入侵检测技术综述

合集下载

入侵检测技术研究综述

入侵检测技术研究综述

入侵检测技术研究综述提要本文介绍入侵及入侵检测的概念,分析各种入侵检测技术与特点。

关键词:入侵;异常数据;入侵检测中图分类号:F49 文献标识码:A近年来,计算机网络的高速发展和应用,使网络安全的重要性也日益增加。

如何识别和发现入侵行为或意图,并及时给予通知,以采取有效的防护措施,保证系统或网络安全,这是入侵检测系统的主要任务。

一、入侵及入侵检测入侵是指任何企图危及计算机系统资源的完整性、机密性和可用性或试图越过计算机或网络安全机制的行为。

入侵不仅包括发起攻击的人取得超出合法范围的系统控制权,也包括收集漏洞信息,造成拒绝服务等对计算机系统造成危害的行为。

入侵检测顾名思义,是对入侵行为的发觉,它是为保证计算机系统的安全而设计与配置的一种能够及时发现并报告系统中未授权或异常现象的技术,是一种用于检测计算机网络中违反安全策略行为的技术。

二、入侵检测系统的分类入侵检测系统的任务是在所提取到的大量检测数据中找到入侵的痕迹。

入侵分析过程需要将提取到的事件与入侵检测规则进行比较,以判断是否发生入侵行为。

一方面IDS需要尽可能多地提取数据以获得足够的入侵证据;另一方面由于入侵行为的多变性和复杂性而导致判定入侵的规则越来越复杂。

对于入侵检测系统,可以根据所采用的审计数据源、检测策略、检测的实时性、对抗措施、体系结构等方面进行不同的分类。

(1)依据审计数据源的不同可将IDS分为基于网络的IDS与基于主机的IDS;(2)从入侵检测的策略来看,可以分为滥用检测与异常检测;(3)按IDS处理数据的实时性,可以分为实时检测与事后检测;(4)从入侵检测系统的对抗措施来看,可以分为主动系统与被动系统;(5)从入侵检测系统的体系结构来看,可以分为集中式系统与分布式系统。

三、入侵检测主要研究技术目前,在IDS研究领域的主要研究方向包括IDS的性能评价、IDS集成中通用的通讯格式、面向大规模分布式网络的IDS框架以及采用一些最新的智能技术来识别新型未知攻击。

网络安全中的入侵检测技术综述

网络安全中的入侵检测技术综述

网络安全中的入侵检测技术综述网络安全是当前社会发展的重要方向之一,而网络入侵成为了网络安全的一个重要问题。

随着互联网的普及和发展,网络入侵手段也日益复杂多样化。

为了保护网络的安全,提高网络系统的防御能力,入侵检测技术应运而生。

本文将对网络安全中的入侵检测技术进行综述。

一、入侵检测技术的发展历程网络入侵检测技术起源于20世纪80年代,那时主要是基于对网络流量的分析进行入侵检测。

随着技术的进步,入侵检测技术从最初的基于规则的检测方法逐渐发展到了基于特征、行为和机器学习等方法。

目前,入侵检测技术已经成为了网络安全体系中不可缺少的一部分。

二、入侵检测技术的分类根据入侵检测技术的不同方式和目标,可以将其分为两大类,即基于签名的入侵检测和基于行为的入侵检测。

基于签名的入侵检测主要通过事先确定的规则和模式来识别已知的入侵行为,而基于行为的入侵检测则通过监测系统的行为特征来发现异常和潜在的入侵行为。

三、基于签名的入侵检测技术基于签名的入侵检测技术是一种传统的检测方法,其核心思想是通过与已知的入侵特征进行比对,寻找与之匹配的特征。

这种方法具有检测准确率高的优点,但对于未知的入侵行为无法进行有效的检测。

常用的基于签名的入侵检测系统有Snort、Suricata等。

四、基于行为的入侵检测技术基于行为的入侵检测技术研究的是系统和用户的行为特征,通过建立正常行为模型和异常行为模型来检测入侵行为。

这种方法适用于未知入侵和变异性入侵的检测,但在实际应用中存在误报率高的问题。

常用的基于行为的入侵检测系统有Bro、Snort、Suricata等。

五、机器学习在入侵检测中的应用机器学习在入侵检测中发挥了重要作用,通过训练算法和模型,能够对网络流量数据进行分析和预测。

在现实场景中,机器学习的应用能够提高入侵检测的准确率和实时性。

常用的机器学习算法包括决策树、支持向量机和神经网络等。

六、入侵检测技术的挑战与未来发展网络环境的复杂性和入侵手段的多样化给入侵检测技术带来了许多挑战。

网络入侵检测技术综述

网络入侵检测技术综述

网络入侵检测技术综述网络入侵检测技术综述随着信息技术的迅猛发展和互联网的广泛应用,网络安全问题成为了人们关注的焦点。

其中,网络入侵是指未经授权侵入他人计算机系统的行为,给网络系统带来了极大的威胁。

为了保障网络安全,人们提出了网络入侵检测技术。

本文将综述网络入侵检测技术的发展和应用。

网络入侵检测技术是在计算机网络系统中载入入侵检测系统,并通过对网络流量、日志记录、包头、外部事件等数据进行分析、监控和实时判断的方法,来检测和识别网络中的入侵行为。

根据检测方法的不同,可以将入侵检测技术分为基于特征的检测、基于异常的检测和基于机器学习的检测。

基于特征的检测技术主要是通过对网络流量、网络数据包等进行特征提取和匹配,从而判断是否存在入侵行为。

这种方法依赖于已知的入侵特征库,通过比对特征库中的特征和实时获取的数据特征,来判定网络是否存在入侵。

该方法的优点是准确性高,能够对已知的入侵行为进行有效检测和防御。

但是,缺点也非常明显,即无法对未知的入侵行为进行检测和应对。

基于异常的检测技术是通过建立和学习网络正常行为的模型,来检测网络中的异常行为。

异常行为是指与正常行为有明显差异的网络流量、数据包等。

这种方法的优点是能够对未知的入侵行为进行检测和防御,具有较高的自适应性。

但是,缺点是在建立正常行为模型时需要耗费大量的时间和计算资源,且对于复杂的网络环境和大规模网络系统的应用效果不佳。

基于机器学习的检测技术是近年来发展起来的一种新型检测方法。

通过对大量的网络数据进行学习和训练,建立起网络行为的模型。

然后,通过模型对实时获取的网络数据进行分类和判断,从而检测和识别网络入侵行为。

优点是能够实现对未知入侵行为的检测和自动化的防御措施。

然而,缺点是对于网络数据的学习和训练时间较长,且对于大规模网络系统的应用还面临着一定的挑战。

除了上述的入侵检测技术之外,还有一些新兴的技术正在逐渐应用到网络入侵检测中。

比如说,深度学习技术、云计算、大数据分析等。

网络入侵检测技术综述

网络入侵检测技术综述

网络入侵检测技术综述[摘要]入侵检测就是对计算机网络和计算机系统的关键结点的信息进行收集分析,检测其中是否有违反安全策略的事件发生或攻击迹象,并通知系统安全管理员。

一般把用于入侵检测的软件,硬件合称为入侵检测系统(Intrusion Detection System)。

入侵检测是计算机安全领域的一个重要技术,也是当前计算机安全理论研究的一个热点。

[关键词]入侵入侵检测IDS 神经网络一、入侵检测技术简介James Aderson在1980年首先提出了入侵检测的,将入侵尝试或威胁定义为:潜在的有预谋未经授权访问信息、操作信息、致使系统不可靠或无法使用的企图。

入侵(Intrusion)指的就是试图破坏计算机保密性,完整性,可用性或可控性的一系列活动。

入侵活动包括非授权用户试图存取数据,处理数据,或者妨碍计算机的正常运行。

入侵检测(Intrusion Detection),顾名思义,是指对入侵行为的发觉。

它通过在计算机网络或计算机系统中的若干关键点收集信息并对收集到的信息进行分析,从而判断网络或系统中是否有违反安全策略的行为和被攻击的迹象。

完成入侵检测功能的软件、硬件组合便是入侵检测系统(Intrusion Detection System,简称IDS)。

入侵检测系统包括三个功能部件:提供事件记录流的信息源;发现入侵迹象的分析引擎;基于分析引擎的结果产生反应的响应部件。

二、入侵检测的功能及原理一个入侵检测系统,至少应该能够完成以下五个功能:监控、分析用户和系统的活动;检查系统配置和漏洞;评估系统关键资源和数据文件的完整性;发现入侵企图或异常现象;记录、报警和主动响应。

因此,入侵检测技术就是一种主动保护自己免受黑客攻击的一种网络安全技术。

入侵检测技术能够帮助系统对付网络攻击,扩展了系统管理员的安全管理能力(包括安全审计、监视、入侵识别和响应),提高了信息安全基础结构的完整性。

它能够从计算机网络系统中的若干关键点收集信息,并分析这些信息,看看网络中是否有违反安全策略的行为和遭到袭击的迹象。

网络安全中的入侵检测技术综述

网络安全中的入侵检测技术综述

网络安全中的入侵检测技术综述网络安全是当今社会中的一个重要议题,随着互联网的普及和信息技术的迅速发展,网络攻击和入侵事件屡见不鲜。

为了保护网络系统和用户的安全,研究人员和安全专家们积极探索各种入侵检测技术。

本文将综述几种常见的入侵检测技术,并分析它们的特点和应用。

一、入侵检测技术的概念入侵检测技术(Intrusion Detection Technology)是指通过对网络通信流量、系统日志、主机状态等进行监控和分析,及时发现和识别已发生或即将发生的入侵行为。

其目的是快速准确地发现并阻止潜在的安全威胁,保护网络系统和用户的数据安全。

二、基于签名的入侵检测技术基于签名的入侵检测技术(signature-based intrusion detection)是一种传统而有效的检测方法。

它通过预定义的规则集合,检测网络流量中是否存在已知的攻击模式。

这种技术的优点在于准确率高,适用于已知攻击的检测。

然而,缺点也显而易见,就是无法检测未知攻击和变异攻击。

三、基于异常行为的入侵检测技术基于异常行为的入侵检测技术(anomaly-based intrusion detection)通过建立正常行为模型,检测网络流量中的异常行为。

相比于基于签名的方法,这种技术更具有普遍性,能够发现未知攻击。

然而,误报率较高是其主要问题之一,因为正常行为的变化也会被误判为异常。

四、混合型入侵检测技术为了克服单一方法的局限性,许多研究者提出了混合型入侵检测技术。

这些方法综合了基于签名和基于异常行为的特点,在检测效果上有所提高。

其中,流量分析、机器学习、数据挖掘等技术的应用,使得混合型入侵检测技术更加精准和智能化。

五、网络入侵检测系统的架构网络入侵检测系统(Intrusion Detection System,简称IDS)是实现入侵检测的关键组件。

其整体架构包括数据采集、数据处理、检测分析、警报响应等模块。

数据采集模块负责收集网络流量、日志信息等数据;数据处理模块负责对采集到的数据进行预处理和分析;检测分析模块负责使用各种入侵检测技术进行实时监测和分析;警报响应模块负责生成报警信息并采取相应的应对措施。

基于机器学习的网络入侵检测技术综述

基于机器学习的网络入侵检测技术综述

基于机器学习的网络入侵检测技术综述1. 总论网络安全已成为现代社会的一个重要问题。

随着网络技术的发展,网络入侵问题日益复杂。

作为一种被动的网络防御技术,网络入侵检测技术在网络安全中既起到保护网络资源和信息的作用,也是网络安全的重要组成部分。

而机器学习作为智能化的技术手段,提供了智能化的网络入侵检测方案。

本文将对基于机器学习的网络入侵检测技术进行综述,并进行归类分析和比较。

2. 基础知识2.1 网络入侵检测技术网络入侵检测技术是通过模拟网络攻击行为,对网络流量进行特征提取和分析,从而识别恶意流量和网络攻击行为的一种技术手段。

可分为基于特征匹配、基于自动规则生成和基于机器学习的三种类型。

基于学习的网络入侵检测系统是通过机器学习技术训练出网络入侵检测模型,然后对流量进行分类,从而更好地检测网络攻击。

2.2 机器学习机器学习是一种通过对专门设计的算法,使计算机能够自主学习的技术。

它的主要任务是从已知数据(历史数据)中学习特征,使其能够更准确地对未知数据(未知流量)进行分类预测。

主要分为有监督学习、无监督学习和半监督学习三种类型。

3. 基于机器学习的网络入侵检测技术3.1 基于分类算法3.1.1 支持向量机支持向量机(SVM)是一类二分类模型,它的基本思想是找到一个好的超平面对数据进行划分,使得分类误差最小。

与其他分类算法不同,支持向量机将数据空间转换为高维空间来发现更有效的超平面,以达到更好的分类效果。

在网络入侵检测中,SVM主要应用于对已知流量进行分类,进而识别未知流量是否是恶意流量。

同时,SVM还可以通过简化流量特征提取的复杂性,优化特征集。

3.1.2 决策树决策树是一种机器学习算法,可以进行分类和回归预测。

决策树使用树形结构来表示决策过程,树的每个节点代表一个特征或属性,每个分支代表一个该特征的取值或一个属性取值的集合。

在网络入侵检测中,决策树算法可识别不同类型的网络攻击,并为网络安全工程师提供必要的信息和分析结果,以支持决策制定。

信息安全中的网络入侵检测与防御技术综述

信息安全中的网络入侵检测与防御技术综述

信息安全中的网络入侵检测与防御技术综述随着互联网的快速发展,各种网络安全威胁也不断涌现,网络入侵成为了一项严峻的挑战。

网络入侵指未经授权的访问和使用计算机系统或网络的行为,旨在获取非法收益或破坏目标系统的完整性和可用性。

为了防范网络入侵,信息安全领域涌现出许多先进的网络入侵检测与防御技术。

本文将全面综述这些技术,并探讨未来的发展趋势。

网络入侵检测系统(IDS)是一种被动的安全工具,用于检测和响应网络中的潜在攻击。

IDS可以分为基于主机的IDS(HIDS)和基于网络的IDS(NIDS)两类。

HIDS主要集中在单台主机上的入侵检测和分析,通过监听和分析主机上的行为和活动来发现入侵行为,例如异常文件修改、进程执行等。

NIDS则主要关注整个网络通信流量的监控与分析,通过对流量特征和协议的分析来检测入侵行为,例如端口扫描、恶意代码传输等。

入侵检测技术根据检测方式可以分为基于签名、基于异常和基于机器学习的方法。

基于签名的检测方法依赖于已知攻击的特征和模式,通过与预先设置的签名进行匹配来判断是否有入侵行为。

这种方法在检测已知攻击方面效果良好,但对于新型攻击缺乏有效性。

基于异常的检测方法通过建立系统的正常行为模型,当检测到系统行为与模型存在显著偏差时,识别为入侵行为。

这种方法适用于未知攻击的检测,但容易受到误报的影响。

基于机器学习的检测方法利用机器学习算法,通过对大量数据的学习和训练来构建模型,从而检测网络入侵。

这种方法综合考虑了签名和异常方法的优势,可以有效检测新型攻击,并减少误报的产生。

网络入侵防御技术主要包括网络边界防御、主机防御和应用防御。

网络边界防御的目标是在网络与互联网之间建立一道防火墙,限制来自外部的恶意流量。

主机防御是在每台主机上设置防火墙和入侵防御系统,以保护主机免受攻击。

应用防御是指在应用程序层面上进行保护,常见的应用防御技术包括访问控制、数据加密和漏洞修复等。

综合运用这些防御技术可以提高整个网络的安全性和抗攻击能力。

网络安全中的入侵检测与防范技术综述

网络安全中的入侵检测与防范技术综述

网络安全中的入侵检测与防范技术综述一、绪论当前的网络普及使得人们在工作和生活中都离不开互联网,然而网络中却存在着各种各样的威胁,如网络黑客、病毒、恶意软件等,这些威胁可能会危及网络中的运行、数据的安全以及用户的隐私等,因此,对于网络安全的重视与加强也日益凸显。

而在各种网络安全技术中,入侵检测与防范技术被认为是目前网络安全领域的重要组成部分。

二、入侵检测技术入侵检测技术主要是指通过对网络流量数据进行实时的监控与检测,识别出可能的入侵行为并进行相应的响应和处理。

入侵检测技术主要包括基于规则的入侵检测和基于机器学习的入侵检测两种方式。

1.基于规则的入侵检测技术基于规则的入侵检测技术是指通过制定一系列的规则,根据已知的攻击特征,来对网络流量数据进行分析和判断,识别出可能的入侵行为。

该技术具有较高的效率和实时性,但由于其过分依赖人工定义的规则,导致其无法对于新颖的攻击进行准确识别,同时需要经常对规则进行升级与调整。

2.基于机器学习的入侵检测技术基于机器学习的入侵检测技术是指通过对网络流量数据进行建模和学习,从中发现攻击的特征,然后将其与已知攻击特征进行匹配,以便对网络攻击事件进行识别和分类。

该技术具有较高的准确性和可扩展性,可以处理大量的数据,发现新型攻击的能力较强,但同时也需要较大的数据训练集,可能存在误判和漏报等问题。

三、入侵防范技术除了入侵检测技术之外,入侵防范技术也是网络安全领域中不能忽视的技术之一,它主要是针对当前已知的攻击,采取一系列措施进行防范。

目前常用的入侵防范技术包括:1.网络访问控制技术该技术通过对网络中的用户和设备进行身份管理和访问权限的限制,可以有效防止非法用户对网络的攻击和入侵。

2.漏洞管理技术漏洞管理技术是指针对软件或系统中存在的安全漏洞进行管理和修补,以减少攻击者利用漏洞的机会。

3.网络安全审计技术该技术通过对网络中的操作和流量数据进行记录和分析,可以对网络中的各种问题和风险进行有效的监控和管理。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

入侵检测技术综述
摘要:Internet蓬勃发展到今天,计算机系统已经从独立的主机发展到复杂、互
连的开放式系统,这给人们在信息利用和资源共享上带来了很大的便利。

由Internet来传递和处理各种生活信息,早已成为人们重要的沟通方式之一,随之
而来的各种攻击事件与入侵手法更是层出不穷,引发了一系列安全问题。

本文从
专利文献的视角对入侵检测技术的发展进行了全面的分析与研究,总结了与入侵
检测技术相关的专利申请基本情况,介绍了入侵检测技术分支及其发展路线。

关键词:入侵检测,主机,网络,混合型。

1、概述
随着个人、企业和政府机构日益依赖于Internet进行通讯,协作及销售。


安全解决方案的需求急剧增长。

入侵检测是对防火墙及其有益的补充,入侵检测
系统能使在入侵攻击对系统发生危害前,检测到入侵攻击,并利用报警与防护系
统驱逐入侵攻击。

在入侵攻击过程中,能减少入侵攻击所造成的损失。

在被入侵
攻击后,收集入侵攻击的相关信息,作为防范系统的知识,添加入知识库内,增
强系统的防范能力,避免系统再次受到入侵。

入侵检测被认为是防火墙之后的第
二道安全闸门,在不影响网络性能的情况下能对网络进行监听,从而提供对内部
攻击、外部攻击和误操作的实时保护,大大提高了网络的安全性。

入侵检测(Intrusion Detection,ID), 顾名思义,是对入侵行为的检测。

它通
过收集和分析计算机网络或计算机系统中若干关键点的信息,检查网络或系统中
是否存在违反安全策略的行为和被攻击的迹象。

进行入侵检测的软件与硬件的组
合便是入侵检测系统(Intrusion Detection System,IDS)。

一般而言,入侵检测通
过网络封包或信息的收集,检测可能的入侵行为,并且能在入侵行为造成危害前
及时发出报警通知系统管理员并进行相关的处理措施。

为了达成这个目的,入侵
检测系统应包含3个必要功能的组件:信息来源、分析引擎和响应组件。

2、专利申请分析
2.1入侵检测技术专利申请年代分布
图2-1示出了入侵检测技术专利申请的年代分布情况,可见,入侵检测技术
在上个世纪九十年代已经出现了少量的专利申请,进入二十一世纪,入侵检测技
术专利申请逐年大幅递增,到了05、06年左右达到了一个极大值,从06年开始,往后的五年申请量逐渐减少,到了10年前后达到了一个极小值,随后又开始逐
年递增,并且在近三年达到了一个峰值,考虑到17年和18年存在部分专利尚未
公开的情况,该峰值或许还会增大。

总体来说,近二十年入侵检测技术专利申请
量是逐年递增的,随着黑客技术的不断增强,入侵检测系统也在不断升级,这催
生了越来越多的专利申请。

2.2中国入侵检测专利年申请量分布
图2-2示出了入侵检测技术在中国专利申请年代的分布情况,从图中可知,2000年中国
才开始有关于入侵检测的专利申请,之后的十几年里,中国关于入侵检测技术的申请量逐年
递增且增幅明显,截止目前,尚有大量的专利申请未被公开,按照走向来看,2018年中国关
于入侵检测技术的专利申请量有望创造新的峰值。

相比于欧美发达国家,中国的计算机技术
起步晚,因此在2000年前后才出现了关于入侵检测的专利申请,但是进入二十一世纪以后,
中国的信息技术飞速发展,这也催生了大量的入侵检测技术的专利申请,相信未来几年,入
侵检测专利申请量还会逐年递增。

2.3国内申请人申请量分析
本小节从专利申请主要申请人方面对入侵检测专利申请做了进一步的分析,主要对申请
人数十年来的该领域的专利申请总量进行排名,取排名靠前的申请人进行分析。

从图2-3中可以看出,在入侵检测领域,国家电网公司处于领先地位,该公司在国内申
请了大量专利,从而积极进行专利布局。

排名2-5位的分别是电子科技大学、北京启明星辰
信息技术股份有限公司、西安电子科技大学、李波,总体来说,不管是国网、华为等信息巨
头公司还是各大高校,都对入侵检测技术极为重视,尤其是各大高校,信息安全是电类专业
的重要组成部分,各大高校对入侵检测技术的科研投入量比较大,因此,在具体检索实践中,针对高校相关发明人的追踪检索显得尤为重要,往往能事半功倍。

3、专利技术
本节就入侵检测技术的三个方向,即基于主机的入侵检测、基于网络的入侵检测以及混
合型入侵检测为索引,分析归纳,就入侵检测技术的技术演进进行介绍。

2007年,北京启明星辰信息技术有限公司提出了一种主机入侵检测系统,其核心是一种
主机入侵检测方法,是在截获主机行为的基础之上,寻找主机行为与入侵行为间的关联性,
并根据规则定义,产生报警和其它指定行为。

2014年,重庆大学的罗钧、李义军等人提出了
一种基于模糊隐条件随机场模型的网络入侵检测方法,解决的技术问题是改善现有网络入侵
检测的效果。

本发明利用网络数据采集工具收集网络实例,随机选取正常网络实例和异常网
络实例作为模糊隐条件随机场模型的训练数据集,实例之间相互独立。

2015年,南京未来网
络产业创新有限公司提出了一种防御DoS攻击的方法,该方法基于分布式IDS机构,首先通
过制定机构内安全主机间建立连接的规则使攻击者无法通过网络扫描和数据包监听来定位关
键IDS部件;其次在IDS受到攻击时,利用移动agent技术转移关键部件,并且用备份agent
实时替代失效的关键agent保证IDS机构的完整性。

4、小结
从网络安全立体纵深、多层次防御的角度出发,入侵检测理应受到人们的高度重视,这
从国外入侵检测产品市场的蓬勃发展就可以看出。

在国内,随着上网的关键部门、关键业务
越来越多,迫切需要具有自主版权的入侵检测产品。

但现状是入侵检测仅仅停留在研究和实
验样品阶段,或者是防火墙中集成较为初级的入侵检测模块。

可见,入侵检测产品仍具有较
大的发展空间,从技术途径来讲,笔者认为,除了完善常规的、传统的技术外,应重点加强
统计分析的相关技术研究。

参考文献
[1] 基于特征选择和支持向量机的异常检测[J]. 肖海军,王小非,洪帆,崔国华. 华中科技大学学报(自然科学版). 2008(03).
[2] 基于多层特征匹配的网络入侵检测系统[J]. 李韦韦,陈海,徐振朋. 计算机应用与软
件. 2008(02).
[3] 入侵检测系统利用信息熵检测网络攻击的方法[J]. 夏秦,王志文,卢柯. 西安交通大学学
报. 2013(02).。

相关文档
最新文档