压力容器设计

合集下载

压力容器的设计方案步骤

压力容器的设计方案步骤

压力容器的设计方案步骤1.确定设计目标和使用条件:首先需要明确设计压力容器的使用目标和条件,包括容器的工作压力、工作温度、容量和所处环境等。

2.材料选择:根据容器的使用条件和要求,选择合适的材料进行容器的制造。

常用的压力容器材料有碳钢、不锈钢和铝合金等。

3.容器结构设计:确定容器的结构形式和尺寸。

结构设计包括容器的壁厚、底部形式、连接方式和支撑结构等。

根据容器的工作压力,需要进行强度计算和结构优化,确保容器能够承受内部和外部的力和压力。

4.强度计算和最大允许应力分析:根据容器的结构形式和制造材料,进行强度计算和最大允许应力分析。

主要包括容器的轴向应力、周向应力和切向应力的计算,以及承载能力和安全系数的评估。

5.容器的密封设计:确保容器的密封性能,避免泄漏和破裂。

根据容器的使用条件和介质特性,选择合适的密封材料和密封方式,如垫片密封、法兰密封或螺纹连接等。

6.容器的安全阀和压力传感器设计:为了确保容器的安全运行,需要设计并安装安全阀和压力传感器。

安全阀用于在容器内部压力超过设计值时,释放压力以防止容器破裂。

压力传感器用于实时监测容器的内部压力,以便及时采取措施。

7.容器的制造和检验:根据设计方案,选择合适的制造工艺进行容器的制造。

制造过程需要注意材料的质量控制、焊缝的质量检查和容器的外观检验等。

制造完成后,需要进行压力测试、水压试验和射线检测等,以确保容器的安全性和可靠性。

8.容器的安装和维护:根据容器使用的具体情况,进行容器的安装和维护。

安装过程需要注意容器的固定和支撑,以确保容器的稳定性。

维护过程包括容器的定期检查和保养,以延长容器的使用寿命。

综上所述,压力容器的设计方案步骤涵盖了设计目标和使用条件的确定、材料选择、容器结构设计、强度计算和应力分析、密封设计、安全阀和压力传感器设计、容器的制造和检验、容器的安装和维护等。

通过合理的设计方案,能够确保压力容器的安全运行和可靠性。

压力容器设计实施方案

压力容器设计实施方案

压力容器设计实施方案一、前言。

压力容器是一种用于储存或运输液体、气体或蒸汽的设备,其设计和实施方案至关重要。

在设计和实施压力容器时,必须充分考虑安全性、可靠性和经济性,以确保其在使用过程中不会发生意外事故。

本文将围绕压力容器设计实施方案展开讨论,从设计原则、材料选择、制造工艺、安装调试、运行维护等方面进行详细阐述。

二、设计原则。

1. 安全第一,压力容器的设计必须以安全为首要考虑因素,确保在正常工作条件下不发生泄漏、爆炸等事故。

2. 合理性,设计应充分考虑容器的使用环境、介质性质、工作压力等因素,合理确定容器的尺寸、结构和材料。

3. 可靠性,设计应考虑容器的使用寿命、疲劳寿命等因素,确保容器在长期使用过程中不会出现失效。

4. 经济性,设计应尽可能减少材料消耗,降低制造成本,提高使用效率,以达到经济合理的设计。

三、材料选择。

压力容器的材料选择直接影响到容器的安全性和可靠性。

常见的压力容器材料包括碳钢、合金钢、不锈钢等。

在选择材料时,需要考虑介质的腐蚀性、温度、压力等因素,选择合适的材料以确保容器的安全运行。

四、制造工艺。

制造工艺是保证压力容器质量的关键环节。

在制造过程中,需要严格按照设计图纸和相关标准进行操作,采用合理的焊接、热处理、检测等工艺,确保容器的内部和外部质量达标。

五、安装调试。

在安装调试阶段,需要严格按照相关规范和要求进行操作,确保容器与管道连接牢固、无泄漏现象,同时进行压力测试和安全阀调整,以确保容器在投入使用前能够正常工作。

六、运行维护。

压力容器在使用过程中需要进行定期的检查和维护,以确保其安全可靠地运行。

定期检查容器的内部和外部状况,进行必要的清洗、涂漆和防腐处理,及时发现并排除隐患,确保容器在使用过程中不会出现问题。

七、结语。

压力容器设计实施方案的制定和执行是确保压力容器安全运行的重要保障。

通过严格的设计、材料选择、制造工艺、安装调试和运行维护,可以有效地确保压力容器在使用过程中不会出现安全事故,保障人员和设备的安全。

压力容器设计标准

压力容器设计标准

压力容器设计标准压力容器是一种用于承受内部压力的设备,广泛应用于化工、石油、制药、食品等领域。

为了确保压力容器的安全运行,各国都制定了相应的设计标准,以规范压力容器的设计、制造和使用。

本文将介绍压力容器设计标准的一般要求和常见标准。

首先,压力容器设计标准的一般要求包括材料选用、结构设计、制造工艺、检验和试验等方面。

在材料选用方面,应根据工作介质的性质和工作条件选择合适的材料,并符合相关的材料标准。

在结构设计方面,应考虑容器的受力情况,合理设计容器的结构形式和壁厚,确保容器在工作压力下不会发生破坏。

在制造工艺方面,应严格按照相关的制造标准进行制造,确保容器的质量和安全性。

在检验和试验方面,应进行严格的检验和试验,确保容器的质量符合要求。

其次,各国针对压力容器制定了相应的设计标准。

例如,美国制定了ASME压力容器设计标准,欧洲制定了PED压力设备指令,中国制定了GB150压力容器标准等。

这些标准包括了压力容器设计、制造、安装、验收和使用等方面的要求,对压力容器的安全性和可靠性起着重要的指导作用。

最后,压力容器设计标准的遵守对于保障压力容器的安全运行至关重要。

设计人员应严格按照相关的设计标准进行设计,制造单位应严格按照相关的制造标准进行制造,使用单位应严格按照相关的使用标准进行使用和维护。

只有这样,才能确保压力容器在工作中不会发生泄漏、爆炸等事故,保障人员和设备的安全。

综上所述,压力容器设计标准是确保压力容器安全运行的重要保障,设计人员、制造单位和使用单位都应严格遵守相关的标准要求,共同维护压力容器的安全性。

希望本文对压力容器设计标准有所帮助,谢谢阅读!。

如何确定压力容器的设计压力和计算压力

如何确定压力容器的设计压力和计算压力

如何确定压力容器的设计压力和计算压力压力容器的设计压力压力容器是一种负责储存和运输高压或低温气体或液体物质的容器。

由于受到高压力或低温的影响,压力容器设计必须十分严谨,才能够避免发生意外事故。

在压力容器的设计和制造过程中,确定设计压力是非常重要的一步。

设计压力指的是压力容器在使用过程中所能承受的最大压力,通常以内压为基础。

确定设计压力可以确保压力容器不会在使用过程中超负荷工作,保证其安全性能。

一般而言,压力容器的设计压力需要考虑以下因素:1.内容物的特性及储放状态;2.工作温度及压力温度范围;3.容器的材料及制造工艺;4.容器的设计参数。

其中容器的设计参数包括设计温度,容器材料,容器结构形式等。

这些参数都会影响到设计压力的大小。

因此,在确定设计压力时一定要考虑这些综合因素,并参考国家相关标准来进行设计计算。

压力容器的计算压力压力容器的计算压力也是非常重要的一部分,它是指储存于压力容器内液体或气体之间的压力。

确定计算压力可以帮助设计方确定容器的最大使用压力,从而更好地满足用户的需求。

对于确定压力容器的计算压力,一般采用双向压力法和单向压力法两种方法。

双向压力法在双向压力法中,设计人员需要综合考虑容器的外压力和内压力,以便计算出容器的可承受压力。

使用双向压力法时,设计人员需要将所有可能产生压力的因素纳入计算,通常有以下几个因素:1.内压力2.外压力3.风载荷4.地震力5.液位高度设计人员需要计算这些因素的总和,从而确定容器最大的承受压力。

单向压力法在单向压力法中,设计人员只考虑容器的内压力以及容器在稳定状态下的承受能力。

而忽略其他来源的压力,设计人员会按照以下步骤来进行计算:1.根据使用需求,确定容器的工作温度和工作压力;2.选择合适的材料,计算出容器的瞬时强度;3.通过成形过程的分析和测试,确定容器壁的厚度;4.确定容器的容积,计算出容器的有效长度;5.根据容器的有效长度,计算容器的允许使用最大工作压力。

压力容器设计PPT课件

压力容器设计PPT课件

案例三:核反应堆压力壳设计
总结词
核反应堆压力壳设计案例展示了压力容器在核能领域的应用。
详细描述
该案例介绍了核反应堆压力壳的设计过程,包括结构设计、材料选择、焊接工艺、无损检测等方面的 内容。同时,该案例还强调了设计过程中需要考虑的核安全法规和标准,以确保压力壳在使用过程中 的可靠性和安全性。
THANK YOU
设计压力
根据容器的工作压力和设计压力,确 定容器的设计压力,确保容器在使用 过程中不会发生破裂或泄漏。
安全系数
为确保容器的安全性能,根据不同的 载荷和应力情况,选取适当的安全系 数进行强度设计。
疲劳强度设计
疲劳分析
对容器在交变压力作用下的疲劳寿命进行分析,考虑容器的使用周期和材料性 能等因素。
疲劳强度校核
案例二:加氢反应器设计
总结词
加氢反应器设计案例展示了压力容器在化工领域的应用。
详细描述
该案例介绍了加氢反应器的设计过程,包括工艺流程、反应原理、设备结构、材料选择等方面的内容。同时,该 案例还强调了设计过程中需要考虑的工艺参数、热力学和动力学等方面的因素,以确保反应器在使用过程中的高 效性和稳定性。
封头厚度
封头与筒体的连接
采用焊接或法兰连接方式,需考虑连 接处的强度和密封性能。
根据压力、温度、介质特性和封头类 型等因素确定封头厚度。
开孔与接管设计
开孔位置
根据工艺流程、操作要求和容器 结构等因素确定开孔位置。
接管类型
根据介质特性和工艺要求选择合适 的接管类型,如螺纹接管、焊接接 管和法兰接管等。
超压试验
03
模拟容器内部压力超过正常工作压力的情况,以检验容器的安
全性能。
压力试验的方法与步骤

第4章 压力容器设计

第4章 压力容器设计
过程设备设计
第4章 压力容器设计
第4章 压力容器设计
第4.1节 概述
过程设备设计
第4-1节 概述
压力容器设计就是根据给定的工艺设计条 件,遵循现行的规范标准规定,在确保安全的 前提下,经济、正确地选择材料,并进行结构 设计、强(刚)度、稳定性计算和密封设计。 结构设计主要是确定合理、经济的结构形 式,并满足制造、检验、装配、运输和维修等 要求。 强(刚)度、稳定性计算的内容主要是确 定结构尺寸,满足强度或刚度及稳定性的要求。


相应的设计准则:
1 t 2 2 2 1 2 2 3 3 1 2
4 5
郑州大学化工与能源学院
过程设备设计
第4-2节 设计准则
2、塑性失效设计准则:假设材料是理想弹 塑性的,它是以整个危险面屈服作为失效的设 计准则。 对内压厚壁圆筒,整个截面屈服时的压力 就是全屈服压力pso 。 塑性失效判据:p=pso(p为设计压力) 相应的设计准则:p≰pso/nso 3、爆破失效设计准则:它是以容器的爆破 作为失效准则。 相应的设计准则:p≰pb/nb
郑州大学化工与能源学院
过程设备设计
第4-1节 概述
当采用计算机软件进行计算时,软件必须 经“全国锅炉压力容器标准化技术委员会”评 审鉴定,并在国家质量监督检验检疫总局特种 设备局认证备案,打印结果中应有软件程序编 号、输入数据和计算结果等内容。 如SW-6计算软件。 ⑵ 设计图样: 它包括总图(装配图)和零部件图。
第4-2节 设计准则
2、刚度失效 由于构件过度的弹性变形足以影响到其正常 工作而引起的失效。 3、失稳失效 在压应力作用下,压力容器突然失去其原有 的规则几何形状引起的失效。 4、泄露失效 说明:在多种因素作用下,压力容器有可能 同时发生多种形式的失效,即交互失效,如腐蚀 介质和交变应力同时作用时引发腐蚀疲劳,高温 和交变应力同时作用时引发蠕变疲劳等。

压力容器设计

压力容器设计
摘要
压力容器作为承受高压气体或液体的设备,在工业生产中扮演着重要的角色。

本文将介绍压力容器的设计原理、材料选取、结构设计以及安全性考虑等内容,从而帮助读者更好地了解压力容器的设计过程。

引言
压力容器是用于存储和传输气体或液体的设备,常见于化工、石油、航空航天等领域。

其设计涉及到材料力学、流体力学等多个学科,具有较高的技术要求。

本文将围绕压力容器设计展开详细的介绍。

压力容器的设计原理
在设计压力容器时,需要考虑到承受的压力、温度、介质等因素。

根据理想气体状态方程和安全系数要求等,可以确定压力容器的设计压力等参数。

同时,还需考虑到容器的结构形式,如球形、圆柱形等,以及容器的连接方式等因素。

压力容器的材料选择
压力容器的材料选择至关重要,常见的材料包括碳钢、不锈钢、铝合金等。

选择合适的材料可以提高容器的承压能力和耐腐蚀性能,从而确保容器的安全运行。

压力容器的结构设计
压力容器的结构设计需要考虑到容器的强度、刚度、稳定性等因素。

通过有限元分析等方法,可以优化容器的结构形式,提高容器的整体性能。

压力容器的安全性考虑
在设计压力容器时,安全性是至关重要的考虑因素。

除了满足设计要求外,还需要考虑到容器的泄漏、爆炸等安全问题。

通过完善的安全防护装置和监控系统,可以提高压力容器的安全性。

结论
压力容器作为重要的工业设备,在设计时需要考虑到多个因素,如材料选择、结构设计、安全性等。

通过本文对压力容器设计的介绍,希望读者能够更好地理解压力容器的设计原理和要求,为工程实践提供参考。

压力容器常见结构的设计计算方法

压力容器常见结构的设计计算方法压力容器是一种常用的装置,用于存储和运输高压流体或气体。

压力容器的设计计算是确保容器在设计压力范围内安全运行的关键步骤。

常见压力容器的设计计算方法主要包括材料选择、壁厚计算、接缝焊缝设计和支撑设计等。

首先,在压力容器的设计计算中,材料选择是非常重要的一步。

根据工作环境和储存介质的性质,应当选择适合的材料,如碳钢、不锈钢、镍合金等。

材料的选择应考虑到其机械性能(强度、韧性)、抗腐蚀性能和焊接性能等。

其次,壁厚计算是压力容器设计计算中的关键步骤。

根据设计压力、储存介质的性质、容器尺寸和形状等因素,可以采用ASMEVIII-1或其他相关设计规范进行壁厚计算。

壁厚计算要确保容器在设计压力下不会发生永久性塑性变形或失稳。

接着,接缝焊缝设计是压力容器设计计算中的另一个关键步骤。

焊缝是容器的弱点,其设计要考虑焊接工艺、焊缝质量要求和应力分布等。

根据相关规范,例如ASMEIX,应对焊缝进行强度计算和疲劳分析,以确保焊缝的可靠性和耐久性。

最后,支撑设计是压力容器设计计算中的重要环节。

支撑结构的设计要考虑到容器的重量、形状和运行条件等因素。

一般常见的支撑结构包括支座、支撑脚和支撑环等。

在设计计算中,应根据容器的重量和载荷进行支撑结构的强度计算和稳定性分析。

需要注意的是,良好的压力容器设计计算不仅要遵循相关规范和标准,还应考虑实际运行条件和安全要求。

因此,在进行设计计算之前,应对工作环境、储存介质的特性、容器的运行周期和压力变化等进行充分的分析和评估。

总之,压力容器的设计计算涉及多个方面,包括材料选择、壁厚计算、接缝焊缝设计和支撑设计等。

在进行设计计算时,需要遵循相关规范和标准,并结合实际情况和安全要求进行综合考虑,以确保设计的压力容器安全可靠地运行。

压力容器设计

压力容器设计基础一.概述1、标准适用的压力范围GB150-1998《钢制压力容器》设计压力P:0.1~35 MPa真空度:≥0.02 MPaGB151-1999《管壳式换热器》设计压力P:0.1~35 MPa真空度:≥0.02 MPa公称压力PN≤35 MPa,公称直径DN≤2600mmPN•DN≤1.75×104JB4732-95《钢制压力容器-分析设计标准》设计压力P:0.1~100 MPa真空度:≥0.02 MPaJB/T4735-1997《钢制焊接常压容器》设计压力P:圆筒形容器:-0.02 MPa≤P≤0.1 MPa立式圆筒形储罐、圆筒形料仓 -500Pa≤P≤0.2000 Pa矩形容器:连通大气GB12337-1998《钢制球形储罐》设计压力P≤4MPa,公称容积V≥50M3 JB4710-2000 《钢制塔式容器》设计压力P:0.1~35MPa(对工作压力<0.1MPa内压塔器,P取 0.1MPa)高度范围 h>10m 且h/D(直径)>52.设计时应考虑的载荷1)内压、外压或最大压差;2)液体静压力(≥5%P);需要时,还应考虑以下载荷3)容器的自重(内件和填料),以及正常工作条件下或压力试验状态下内装物料的重力载荷;4)附属设备及隔热材料、衬里、管道、扶梯、平台等的重力载荷;5)风载荷、地震力、雪载荷;6)支座、座底圈、支耳及其他形式支撑件的反作用力;7)连接管道和其他部件的作用力;8)温度梯度或热膨胀量不同引起的作用力;9)包括压力急剧波动的冲击载荷;10)冲击反力,如流体冲击引起的反力等;11)运输或吊装时的作用力。

3、设计单位的职责1)设计单位应对设计文件的正确性和完整性负责。

2)压力容器的设计文件至少应包括设计计算书和设计图样。

3)压力容器的设计总图应盖有压力容器设计资格印章。

4.容器范围GB150管辖的容器范围是指壳体及其连为整体的受压零部件1)容器与外部管道连接2)接管、人孔、手孔等的承压封头、平盖及其紧固件3)非受压元件与受压元件的焊接接头。

第四讲:压力容器设计

化工常用标准椭圆形封头,a/b=2,故
顶点处:
边缘处:
顶点应力最大,经向应力与环向应力是相等的拉应力。 顶点的经向应力比边缘处的经向应力大一倍; 顶点处的环向应力和边缘处相等但符号相反。 应力值连续变化。
(4-3)——平衡方程
(4-4)——区域平衡方程
无力矩理论基本方程式:
三、基本方程式的应用
1.圆筒形壳体 第一曲率半径R1=∞, 第二曲率半径R2=D/2 代入方程(4-3)和(4-4)得:
与式(4-1)、(4-2)同。
2.球形壳体
2.球形壳体
球壳 R1=R2=D/2,得:
六、最小壁厚
设计压力较低的容器计算厚度很薄。 大型容器刚度不足,不满足运输、安装。 限定最小厚度以满足刚度和稳定性要求。
壳体加工成形后不包括腐蚀裕量最小厚度dmin: a. 碳素钢和低合金钢制容器不小于3mm b.对高合金钢制容器,不小于2mm
七、压力试验
为什麽要进行压力试验呢? 制造加工过程不完善,导致不安全,发生过大变形或渗漏。 最常用的压力试验方法是液压试验。 常温水。也可用不会发生危险的其它液体 试验时液体的温度应低于其闪点或沸点。
压力试验时,由于容器承受的压力pT 高于设计压力p,故必要时需进行强度效核。
气压试验
(4-18
(4-20)
pT -试验压力, MPa; p -设计压力, MPa; [s] 一试验温度下的材料许用应力, MPa; [s]T 一设计温度下的材料许用应力, MPa
液压试验时水温不能过低(碳素钢、16MnR不低于5℃,其它低合金钢不低于15℃),外壳应保持干燥。 设备充满水后,待壁温大致相等时,缓慢升压到规定试验压力,稳压30min,然后将压力降低到设计压力,保持30min以检查有无损坏,有无宏观变形,有无泄漏及微量渗透。 水压试验后及时排水,用压缩空气及其它惰性气体,将容器内表面吹干
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

壁厚满足要求
韧性断裂
压力容器在载荷作用下,应力达到或接近材料 的强度极限而发生的断裂。 特点
断裂前发生较大的塑性变形,容器发生明显的鼓 胀,断口处厚度减薄,断裂时几乎不形成碎片。 失效原因 ① 容器厚度不够。 ② 压力过大。
返回
脆性断裂
(低应力脆断)
器壁中的应力远低于材料强度极限时发生的断裂。
特点
pc ( Di e ) [ ]t 2 e
t
最大允许工作压力
2 e [ ]t [ pw ] Di e
pc 0.4 ]t 时(单层厚壁圆筒) [
按塑性失效设计准则:
Ri ( K 1) Ri (e
按爆破失效设计准则:
3ns 0 p 2 s
水压试验压力PT 1.25P [ ] 1.25 1.6 2.0 MPa t [ ]
PT gh 2.0 1000 9.8 4.5 106 2.044MPa
T
PT ( Di e ) 135.3MPa 0.9 s 211.5MPa 2 e
厚壁圆筒
(
D0
e
20)
需同时考虑稳定性和强度
2.25 ) ( D / 0.0625 B (稳定性) 0 e [ P] min 2 0 (1 D0 ) (强度) D0 / e e
2[ ]t 0 min 其中: t 0.9 st 或0.9 0.2
(2)整体绕制,无环焊缝。
(3)带层呈网状,不会整体裂开。 扁平钢带倾角错绕式 (4)扁平钢带成本低,绕制方便。
内压圆筒强度设计
单层内压圆筒
壁厚计算
pc Di t 2[ ] pc
pc 计算压力
焊接接头系数
适用范围: c 0.4 ]t p [
强度校核
工作应力
1)
Ri ( K 1) Ri (e
2 s ( 2 s ) b
3nb
p
1)
多层圆筒壁厚
pc Di 2[ ]t pc
注意
i 0 t [ ] [ i ] i [ 0 ]t 0 n n
t
最小厚度
碳素钢、低合金钢制容器:δmin≥3mm
特点
① 对于全面腐蚀和局部腐蚀,容器断裂前发 生明显的塑性变形,具有韧性断裂的特征。 ② 对于晶间腐蚀和应力腐蚀,断裂前无明显 塑性变形,具有脆性断裂的特征。
失效原因
介质腐蚀
返回
解析法
外压圆筒设计
图解法
短圆筒的临界压力
D0 pcr 2.59E L ( ) D0
长圆筒的临界压力
3
(
e
)
2.5
轴向受压圆筒:
E e cr 0.25 Ri
(m=4)
图算法
设计压力
1、真空容器 1.25( p 0 p i ) max 有安全装置时:p min
0.1MPa
设计参数 的规定
无安全装置时:p=0.1Mpa 2、带夹套的真空容器 p取真空容器的设计压力加上夹套压力
3、其它外压容器(包括带夹套的外压容器) p应不小于容器正常工作过程中可能出现的最大 内外压力差 即:p≥(p0-pi)max 注意:最大内外压差的取值
2、强度校核
pT ( Di e ) T 0.9 S ( 0.2 ) 2 e
注意 如果直立容器卧置进行液压试验,则在应力校 核时,PT 应加上容器立置充满水时的最大液柱 压力。
气压试验
1、气压试验
[ ] p 1.15 p ● 内压容器: T [ ]t

外压容器和真空容器: pT 1.15 p
特点
① 断口上有贝纹状的疲劳裂纹。 ② 断裂时容器整体应力较低,断裂前无明显塑 性变形。 ③ 如果材料韧性较好,通过合理设计可实现 “未爆先漏”。
失效原因
① 交变载荷。 ② 疲劳裂纹。
返回
蠕变断裂
压力容器长时间在高温下受载,材料的蠕变变形会 随时间而增长,容器发生鼓胀变形,厚度明显减薄, 最终导致压力容器断裂。
第4章 压力容器设计

§4-1 概述
压力容器设计 基本要求
安全 经济
合理选取结构、 材料、参数等
合理选择设计方法
常规设计和分析设计结果比较
压力容器设计 基本内容
、检验等方面 结构设计 — 满足工艺、制造、使用 理、经济的结构形式。 的要求,设计简单、合 强度和刚度设计— 通过强度和刚度计算, 确定零 主要设计内容 适的材料。 部件结构尺寸,选择合 密封设计 — 选择或设计合理的密封 结构,选择合 适的密封材料。
工作介质 压力和温度 设计要求 操作方式和要求 其它(材料、设计寿命 、腐蚀速率、保温条件 等)
§4-2 设计准则
强度失效 刚度失效 压力容器的失效形式 失稳失效 泄漏失效 交互失效
韧性断裂 脆性断裂 强度失效形式疲劳断裂 蠕变断裂 腐蚀断裂
压力容器失效判据
—判断压力容器是否失效
由力学分析得到力学分析结果
由实验测得失效数值
失效判据
压力容器设计准则
强度失效设计准则 刚度失效设计准则 压力容器设计准则 稳定失效设计准则 泄漏失效设计准则
弹性失效设计准则 塑性失效设计准则 爆破失效设计准则 强度失效设计准则 弹塑性失效设计准则 疲劳失效设计准则 蠕变失效设计准则 脆性断裂失效设计准则
单层式圆筒的优点:不存在层间 松动等薄弱环节,能较好地保证 筒体的强度。 单层式圆筒的缺点:
1、单层厚壁圆筒对制造设备的要 求高。 2、材料的浪费大。
3、锻焊式圆筒存在较深的纵、环 焊缝,不便于焊接和检验。
层板包扎式
优点 (1)对加工设备的要求不高。 (2)压缩预应力可防止裂纹的扩展。 (3)内筒可采用不锈钢防腐。 (4)层板厚度薄,韧性好,不易发 生脆性断裂。
高合金钢制容器:δmin≥2mm
设计参数的选取
设计压力p
1、设计压力由工艺条件确定,在设计过程中是一个 定值;工作压力在容器正常工作过程中可能变动,容 器顶部和底部的工作压力也可能不同。 2、要求设计压力不低于最大工作压力。 即:P≥ PW 3、PC= P+PL (当PL≤5% P时, PL可忽略不计)
设计压力的规定
1、容器上装有安全阀时
P=(1.05~1.10)PW 2、容器上装有爆破膜时 P=(1.15~1.30)PW 3、盛装液化气体的容器 设计压力取工作时可能达到的最高温度下 液化气体的饱和蒸气压
设计温度t
----容器在正常工作情况下设定元件的金属温度。 元件金属温度高于零度时,设计温度不得低于元 件可能达到的最高温度;
① 断口平齐,且与最大主应力方向垂直。 ② 容器断裂时可能裂成碎片飞出,往往引起严重 后果。 ③ 断裂前没有明显塑性变形,断裂时应力很低, 安全阀、爆破膜等安全附件不起作用,断裂具有 突发性。
失效原因
① 材料的脆性。 ② 材料中的裂纹、未焊透、夹渣等缺陷。
返回
疲劳断裂
在交变载荷作用下,由于材料中的裂纹扩展导致容器的断裂。

Pc Di 1.6 1800 12.83m m 2[ ]t PC 2 113 1.0 1.6
n C1 C 2 12.83 1.5 0.8
15.13 0.87 16m m
n C 2 min
e pcr 2.2 E D 0
几 何 参 数 计 算 图
壁 厚 计 算 图
外压圆筒设计设计步骤:
薄壁圆筒
假设δn
(
D0
e
20)
计算δe
计算(D0/δe)和(L / D0)
几何参数计算图(A)
壁厚计算图(B) 验算PC≤[P],若满足,则假设δn 合适,否则重新计算。
2、强度校核
pT ( Di e ) T 0.8 S ( 0.2 ) 2 e
气密性试验

容器上没有安全泄放装置,气密性试验压力 PT=1.0P。
容器上设置了安全泄放装置,气密性试验压力应 低于安全阀的开启压力或爆破片的设计爆破压力。

通常取PT=1.0PW。
练习题
设 计 压 力 为 1 . 6 Mpa 的 储 液 罐 罐 体 , 材 料 Q235-A, Di=1800mm, 罐 体 高 度 4 5 0 0 mm, 液 料 高 度 3 0 0 0 mm, C1=0.8mm,腐蚀裕量C2=1.5mm,焊缝系数φ=1.0,液体密 度为1325kg/m3,罐内最高工作温度50º 。 C 试计算罐体厚度并进行水压试验应力校核。
特点
① 在恒定载荷和低应力(应力低于屈服点)下 也会发生蠕变断裂。 ② 蠕变断裂前材料会由于蠕变变形而导致蠕变 损伤,使材料在性能上产生蠕变脆化。
③ 断裂前发生较大的塑性变形,具有韧性断裂 的特征;断裂时又具有脆性断裂的特征。
失效原因
高温蠕变
返回
腐蚀断裂
材料受到介质腐蚀(全面腐蚀或局部腐蚀),形成容器整 体厚度减薄或局部凹坑、裂纹等,从而造成容器的断裂。
缺点 (1)包扎工序繁琐,费工费时,效率低。
(2)层板材料利用率低。3)层间松动问题。
整体多层包扎式
热套式
优点
(1)套合层数少,效率高,成本低。 (2)纵焊缝质量容易保证。
缺点
(1)只能套合短筒,筒节间深环焊缝多。 (2)要求准确的过盈量,对筒节的制造要求高。
绕板式
优点:(1)机械化程度高,操作简便,材料利用率高。 优点
注 : Q235-A 材 料 的 许 用 应 力 [ σ]20=113MPa , [σ]50=113MPa,屈服极限σS=235 Mpa 试确定罐体厚度并进行水压试验校核。
相关文档
最新文档