各类催化剂及其催化作用42综述
催化剂的特性及其作用

催化剂的特性及其作用一、催化剂的特性1、三乙基铝(TEAL):三乙基铝为催化剂助剂的一种,显弱酸性,具有非常强的活性,遇空气中的氧气能发生自然,遇水发生爆炸,它与主催化剂形成Ti-C活性中心并可以在聚合反应中杀死对主催化剂有害的物质.2、给电子体(DONOR):全名甲基环己基二甲氧基硅烷,也是催化剂助剂的一种,显弱碱性,遇水可分解出甲醇对人体皮肤和眼睛造成一定伤害,其主要调节聚丙烯分子量的分布及产品的等规度.3、主催化剂:四氯化钛为主催化剂,遇水可分解出HCL性水溶液对人体造成伤害.这三种催化剂除TEAL以纯品投用外其他两种均用白油稀释后注入反应区并且三中催化剂储存时都需要氮封,防止空气进入反应区影响反应活性.二、催化剂在反应中的作用本装置采用的催化剂为CS-2,CS-2是我国第四代催化剂,活性可高达≯30KGpp/g催化剂,产品等规度达98%,无脱灰、无脱无规物、无造粒等.其催化剂成分包括四氯化钛(内给电子体邻苯二甲酸酯),三乙基铝,外给电子体DONOR.由于TEAL显弱酸性能中和掉主CAT中显弱碱性的内给电子体所以加入DONOR作为补给.而DONOR过量则会减少反应中活化铝的量使得CO、SO等带有孤对电子对的杂质不能完全被消除导致反应活性下降,所以TEAL和DONOR要以一定的比例投用到反应中而却保催化剂的活性.催化剂的载体为活化后的球形MgCl2,主CAT负载在其表面与TEAL、DONOR一起进入到D201中进行链引发过程,进行烷基化后的主CAT和TEAL形成Ti-C活性中心,与DONOR 一起负载在载体上共同研磨就形成了高活性、立构性好的催化剂。
丙烯单体就在Ti-C活性中心上进行聚合过程,而DONOR主要确保聚丙烯的分子量分布以及等规度,而由于载体MgCl2为球形则聚合后的丙烯也为球状,即实现无造粒过程。
各类催化剂及其作用机理

各类催化剂及其作用机理催化剂是在化学反应中增加反应速率的物质,而不会参与到反应物中。
催化剂通过降低反应的活化能,从而加速反应速率。
催化剂可以分为不同的类别,下面将介绍一些常见的催化剂及其作用机理。
1.酶催化剂:酶是一种生物催化剂,可以加速生物体内的化学反应。
酶可以提供适当的环境条件,例如调节pH值或者提供特定的化学官能团,从而使反应可以在体温下进行。
此外,酶还可以通过空间结构的安排来使反应物分子相互靠近,从而增加反应速率。
2.金属催化剂:金属催化剂是一种常见的催化剂类型。
金属催化剂可以通过多种机理来促进化学反应。
例如,金属催化剂可以提供吸附位点,吸附反应物分子,从而降低反应物分子之间的反应活化能。
此外,金属催化剂还可以通过电子传递来改变反应物的电子结构,从而影响反应速率。
3.氧化剂与还原剂:氧化剂与还原剂是一对常用的催化剂。
氧化剂接受电子,而还原剂提供电子。
这种电子传递可以促进化学反应的进行。
例如,氧化剂可以从反应物中接受电子,使其变为更高氧化态,而还原剂则提供电子,使其从氧化态还原回来。
通过这种电子传递,可以加速反应速率。
4.酸催化剂与碱催化剂:酸催化剂和碱催化剂是一种广泛应用于有机合成中的催化剂。
酸催化剂可以提供H+,从而使反应物离子化或产生活泼的电子,从而加速反应进行。
碱催化剂则可以提供OH-,并参与反应物的亲核取代反应。
这些催化剂可以通过质子转移或者亲核取代等机制来加速反应速率。
5.纳米催化剂:纳米催化剂是指粒径在纳米尺寸范围内的催化剂。
与传统的催化剂相比,纳米催化剂具有更高的活性和选择性。
纳米催化剂的高活性主要是由于其较高的比表面积和较高的晶格缺陷密度。
这些特征使纳米催化剂在催化反应中具有优秀的活性和稳定性。
总结起来,催化剂是一种可以加速化学反应速率的物质。
不同类别的催化剂具有不同的催化机理,包括提供合适的环境条件、提供吸附位点、改变反应物电子结构、接受或提供电子等。
了解不同类别的催化剂及其作用机理对于理解催化反应的基本原理非常重要,并对催化反应的设计和优化具有重要的指导意义。
金属催化剂及其催化作用

金属催化剂及其催化作用引言催化是一种重要的化学过程,它可以通过降低能量势垒的方式加速化学反应的速率。
金属催化剂作为一类常用的催化剂,广泛应用于有机合成、能源转化等领域。
本文将介绍金属催化剂的定义、分类以及其在化学反应中的催化作用。
金属催化剂的定义与分类金属催化剂是指能够在化学反应中加速反应速率,且在反应结束时保持不变的金属物质。
金属催化剂能够通过提供活性位点、调控反应的能垒、吸附反应物等方式实现催化作用。
根据催化剂的组成,金属催化剂可以分为两类:一类是纯金属催化剂,即单一金属元素或金属合金;另一类是负载型金属催化剂,即将金属颗粒负载于支撑物上。
负载型金属催化剂具有较大的比表面积和较高的催化活性,常用的负载物包括二氧化硅、氧化铝等。
金属催化剂还可以根据金属的化学性质进行分类。
常见的金属催化剂包括贵金属催化剂(如铂、钯、铑等)、过渡金属催化剂(如铁、铜、镍等)以及稀土金属催化剂(如钕、镧等)。
不同类型的金属催化剂具有不同的催化特性,适用于不同类型的化学反应。
金属催化剂的催化作用金属催化剂在化学反应中主要通过以下几个方面发挥作用:1.提供活性位点:金属催化剂上的金属离子或金属表面可以提供活性位点,吸附并激活反应物。
活性位点能够有效降低化学反应的活化能,加速反应速率。
2.调控反应的能垒:金属催化剂可以通过调整反应物与催化剂间的作用力,改变反应的活化能。
例如,在氢气化反应中,贵金属催化剂能够吸附氢气并削弱键合,从而降低氢与反应物之间的能垒,促进反应进行。
3.提供电子转移:金属催化剂可以通过提供或接收电子的方式参与反应。
贵金属催化剂常常参与电子转移反应,如氧化还原反应,通过调控电子转移过程来加速反应速率。
4.分子催化:金属催化剂中的金属离子或金属表面可以与反应物发生直接的化学反应,形成中间体,进而促进反应进行。
这种分子催化机制在有机合成中具有重要的应用价值。
金属催化剂的应用金属催化剂在化学合成、能源转化等领域具有广泛的应用。
各种催化剂及其催化作用

各种催化剂及其催化作用催化剂是指在化学反应中参与反应过程,但在反应结束后仍能够恢复原状,不发生永久变化的物质。
催化剂能够降低反应的活化能,从而加速反应速率,提高反应的效率。
以下是一些常见的催化剂及其催化作用。
1.酶类催化剂:酶是生物体内的一类催化剂,它们能够加速和控制细胞内的化学反应。
例如,淀粉酶可以催化淀粉分解为葡萄糖;脱氢酶可以催化乳酸转化为丙酮酸。
2.金属催化剂:金属催化剂是最常见的一类催化剂,可以分为均相催化剂和异相催化剂。
均相催化剂溶解在反应物中,例如铂金催化剂可以催化氢气与氧气的反应生成水。
异相催化剂存在于反应物的表面,例如铁催化剂可以催化氧气和一氧化碳反应生成二氧化碳。
3.酸碱催化剂:酸和碱都可以作为催化剂,它们能够提供可用于化学反应的质子或氢离子。
例如,硫酸催化剂可以催化脂肪酸的酯化反应,碱催化剂可以催化酯类的水解反应。
4.过渡金属催化剂:过渡金属催化剂是一类特殊的金属催化剂,由过渡金属元素组成。
它们可以在反应中形成中间物种,从而加速反应的进行。
例如,氨合成反应中使用的铁催化剂能够促使氢气和氮气反应生成氨。
5.醇酶催化剂:醇酶是一类催化剂,可以催化香蕉、苹果等水果中的醇类物质从醛、酮分化成醇。
6.光催化剂:光催化剂是通过吸收光能并产生电荷转移,从而促进化学反应的催化剂。
例如,二氧化钛是一种常见的光催化剂,可以催化水的光解反应,产生氢气和氧气。
7.植物色素催化剂:植物色素是一类具有催化性质的有机化合物,可以催化光合作用中的反应。
例如,叶绿素是光合作用中的重要催化剂,能够催化光能的吸收和转化。
以上仅是一些常见的催化剂及其催化作用,实际上还有许多其他催化剂和催化作用。
催化剂在化学工业和生命科学领域中起着至关重要的作用,能够提高反应速率、增加产物产量和节约能源等。
随着科学技术的发展,对催化剂的研究和应用还将进一步深化,为人类的生活和工业生产带来更多的便利和进步。
各类催化剂的组成结构及其催化作用规律与催化机理

各类催化剂的组成结构及其催化作用规律与催化机理催化剂是一种能够加速化学反应速率而不发生化学变化的物质。
不同类型的催化剂在组成、结构和催化作用规律及催化机理上存在差异。
1.金属催化剂:金属催化剂主要由一种或多种金属元素组成。
它们的结构可以是单质金属,合金或金属氧化物。
金属催化剂的催化作用规律是活性中心和反应物之间的相互作用。
催化机理有两种类型:双电子传递和继承。
2.酸碱催化剂:酸碱催化剂是通过提供或接受质子(酸)或氢氧根离子(碱)来促进反应的催化剂。
它们的组成可以是无机酸或碱(如氢氟酸和氢氧化钠),也可以是有机酸或碱(如有机酸和胺)。
酸碱催化剂的催化作用规律是在酸碱性环境中,反应物与催化剂之间的反应活性。
3.酶催化剂:酶是一种生物催化剂,是由蛋白质组成的大分子催化剂。
它们的组成是由酶蛋白质和辅助物质(如金属离子和辅酶)组成。
酶催化剂的催化作用规律是酶与底物形成酶底物复合物,并通过改变底物的反应活性、方向和速率来催化反应。
4.氧化剂:氧化剂是一种能够在反应中接受电子的催化剂。
它们的组成可以是金属氧化物(如铬酸和二氧化锰)或有机化合物(如过氧化物和过氧硫酸氢钠)。
氧化剂的催化作用规律是通过在反应中接受电子,使反应底物发生氧化反应。
5.还原剂:还原剂是一种能够在反应中捐赠电子的催化剂。
它们的组成可以是金属(如钠和锌)或有机化合物(如氢化钠和氢气)。
还原剂的催化作用规律是通过在反应中捐赠电子,使反应底物发生还原反应。
催化剂的催化机理是根据不同的催化剂类型而不同的。
例如,金属催化剂通过吸附反应底物并与其发生反应来催化反应。
酸碱催化剂通过给予或接受质子或氢氧根离子来改变反应底物的反应性质。
酶催化剂通过形成酶底物复合物并在酶的活性位点上发生催化反应。
氧化剂通过向底物接受电子来氧化底物,而还原剂则捐赠电子给底物来还原底物。
总之,不同类型的催化剂在组成、结构、催化作用规律和催化机理上存在差异。
了解和掌握不同催化剂的特点和催化机理对于合理设计和选择催化剂,并优化催化反应至关重要。
各种催化剂及其催化作用

酸中心的强度
5、固体酸、碱的催化作用
酸位的性质与催化作用关系
大多数的酸催化反应是在B酸位上进行的,并且催 化活性与B酸位的浓度有良好的关联
烃的骨架异构化、二甲苯的异构化,甲苯和乙苯的歧化, 异丙苯的烷基化以及正己烷的裂化等,单独的L酸位没有 催化活性 常用AlCl3,FeCl3等 r-Al2O3
软酸 交界酸, 介于两者之间
软酸硬酸理论
硬碱
给电子原子极化率低,电负性高,难氧化, 不易变形,即对外层电子吸引力强; 难于失去电子对的碱
软碱 交界碱, 介于两者之间
软酸硬酸理论
苯的烷基化可用三氯化铝催化,因为三氯化铝 是硬酸,可与氯代烷中的硬碱cl-配合使其中软 酸烷基成为正离子r+,从而对软碱苯核的反应 性增大。
1、催化剂的分类
固体碱
担载碱:NaOH、KOH载于氧化硅或氧化铝上;碱金属或者碱土金属分散于氧 化硅或氧化铝上;K2CO3、Li2CO3在于氧化硅上等 阴离子交换树脂 焦碳于1173K下热处理,或用NH3、ZnCl2-NH4Cl-CO2活化 金属氧化物:Na2O、K2O、Cs2O、BeO、MgO、CaO、SrO、BaO、ZnO、 La2O3、CeO4等 氧化物混合物 金属盐:Na2CO3、K2CO3、CaCO3、SrCO3、BaCO3、(NH4)2CO3、KCN 等 经碱金属或者碱土金属改性的各种沸石分子筛 H2SO4、H3PO4、HCl水溶液、醋酸等 NaOH水溶液、KOH水溶液
P-水的物质的量
6、沸石分子筛催化剂
结构单元
一级结构
第三章 各类催化剂及其催化作用_酸碱催化剂

中毒法:
脉冲注入能使酸碱中心中毒的物质,并选择以酸碱中心为活性位的 反应为对象,可根据反应活性下降的情况来求出使催化剂活性降为 零时所耗毒物的总量,并折算到酸碱中心总数。
H0 = pKa + lg [:B]a [A:B]
[A:B] : 吸附碱B与电子对受体A形成的络合物AB的浓度
H0越小酸强度越强; H0越大酸强度越弱。
固体酸强度的测定:
指示剂法:
指示剂的颜色取决于 [BH+] 或 [B] 的比例,当其正好等于1 [AB] 时,处于变色临界点。
1. 在某催化剂中加入某指示剂(pKa),若保持碱型色,说明 [B] > [BH+],催化剂对该指示剂的转化能力较小,H0 > pKa;若指示剂显酸型色,说明催化剂的转化能力较强, H0 < pKa。 2. 把指示剂按pKa大小排成一个序列,总可以找到一个指示 剂(pKa = α),它的碱型色不能被催化剂改变,而下一个指 示剂(pKa = β)被催化剂变成了酸型色,那么催化剂H0的取 值范围应该是α< H0 < β 。 100%的H2SO4的H0认为是‒11.9,故认为H0为‒12或更小的酸相当于 100%以上的H2SO4 ,这样的酸称为超强酸。
例如:以HM分子筛为催化剂时的甲苯歧化反应,可选择吡啶作为毒物,利用甲 苯和吡啶的交替注入,观察活性下降情况外延至活性为零时所需吡啶量,即可 求出HM的表面酸量。
典型反应估计法:
选择一些既能被酸催化发生某一反应,又能被碱催化发生另一反应。 从同一物料反应后的选择性来估测催化剂的表面酸碱性。
各种催化剂及其催化作用

各种催化剂及其催化作用催化剂是在化学反应中加速反应速率但本身并不参与反应的物质。
通过提供一个能量有效的反应途径,催化剂可以降低活化能,从而促进反应的进行。
催化剂在各个行业都有广泛的应用,包括化学、能源、环境和医药等领域。
下面是一些常见催化剂及其催化作用的例子。
1.酶催化剂:酶是生物催化剂的代表。
酶在生物体内促进化学反应的进行,如消化食物、合成物质等。
酶催化剂具有高效、高选择性、低能量消耗等优点。
2.转金属催化剂:金属催化剂广泛应用于有机合成反应中。
例如,钯催化剂常用于氢化反应、交叉缩合反应等。
金属催化剂可以提供有效的活化位点,加速反应的进行。
3.齐特尔催化剂:齐特尔催化剂常用于聚合反应中。
例如,钛齐特尔催化剂被广泛用于聚合丙烯、乙烯等。
4.五氧化二钒催化剂:五氧化二钒催化剂可用于氮氧化物的催化还原。
五氧化二钒可将氮氧化物(如NOx)还原为氮气和水。
5.铂催化剂:铂催化剂常用于汽车尾气处理中。
它可以将一氧化碳(CO)和氮氧化物(NO)转化为无害的二氧化碳和氮气。
6.锂催化剂:锂催化剂可用于有机合成中的各种反应,如还原、氧化等。
锂催化剂在有机合成中具有高效、高选择性和环境友好的特点。
7.过渡金属催化剂:过渡金属催化剂广泛应用于有机合成和不对称合成中。
它们可以催化诸多反应,如氧化反应、还原反应、偶联反应等。
8.碱催化剂:碱催化剂可用于酯化、烷基化等反应。
对于许多有机反应,碱催化可大大提高反应速率。
9.氧化剂催化剂:氧化剂催化剂可用于氧化反应,如醇的氧化、烃的氧化等。
例如,二氧化锰常用作氧化剂。
10.鲍耳催化剂:鲍耳催化剂可用于烯烃的水化反应。
鲍耳催化剂可以将烯烃转化为醇。
除了以上提到的催化剂,还有很多其他种类的催化剂被广泛应用于各个领域。
催化剂的运用不仅可以提高化学反应的速率和产率,还可以使反应更加环保和节能。
催化剂的发展和应用在加速科学和工业的进步中起到了至关重要的作用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
不同配位体与络合中配心离位子体(或类原型子)结合时成键情况
不同。通常可分为4类:
只含一个可与中心离子(或原子)作用的满轨道(孤对电子) 的配位体,有NH3和H2O。
NH3分子氮上的孤对电子,H2O分子氧上的孤对电子可与 中心离子(或原子)的空轨道形成配价键,形成的键是绕金
属与配位体轴线旋转对称的,即为键。
dsp2杂化轨道
可与4个配位体形成配价键,生成正方形结构的络合物
➢ 根据分子轨道理论,中心离子是采用杂化轨道与配 位体相互作用,杂化轨道不同,形成的络合物的几何 构型也不同。
杂化轨道与络合物的几何构型
配位数
2 4 4 6
杂化轨道
sp sp3 dsp2 d2sp3
杂化轨道夹角
180° 109°28’ 90° 90°
d1,d2 d3,d4,d5,d6
d7,d8 d8 d10 d10
8
17, 18
6
15~18
5
17~18
4(正方形) 16
4(正四面体) 18
2
14
18电子规则
中心离子(或原子)的d电子数越多,其配位体 数越少。其中以总价电子数为18的络合物最为稳定, 称为18电子规则。而超过这个数目的络合物一般是 不稳定的,这是因为多余的电子不能填入9个成键轨 道中,被迫进入反键轨道,因而降低了络合物的稳 定性。
几何构型 直线
正四面体 正方形 正八面体
举例
(AgCl2)1[Zn(NH3)4]2+ (PdCl4)2(PtCl6)2-
二、络合物催化剂的形成与络合物的 1、过渡金属d电子组反态与应络合物配位数的关系
为能形成稳定的过渡金属络合物,过渡金属和配位 体所提供的价电子最好是恰好填满能级较低的分子 轨道和非键(9个)轨道。由于低能级轨道有限,多 于这些轨道两倍数目的电子将不得不填充高能级轨 道。
只含有一个电子的单电子轨道配位体,如氢自由基H·和烷基 自由基(C2H5·)。它们可与一个半充满的金属轨道电子配对,
形成键也为键。在成键的同时伴随一个电子从金属的非键
轨道转移到成键轨道,即金属氧化的过程。
含有两个或更多个满轨道(孤对电子),可同时与 金属两个空轨道配位的配位体,其中包括Cl-、Br-、 I-、F-、OH-
含有两个满轨道的配位体与含有 两个空轨道的金属成键,配位体 可以是Cl-、Br-、I-或OH-
2、过渡金属络合物化学成键作用
起络合催化作用的催化剂主要是由过渡金属 元素构成的中心离子(原子),和在中心离子 (或原子)周围的具有孤对电子的配位体组成的 •络合因物此。,络合催化作用和过渡金属的电子结构密切 相关。更确切地说,过渡金属络合物的形成与过渡 金属的d电子状态有密切的联系。
络合物成键的价键理论
羰
CH3CH CH2+ CO + H2
CH3CH2CH2CHO
基
合
CH3CH CH2+ CO + 2H2
CH3CH2CH2CH2OH
成
CH3OH + CO
CH3COOH
CFeo(2C(COO)5)-6C(P4HiBu83N)2H-n-C4H9-
H2O [RhCl(CO)(PPh3**)3]+CH3I
价键理论认为,络合物的中心离子(或原子) 应具有空的价电子轨道,而配位体应具有孤对电 子,后者将孤对电子配位到中心离子(或原子) 的空轨道中,形成化学键,这就是配价键。
例:[PdCl4]2- 络离子,具有正方形构型,中心离子Pd2+在正方
形中心,4个配位体位于正方形顶点。Pd2+ 离子的外层电子排布 如下:
-TiCl3-Al(Et)2Cl (1,5,9-环十二碳三烯) TiCl4/Al2Cl3(C2H5)3
选 择
+ 2H2
(CH2)10 CH2 CH2
[Co(CO)3(PiBu3*)]2
加 HO
CO2H
氢
HO
CC
+ H2
H
NHCOR
HO HO
CH2 CH* CO2H
[Rh(PR3*)2(二烯)]+
NHCOR
* PiBu3-三异丁基膦
反应 类型
** PPh3-三苯基膦
络合催化剂的应用实例
主要反应
典型催化剂
烃 类
H2C
CH2
+
1 2
O2
氧 化 H3C
CH3 + 3O2
CH3CHO HOOC
PdCl2-CuCl2(H2O) COOH + 2H2O Co/Mn离子
烯 烃
n(C3H6)
(C3H6)n
聚 合
3CH2 CH CH CH2
• 若金属的d电子数越多,则由配位体所提供的价 电子数就越少,即能够容许的配位体数目越少。
过渡金属d电子数与络合物配位体数目的关系
络合物
d电子数
配位体数 总价电子数
[Mo(CN)8]3-,[Mo(CN)8]4[M(CN)6]3-, (M=Cr,Mn,Fe,Co,Ru) [Co(CN)5]3-,[Ni(CN)5]3[PdCl4]2[Cu(CN)4]2-, Ni(CO)4 [Ag(CN)2]1-,[Au(CN)2]1-
配位作用而进行的催化反应,包括催化剂与反应物发
生络合活化作用,从开始直至反Biblioteka 完成的一切过程。 络合催化剂
——多是过渡金属络合物、过渡金属有机化合 物及其盐类。由于络合催化具有效率高、选择性好、
可在温和条件(低温低压)下操作等特点,在石油
化工过程和高分子聚合过程中得到应用。其中包括
聚合、氧化、加氢、羰基合成等反应。
4.4 络合催化剂及其催化作用
一、络合催化剂的应用及化学成键作用 二、络合物催化剂的形成与络合物的反应 三、络合催化机理及络合催化实例分析
一、络合催化剂的应用及化学成键作 用
1、络合催化剂的应用
“络合催化”
——意大利学者Natta于1957年首先提出来的,通常 是指在均相(液相)系统中催化剂和反应物之间由于
18电子规则被广泛地用来预测金属有机化合物 的稳定性,可定性解释一些络合物的稳定性。
2、络合物催化剂中常见的配位体及其 常见配分位类体
配位体通常是含有孤对电子的离子或中性分子——
➢ 卤素配位体:Cl-、Br-、I-、F-
➢ 含氧配位体:H2O、OH-,其中H2O配位体由氧提供孤对电子 ➢ 含氮配位体:NH3,由氮提供孤对电子 ➢ 含磷配位体:PR3 (其中R=C4H9,苯基等),磷提供孤对电子 ➢ 含碳配位体:CN-、CO等,其中CO由碳提供孤对电子 ➢ 负氢离子H-和带键的化合物 ➢ 只含一个电子的自由基,如H·,烷基(C2H5·)等