析 (8)3.1. 动力设备一览表 (8)3.2. 系统运行费用(单项)估算 (9)3.2.1. 电费 (9)3.2.2.人工费 (9)3.3. 处理成本估算 (9)3.4. 脱硫成本分析 (9)3.4.1. 主要工艺计算 (9)3.4.2. 脱硫综合成本 (10)3.5. 经济分析 (11)3.5.1. 环境、社会效益 (11)第4章. 质量保证和售后服务 (12)第5章. 除尘脱硫技术部分 (13)5.1. 钠基双碱法工艺选择 (13)5.2. 除尘脱硫系统工艺 (13)5.2.1. 双碱法脱硫说明 (13)5.3. 除尘脱硫系统构筑物与设备描述 (14)5.3.1. GT-TL-5高效除尘脱硫塔主体 (14)5.3.2. 除尘脱硫系统循环水系统 (16)5.3.3. 清洗水及净烟气系统 (17)5.3.4. 除尘脱硫系统控制系统及其他 (18)5.3.5. 附属构筑物 (18)第6章. 除尘脱硫系统土建、设备材料一览表 (20)6.1. 除尘脱硫系统土建构筑物一览表 (20)9.2. 除尘脱硫塔主要设备材料一览表 (21)第7章. 除尘脱硫系统报价单 (22)第1章.设计背景1.1.设计依据《工业锅炉及炉窑湿法烟气脱硫工程技术规范》(HJ462-2009)《锅炉大气污染物排放标准》(GB13271-2001)《火电厂大气污染物排放标准》( GB13223-2003 )《火电厂烟气脱硫设计技术规程》(DL/T5196-2004)《大气污染物综合排放标准》 (GB16297-1996)《工业设备及管道绝热设计规范》(GB50264-97)《混凝土结构设计规范》(GBJ10-89)《建筑防震设计规范》GBJ11-89《低压配电装置规范》(GBJ54-83)《工业及民用通用设备电力装置设计规范》(GBJ55-83)《电业安全工作规程(热力和机械部分)》1997版《电气装置安装施工及验收规范》GBJ232-82《电力建筑施工及验收技术规范》《1Kv及以下配线工程施工及验收规范》(GB50258-96)《电力建设施工及验收规范》热工仪表及控制装置篇(SDJ279-90)《工业管道工程施工及验收规范》(GBJ235-82)《机械设备安装工程施工及验收规范》(TJ231-78)《压缩机风机泵安装工程施工及验收规范》(GB50275-98)《排污费征收标准管理办法》1.2.设计原则为了执行国家法律、法规及有关对SO排放的限制,用适当的工艺去除烟气2中的污染物是十分必要的。