高中化学之化学键知识点
【高中化学】高中化学键知识点总结集锦

【高中化学】高中化学键知识点总结集锦化学知识点是同学们化学学习中的重要部分,大家一定要认真掌握,小学频道为大家整理了高中化学键知识点总结集锦,让我们一起学习,一起进步吧!知识点概述化学键是一个非常重要的高中化学知识点,难度不大。
本篇文章对化学键相关的知识做了全方位的总结。
知识点概述本部分知识主要包含:化学键的定义、化学键的比较、原子的电子式、简单阴阳离子的电子式、原子团的电子式、离子化合物的电子式、共价化合物的电子式、离子间的形成、共价键的形成、结构式的书写、极性键与非极性键的比较、分子的极性、键的极性与分子极性的关系等知识。
主要的知识点是:1.结合离子或原子的力称为化学键。
化学键是一种强烈的相互作用。
所谓“强”是指电子在原子之间的转移,即普通电子对的移动或电子的增益和损耗。
2、原子的电子式:常把其最外层电子数用小黑点“·”或小叉“×”来表示。
4.简单阳离子的电子式:简单阳离子是由金属原子的电子损失形成的。
原子的最外层没有电子,因此它们由阳离子符号表示,如Na+、Li+、Ca2+、Al3+等。
5、原子团的电子式:书写原子团的电子式时,不仅要画出各原子最外层电子数,而且还应用括号“[]”括起来,并在右上角标出“n—”或“n+”电荷字样。
6.离子化合物的电子式:在离子化合物形成过程中,活性金属离子失去电子,成为金属阳离子。
活跃的非金属离子获得电子并成为非金属阴离子。
然后,阴阳离子通过静电作用结合成离子键,形成离子化合物。
因此,离子化合物的电子式由带括号的阳离子和阴离子组成,简单阳离子不携带最外层电子,而阴离子应指示最外层电子的数量。
7、共价化合物的电子式:在共价化合物中,原子之间是通过共用电子对形成的共价键的作用结合在一起的,所以本身没有阴阳离子,因此不会出现阴阳离子和中括号。
8.离子键的形成:当原子参与化学反应时,它们倾向于通过获得和失去电子或形成公共电子对,将其结构转变为稳定的结构。
9,高中化学-化学键

化学键化学键物质结构原子结构同位素等电子粒子化学键原子核核外电子电子层最外层电子核外电子的排布规律Z:质子数N:中子数A:质量数原子中微粒的量的关系常见“10”电子微粒常见“18”电子微粒符号:元素:具有相同核电荷数(即质子数)的同一类原子的总称XAZ核素:具有一定数目的质子和一定数目的中子的一种原子同位素:具有相同质子数而有不同中子数的同一类元素的不同核素之间的互称同位素、同素异形体、同系物、同分异构体之间的区别概念分类表示方法离子键共价键极性共价键非极性共价键与物质类别的关系离子化合物共价化合物结构式电子式使离子相结合或使原子相结合的作用力一、原子的构成【小结】原子、离子中粒子间的数量关系:1.核内质子数(Z)= 核电荷数= 原子核外电子数= 原子序数;2.质量数(A)= 质子数(Z)+中子数(N);3.质量数≈相对原子质量二、原子核外的电子排布规律1.电子层数(n)1234567字母符号K L M N O P Q最多容纳电子数(2n2)281832……2n22.(1)各电子层最多容纳的电子数是2n2个(n表示电子层序数)。
(2)最外层电子数不超过8个(K层是最外层时最多不超过2个);(3)次外层电子数不超过18个;倒数第三层不超过32个。
(4)核外电子总是最先排布在能量最低的电子层,然后由里向外从能量低的电子层逐步向能量高的电子层排布。
3.短周期元素的原子结构特征(1)最外层电子数等于次外层电子数的元素是Be、Ar;(2)最外层电子数是次外层电子数2倍的元素是C,是次外层电子数3倍的元素是O,是次外层电子数4倍的元素是Ne;(3)最外层电子数是电子层数2倍的元素是He、C、S;(4)电子层数与最外层电子数相等的元素是H、Be、Al;(5)电子总数为外层电子数2倍的元素是Be;(6)次外层电子数是最外层电子数2倍的元素是Si、Li;(7)内层电子数之和是最外层电子数2倍的元素是Li、P。
三、常见的等电子粒子(1)(2)元素核素同位素概念具有相同核电荷数(即质子数)的同一类原子的总称具有一定数目质子和一定数目中子的一种原子叫核素质子数相同而中子数不同的同一元素的不同核素互为同位素说明①决定元素种类的因素是核电荷数(即质子数)。
高中化学必修二化学键

(3)一般,对于组成和结构相似的物质,相对分子质量 越大,分子间作用力越大,物质的熔、沸点越高. 如卤素单质:
温度/℃ 250 200 150 100 50 -50 -100 -150 -200 -250
I2 100沸点熔点0 NhomakorabeaF2
50
Cl2 Cl2 F2
I2 150 Br2 Br2 200 250 相对分子质量
卤素单质的熔、沸点与 相对分子质量的关系
讨论:
为什么HF、 H2O和NH3 的沸点会反 常呢?
一些氢化物的沸点
1)形成:半径小且非金属性很强的F、O、N 的氢化物(HF、H2O和NH3)分子间形成氢
键 2)氢键不是化学键,氢键是一种较强的分子 间作用力,比化学键弱,但比分子间作用力强 3)分子间氢键的形成使物质的熔、沸点升高
2.氢键
考点一:化学键
:相邻原子或离子间的相互作用力 化学键
化 非极性共价键 学 键 离子键
共价键
极性共价键
一、离子键
(1)定义:阴、阳离子间的静电作用力
(2)构成离子键的粒子: 阴、阳离子
+ : 活泼金属元素阳离子 ,NH 阳离子 4 阴离子:活泼非金属元素阴离子,OH
(3)离子键的实质: 静电作用力 由离子键构成的化合物叫离子化合物
共价键:CH4
H2O HF 离子键与共价键: NH4Cl NaOH
阅读课本P23: 用化学键的观点分析化学反应的 本质?
化学反应的实质
反应物分子破裂
生成产物分子
旧化学键断裂
形成新化学键
一个化学反应的过程,本质上就是 旧化学键断裂和新化学键形成的过程
三、分子间作用力和氢 键 1.分子间作用力
高中化学化学键知识点

高中化学化学键知识点(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如演讲稿、总结报告、合同协议、方案大全、工作计划、学习计划、条据书信、致辞讲话、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this shop provides you with various types of classic sample essays, such as speech drafts, summary reports, contract agreements, project plans, work plans, study plans, letter letters, speeches, teaching materials, essays, other sample essays, etc. Want to know the format and writing of different sample essays, so stay tuned!高中化学化学键知识点化学键是纯净物分子内或晶体内相邻两个或多个原子(或离子)间强烈的相互作用力的统称。
高中化学化学键知识点【推荐】

高中化学化学键知识点【推荐】一、化学键的基本概念1. 原子与分子原子:物质的基本单位,由原子核和核外电子组成。
分子:两个或更多原子通过化学键连接在一起的稳定粒子。
2. 化学键的定义化学键是原子之间为达到更稳定状态而形成的强烈的相互作用力。
3. 化学键的形成化学键的形成是为了使原子达到更加稳定的电子排布,通常是接近于稀有气体的电子排布。
二、化学键的分类1. 离子键定义:通过正负离子之间的电荷吸引力形成的化学键。
通常形成于活泼金属和活泼非金属之间。
离子键没有方向性和饱和性。
离子化合物在熔融状态下能导电。
2. 共价键定义:通过原子间的共享电子对形成的化学键。
分类:非极性共价键:电子对均匀地分布在两个原子之间,如氢气(H2)。
极性共价键:电子对偏向电负性较大的原子,如水(H2O)。
特点:共价键有方向性和饱和性。
共价化合物的熔点一般较低。
3. 金属键定义:金属阳离子和自由电子之间的强烈相互作用。
金属键导致金属具有良好的导电性、导热性和延展性。
4. 配位键定义:一个原子提供孤电子对,另一个原子提供空轨道,形成的键。
特点:配位键常见于过渡金属的配合物中。
三、化学键的性质1. 键长键长是指两个原子核之间的平均距离。
2. 键能键能是指断开1摩尔化学键所需的能量。
3. 键角键角是指连接在中心原子上的两个原子之间的键与中心原子形成的角度。
四、化学键与物质性质的关系1. 熔点、沸点离子化合物:由于离子键的强度大,熔点和沸点一般较高。
共价化合物:由于共价键的强度相对较小,熔点和沸点一般较低。
2. 导电性离子化合物:在固态下不导电,但在熔融状态或水溶液中能导电。
共价化合物:大多数共价化合物在固态和液态下不导电。
3. 溶解性离子化合物:通常易溶于水,因为水分子可以与离子形成水合层。
共价化合物:溶解性取决于其与溶剂分子的相互作用。
五、化学键的实际应用1. 药物设计药物分子通过与生物体内的分子形成特定的化学键,来发挥其生理作用。
高中化学知识点:化学键

高中化学知识点:化学键化学键是指原子之间通过共用电子或转移电子而形成的化学连接。
它是构成分子和化合物的基本组成部分,决定了物质的性质和反应能力。
共价键共价键是原子通过共享电子对而形成的化学键。
在共价键中,电子是由多个原子共享,形成共有价电子对。
共价键的强度取决于原子间的电子云重叠程度,电子云重叠越大,共价键越强。
常见的共价键包括单键、双键和三键。
单键由一个共价电子对组成,双键由两个共价电子对组成,三键由三个共价电子对组成。
共价键的性质包括键长和键能,键长越短,键能越大。
离子键离子键是通过正离子和负离子之间的电荷吸引力而形成的化学键。
在离子键中,正离子失去电子而成为阳离子,负离子获得电子而成为阴离子。
离子键的强度取决于正负离子电荷的大小和距离。
常见的离子键包括金属离子键和非金属离子键。
金属离子键是金属原子通过失去电子形成正离子,与电子数目较少的非金属原子形成化合物。
非金属离子键是非金属元素通过接受电子形成负离子,与电子数目较多的金属原子形成化合物。
极性共价键极性共价键是一种特殊的共价键,其中电子不对称地分布在共享原子之间。
一个原子更强烈地吸引共享电子,形成部分正电荷,另一个原子形成部分负电荷。
这种不均匀的电子分布称为极性。
极性共价键的性质包括极性度和偶极矩。
极性度是衡量极性共价键极性程度的物理量,用来表示共价键电子云偏移程度。
偶极矩是与极性共价键相关联的物理量,它衡量了共价键两个极性电荷之间的距离和电荷大小。
金属键金属键是金属原子通过自由电子云而形成的化学键。
金属原子失去电子形成正离子,这些正离子形成常规网络结构,并被自由流动的电子云所包围。
金属键的强度取决于电子云的密度和离子核的电荷。
金属键的性质包括导电性和导热性。
金属键中的自由电子使得金属具有良好的导电性和导热性,这是因为电子能够在金属结构中自由移动。
以上是高中化学中关于化学键的知识点。
化学键的类型和性质对于理解化学反应和物质性质有着重要的影响。
高中化学必修一4.4化学键-知识点

9、共价化合物的形成过程也可以用电子式表示,比如: 。
10、一个原子中有几个可以共用的未成对电子,就可以形成几个共价键。例如,一个氧原子、氮原子和碳原子可以分别形成二、三、四个共价键,它们分别和氢原子结合成H20、NH3、CH4等共价分子。在化学上常用一条短线来表示一对共用电子,比如:氯化氢分子:H-Cl,这种式子叫做结构式。
3、离子化合物的形成过程可用电子式来表示,例如: 。
4、需要掌握一些复杂离子以及常见离子化合物的电子式。
离子
铵根离子
氢氧根离子
过氧根离子
硫酸根离子
电子式
离子化合物
AB型:NaCl
AB型:CaO
AB2型:MgCl2
A2B型:Na2O
A2B2型:Na2O2
电子式
5、离子化合物一般都有较高的熔点和沸点,硬度也较大。离子化合物受热熔化时可以导电,是因为离子键在高温下被破坏后可以自由运动;离子化合物溶于水后也能导电,是由于水分子作用,离子键被破坏而形成自由移动的离子。
6、原子失去电子并形成正离子时,半径一般会变小;当原子获得电子并形成负离子时,半径一般会增大。
7、共价键:原子间通过共用电子对所形成的化学键。同种原子之间形成非极性共价键,不同种原子之间形成极性共价键。仅以共价键形成的化合物叫做共价化合物,例如:水、乙醇、蔗糖等。
8、一种化合物,如果既有共价键,也有离子键,则属于离子化合物,比如NaOH,氢氧根中含有极性共价键,但氢氧根和钠离子是以离子键结合。
高中化学化学键知识点2024

高中化学化学键知识点2024一、化学键的基本概念1. 化学键的定义化学键是相邻原子或离子之间强烈的相互作用,这种作用使得原子或离子结合成稳定的分子或晶体。
化学键的形成和断裂是化学反应的本质。
2. 化学键的分类根据形成方式和性质的不同,化学键主要分为以下几类:离子键:由正负离子之间的静电引力形成。
共价键:由原子间共享电子对形成。
金属键:由金属原子中的自由电子与金属阳离子之间的相互作用形成。
分子间作用力:包括范德华力、氢键等,虽然不属于化学键,但对物质的性质有重要影响。
二、离子键1. 离子键的形成离子键通常在金属和非金属元素之间形成。
金属原子失去电子形成阳离子,非金属原子获得电子形成阴离子,阳离子和阴离子通过静电引力结合在一起。
2. 离子键的特点高熔点和沸点:由于离子键较强,需要大量能量才能打破。
导电性:在熔融状态或水溶液中,离子可以自由移动,因此具有导电性。
硬度大、脆性大:离子晶体结构紧密,但受外力时容易发生离子层错位,导致脆性。
3. 离子键的实例NaCl(氯化钠):钠失去一个电子形成Na⁺,氯获得一个电子形成Cl⁻,两者通过离子键结合。
CaO(氧化钙):钙失去两个电子形成Ca²⁺,氧获得两个电子形成O²⁻,形成离子键。
三、共价键1. 共价键的形成共价键通常在非金属元素之间形成。
原子通过共享电子对达到稳定的电子构型。
2. 共价键的类型单键:共享一对电子,如H₂中的HH键。
双键:共享两对电子,如O₂中的O=O键。
三键:共享三对电子,如N₂中的N≡N键。
3. 共价键的特点方向性:共价键的形成依赖于原子轨道的重叠,因此具有方向性。
饱和性:每个原子能形成的共价键数量有限,取决于其未成对电子的数量。
极性:根据共享电子对的偏移情况,共价键可分为极性共价键和非极性共价键。
4. 共价键的实例H₂(氢气):两个氢原子通过共享一对电子形成HH键。
CO₂(二氧化碳):碳和氧通过双键形成O=C=O结构。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中化学之化学键知识点
一、离子键
【实验】取一块绿豆大的金属钠(切去氧化层),用滤纸吸净煤油,放在石棉网上,用酒精灯微热。
待钠熔成球状时,将盛有氯气的集气瓶迅速扣在钠上方。
2Na + Cl22NaCl
根据钠原子和氯原子的核外电子排布,钠原子要达到8电子的稳定结构,需要失去1个电子;而氯原子要达到8电子稳定结构,就需要获得一个电子。
钠与氯气反应是,钠原子的最外层电子上的1个电子转移到氯原子的最外电子层上,形成带正电的钠离子和带负电的氯原子。
带相反电荷的钠离子和氯离子,通过静电作用结合在一起,从而形成单质钠和了长期性质完全不同的氯化钠。
1.概念:阴、阳离子通过静电作用而形成的化学键。
①成键微粒:活泼金属的阳离子与活泼非金属的阴离子。
②成键本质:阴阳离子的静电作用。
2.离子化合物:由离子键构成的化合物。
(1)活波金属与活泼非金属形成的化合物。
如:
(2)强碱。
如:NaOH、KOH等。
(3)大多数盐。
如:等。
注意:酸不是离子化合物。
离子化合物一定存在离子键,有离子键的化合物一定是离子化合物。
3.电子式表示形成过程:
二、共价键
氯原子的最外层由七个电子,要达到稳定的8电子结构,都需要获得1个电子,所以氯原子间难以发生电子得失;如果两个氯原子各提供一个电子,形成共用电子对,两个氯原子就都形成了8电子稳定结构
1.概念:原子之间通过共用电子对所形成的相互作用。
①成键微粒:原子(非金属)。
②成键本质:原子间通过共用电子对所产生的相互作用。
2.共价化合物:以共用电子对形成分子的化合物叫共价化合物。
共价键的存在:
非金属单质:等。
共价化合物:等。
复杂离子化合物:强碱、铵盐、含氧酸盐。
3.电子式表示形成过程:
4.共价键的分类
①极性共价键:在不同种元素的原子间形成的共价键为极性共价键。
共用电子对偏向吸引能力强的一方。
如:H2O CO2②非极性共价键:在同种元素的原子间形成的共价键为非极性共价键。
共用电字对不发生偏移。
如:H2Cl2
三、化学键
1.概念:人们把使离子相结合或原子相结合的作用力通常称为化学键
化学反应的实质:在化学反应过程当中,包含着反应物分子内化学键的断裂和产物分子中化学键的形成。
2. 金属键与范德华力、氢键
水结冰时体积膨胀,密度减少是氢键的缘故,水蒸气中水分子间距离河大,故水蒸气中不存在氢键;氨极易溶于水,极易液化也是因其有氢键造成的。
3..氢键
(1)氢键的形成条件
如两个分子中都存在强极性共价键X-H 或Y-H ,共中X、Y 为原子半径较小,非金属性很强的原子F、O、N。
若两个为同一种分子,X、Y 为同一种原子;若两个是不同的分子,X、Y 则为不同的原子。
当一个分子中的氢与另一个分子中的X 或Y 充分接近,两分子则产生较强的静电吸引作用。
这种由氢原子与另一分子中原子半径较小,非金属性
很强的原子形成的吸引作用称为氢键。
可表示为X-H…Y -H .可见只有在分子中具有H-F、H-O、H-N 等结构条件的分子间才能形成氢键。
氢键不属于化学键,其强度比化学键弱得多,通常归入分子间力(范德华力),但它比分子间作用力稍强。
(2)氢键对物质物理性质的影响
氢键的形成加强了分子间的作用力,使物质的熔沸点较没有氢键的同类物质高,如HF、H2O、NH3的沸点都比它们各自同族元素的氢化物高。
又如乙醇的沸点(70℃)也比乙烷的沸点(-86℃)高出很多。
此外,如NH3、C2H5OH、CH3COOH 由于它们能与水形成氢键,使得它们在水中的溶解度较其它同类物质大。