鸽巢问题讲课(例1、例2)
第五单元《鸽巢问题》例1例2 教学设计课题

第五单元数学广角第一课时《鸽巢问题》例1例2 教学设计教学容:人教版教材六年级数学上册第68--69 页。
教学目标:1.知识与技能:经历“鸽巢原理”的探究过程,初步了解“鸽巢原理”,会用“鸽巢原理”解决简单的实际问题。
2.过程与方法:通过操作发展学生的类推能力,形成比较抽象的数学思维。
3.情感态度价值观:通过“鸽巢原理”的灵活应用感受数学的魅力。
教学重、难点:经历“鸽巢原理”的探究过程,理解“鸽巢原理”,并对一些简单实际问题加以“模型化”。
课时安排:一课时教具学具:多媒体课件、每人一枚一元硬币教学过程一、问题引入。
师:同学们,你们玩过抢椅子的游戏吗?现在,老师这里准备了3把椅子,请4个同学上来,谁愿来?1.游戏要求:开始以后,请你们5个都坐在椅子上,每个人必须都坐下。
2.讨论:“不管怎么坐,总有一把椅子上至少坐两个同学”这句话说得对吗?游戏开始,让学生初步体验不管怎么坐,总有一把椅子上至少坐两个同学,使学生明确这是现实生活中存在着的一种现象。
引入:不管怎么坐,总有一把椅子上至少坐两个同学?你知道这是什么道理吗?这其中蕴含着一个有趣的数学原理,这节课我们就一起来研究这个原理。
二、探究新知(一)教学例11.出示题目:有4枝铅笔,3个盒子,把4枝铅笔放进3个盒子里,怎么放?有几种不同的放法?师:请同学们实际放放看,谁来展示一下你摆放的情况?(指名摆)根据学生摆的情况,师出示各种情况。
板书:(4,0,0)(3,1,0)(2,2,0)(2,1,1),问题:4个人坐在3把椅子上,不管怎么坐,总有一把椅子上至少坐两个同学。
4支笔放进3个盒子里呢?引导学生得出:不管怎么放,总有一个盒子里至少有2枝笔。
问题:(1)“总有”是什么意思?(一定有)(2)“至少”有2枝什么意思?(不少于两只,可能是2枝,也可能是多于2枝?)教师引导学生总结规律:我们把4枝笔放进3个盒子里,不管怎么放,总有一个盒子里至少有2枝铅笔。
这是我们通过实际操作现了这个结论。
鸽巢问题课件PPT讲课讲稿.ppt

作业: 完成延学单
谢谢
天立双语学校 王耀武制作
结束
我们先让一个鸽舍里飞进2只鸽子,4个鸽舍最多可飞进 8只鸽子,还剩下3只鸽子,无论怎么飞,所以至少有3只 鸽子要飞进同一个笼子里。
计算绝招 至少数=商数+1
试一试:
1、把5本书放进3个抽屉里,总有一个
抽屉里至少放_2 本书。
2、把6本书放进3个抽屉里,总有一个
抽屉里至少放_2 本书。
3、把7本书放进3个抽屉里,总有一个
一副扑克牌(除去大小王)52张中有四种花色, 从中随意抽5张牌,无论怎么抽,为什么总有两 张牌是同一花色的?
四种花色
抽牌
预学反馈
一副扑克牌,取出 大小王,还剩52张 牌,每次任意抽出 五张牌,无论怎么 抽,总有一个花色 至少有两张。
探索分享
问题: 把4支铅笔放进3个笔 筒中,可以怎么放?
探索分享
思考二
5只鸽子飞回3个鸽舍, 至少有2只鸽子要飞进同一 个鸽舍里。你同意吗?说 说想法。
解决问题
5只鸽子飞进了3个鸽笼,总有一个鸽笼至少飞进了 2只鸽子。为什么?
假如一个鸽舍里飞进一只鸽子,3个鸽舍 最多飞进3只鸽子,还剩下2只鸽子。所 以,无论怎么飞,总有一个笼子里至少有 2只鸽子。
1、把5本书进2个抽屉中,不管怎么放, 总有一个抽屉至少放进3本书。这是为 什么?
抽屉里至少放_3 本书。
做一做:
1.把100本书放进3个抽屉里,总有
一个抽屉里至少有3_4本,为什么?
2.把101本书放进3个抽屉里,总有
一个抽屉里至少有3_4本,为什么?
3.把101本书放进7个抽屉里,总有
一个抽屉里至少有1_5本,为什么?
抽屉原理简介 “抽屉原理”最先是由19世
《鸽巢问题》公开课示范课ppt课件

如果6只鸽子飞进4个鸽笼,不管怎么飞,那 么总有一个鸽笼里至少有几只鸽子,为什么?
如果11只鸽子飞进4个鸽笼,不管怎么飞,
那么总有一个笼子里至少有( 3 )只鸽子。
如果8只鸽子飞进4个鸽笼,不管怎么飞,那
么总有一个笼子里至少有( 2 )只鸽子。
鸽巢问题计算方法 有余数:至少数= 商 + 1 没有余数
“鸽巢原理”最先是由19 世纪的德国数学家狄利克雷提 出来的,所以又称“狄利克雷 原理”还把它叫做 “抽屉原 理”。
课堂总结
通过这节课的学习,你有什么收获?
四、布置作业
作业:第71页练习十三,第1题、 第二题。
五、扩展延伸
2. 育新小学全校共有2192名学生,其中一年级新生有367名同学 是2008年出生的。这个学校一年级学生2008年出生的同学中至 少有几人出生在同一天?如果每年都按365天来计算,全校至少 有几人生日在同一天?
从题目中你了解到哪些信息? 要解答的问题是什么?
我是这样想的: 因为2008年是闰年,全年366天。 367÷366=1……1 1+1=2(人) 2192÷365=6……2 6+1=7(人) 答:一年级至少有2人的生日在同一天,
全校至少有7人的生日在同一天。
枚举法
这几种放法如果用一句 话概括可以怎样说?
不管怎么放,总有一个笔 筒里至少放进2支笔。
还有更简单的方法吗?
假设法
这种分法叫做什么?
平均分
总有一个笔筒里至少放了( 2)支铅笔。 4÷3=1(支) ……1(支)至少数 1+1=2(支)
如果把5支笔放进4个笔筒里 如果把6支笔放进5个笔筒里
…… 如果把100支笔放进99个笔筒里
人教新课标六年级数学下册
鸽巢问题原理PPT课件

感谢您的观看
THANKS
密码学中的应用
密码学是研究如何保护信息安全的一门科学,而鸽巢原理在密码学中也 有一定的应用。例如,在分析某些加密算法的安全性时,可以利用鸽巢 原理来证明某些攻击方法的有效性或无效性。
05
鸽巢问题原理拓展与延伸
广义鸽巢原理
原理表述
如果n个物体放入m个容器,且n>m,则至少有一 个容器包含两个或两个以上的物体。
掌握鸽巢原理的证明方法是学习该原理的关键。 建议学习者多阅读相关教材或论文,了解不同证 明方法的思路和应用场景。
多做练习题
通过大量的练习题可以加深对鸽巢原理的理解和 掌握。建议学习者多做一些难度适中的练习题, 逐步提高自己的解题能力。
未来研究方向展望
拓展应用领域
随着计算机科学和信息技术的发展,鸽巢原理的应用领域也在不断拓展。未来可以进一步探索鸽巢原理在人工智能、 大数据等领域的应用。
鸽巢问题原理ppt课件
目录
• 鸽巢问题原理概述 • 鸽巢问题原理基本概念 • 鸽巢问题原理证明方法 • 鸽巢问题原理应用举例 • 鸽巢问题原理拓展与延伸 • 总结与回顾
01
鸽巢问题原理概述
定义与背景
鸽巢原理定义
如果 n 个鸽子要放进 m 个鸽巢,且 n > m,则至少有一个鸽巢里有多于一 个鸽子。
重要性
理论价值
鸽巢原理是数学中的基本 原理之一,对于理解更高 级的数学概念和证明具有 重要意义。
实际应用
在计算机科学、工程等领 域中,鸽巢原理为解决复 杂问题提供了有效的思路 和方法。
拓展思维
通过学习鸽巢原理,可以 培养逻辑思维和抽象思维 能力,提高分析问题和解 决问题的能力。
02
鸽巢问题原理基本概念
鸽巢问题例PPT课件

鸽巢问题的基本概念
鸽巢问题是一种组合数学问题,它涉及到将一定数量的物体分配到一定 数量的容器中,并确定是否存在一个容器包含两个或更多的物体。
02
鸽巢问题的应用场景
分配问题
总结词
分配问题是指将一定数量的物品或人 分配到一定数量的容器或位置中,使 得每个容器或位置都有物品或人,且 数量相等或尽可能相等。
详细描述
例如,将n个物品分配到m个容器中, 每个容器最多可以容纳k个物品,要求 每个容器至少有一个物品,问最少需 要多少个容器?
排列组合问题
01
引入不等式和不等关系
对于更复杂的鸽巢问题,可以通过引入不等式和不等关系来求解。例如,
在某些情况下,鸽巢的数量可能不是固定的,而是存在一定的范围,这
时就需要利用不等式来表示这种关系。
02
考虑多种情况
对于更复杂的鸽巢问题,可能存在多种情况需要考虑。例如,鸽巢的数
量和大小可能不同,或者鸽子的大小和数量可能不同,这时就需要分别
鸽巢问题通常用鸽子和巢穴的比喻来描述,其中每个巢穴代表一个容器 ,每个鸽子代表一个物体。如果至少有一个巢穴中有两只鸽子,则存在
一个“鸽巢问题”。
解决鸽巢问题的方法通常涉及到计数原理、排列组合和概率论等数学工 具。通过分析物体的数量、容器的数量以及每个容器能够容纳的最大物 体数量,可以确定是否存在一个“鸽巢问题”。
04
鸽巢问题的实例解析
三个鸽子飞进两个鸽巢的问题
总结词
等可能性和概率
详细描述
在这个问题中,有3只鸽子飞进2个鸽巢,每个鸽巢被选中 的概率是相等的,所以每个鸽巢中鸽子的数量有2种可能, 即0只或3只。
《鸽巢问题》说课课件

2 容器数量等于对象数量
当容器的数量等于对象的数量时,每个容器内最多放一个对象。
鸽巢问题的例子
抽屉原理
一个房间内有10个抽屉和11个袜子,那么至少有一个抽屉中有2个袜子。
生日问题
在一个房间里,至少有多少个人才能确保其中至少两个人生日相同?
鸽巢问题的解决方法
1
鸽巢原理
通过鸽巢原理,我们可以证明鸽巢问题的存在性,即确保至少一个容器不为空。
2
抽屉原理
抽屉原理是鸽巢问题的一个重要思想,通过对抽屉和袜子的数量关系进行分析, 得出结论。
3
概率方法
可以使用概率方法来估算在给定条件下至少存在一个容器不为空的概率。
鸽巢问题的应用
邮筒问题
课桌问题
如果有10个信箱,但有11封信, 那么必然有至少一个信箱收到 了多封信。
假设一个教室里有10张课桌, 但有11个学生,那么至少有一 个课桌被占用了两个学生。
《鸽巢问题》说课课件
鸽巢问题是一种经典的组合数学问题,涉及到将大量对象分配到有限数量的 容器中。
鸽巢问题的概述
鸽巢问题是一个有趣而重要的数学问题,研究如何将若干个对象放入有限的容器中,确保至少有一个容 器不为空。
鸽巢问题的定义
1 容器数量少于对象数量
当容器的数量少于对象的数量时,必然存在一个或多个容器内放有多个对象。
图书馆问题
一座图书馆有10个书架,但有 11本书,那么必然有至少一个 书架上放有多本书。
鸽巢问题的总结
鸽巢问题是一种有趣且实用的数学问题,可以帮助我们理解对象分配和容器数量的关系,具有广泛的应 用领域。
鸽巢问题的展望
鸽巢问题在现实生活中仍然有很多实际应用,可以通过进一步研究和改进, 为解决实际问题提供更多的方法和策略。
鸽巢问题例1、例2完整ppt课件

5÷4=1(个) ……1(个) 1+1=2 (个)
精选
24
2、随意找13位学生,他们中至少有2 个人的属相相同。为什么?
13÷12=1(个)……1(个) 1+1=2(个)
精选
25
六、知识拓展
你知道有多少种不 同的订阅方法么?
六1班有30名同学,他们都订阅甲、 乙、丙三种报纸中的一种、二种或 三种。至少有多少名同学订阅的报 纸相同?
不能整除时:“至少数=商数+1”;
整除时:“至少数=商数”
数学方法:1.枚举法;2.分解数法;
3.平均分法
数学思想:1.数形结合; 2.数学建模
精选
28
作业
第71页练习十三,第2题、第3题。
精选
29
这样分实际上是怎样在分?怎样列式?
平均分 531LL2至少数=1+1
精选
17
做一做:
P68页:5只鸽子飞进了3个鸽笼,总 有一个鸽笼至少飞进了2只鸽子。为 什么?
精选
18
二、合作探究(3):
例2:把7本书放进3个抽屉,不管怎 么放,总有1个抽屉里至少有3本书。 为什么呢?
为什么会有这样 的结果?
这样分实际上是怎样在分? 怎样列式? 平均分
732LL1 至少数=2+1
精选
19
三、思考并回答:
1. 把8本书放进3个抽屉里,不管怎么放,
总有一个抽屉里至少有几本书? 3本
2. 把10本书放进3个抽屉里,不管怎么放,
总有一个抽屉里至少有几本书? 4本
3. 把12本书放进3个抽屉里,不管怎么放,
总有一个抽屉里至少有几本书? 4本
不管怎么放,总有
0
一个文具盒里至少
2023年人教版数学六年级下册第27课鸽巢问题说课稿(优选3篇)

人教版数学六年级下册第27课鸽巢问题说课稿(优选3篇)〖人教版数学六年级下册第27课鸽巢问题说课稿第【1】篇〗《鸽巢问题》说教学设计一、教学内容教材第68、69页例1和例2二、说教学目标1.经历“鸽巢问题”的探究过程,初步了解“鸽巢问题”,会用“鸽巢问题”解决简单的实际问题。
2.通过操作发展学生的类推能力,形成比较抽象的数学思维。
3.通过“鸽巢问题”的灵活应用感受数学的魅力。
三、教学重难点重点:经历“鸽巢问题”的探究过程,初步了解“鸽巢问题”。
难点:理解“鸽巢问题”,并对一些简单实际问题加以“模型化”。
四、说教学准备多媒体课件纸杯吸管五、说教学过程一、课前游戏引入。
师:孩子们,你们知道刘谦吗?你们喜欢魔术吗?今天老师很高兴和大家见面,初次见面,所以老师特地练了个小魔术,准备送给大家做见面礼。
孩子们,想不想看老师表演一下?生:想师:我这里有一副扑克牌,我找五位同学每人抽一张。
老师猜。
(至少有两张花色一样)师:老师厉害吗?佩服吗?那就给老师点奖励吧!想不想学老师的这个绝招。
下面老师就教给你这个魔术,可要用心学了。
有没有信心学会?二、通过操作,探究新知(一)探究例11、研究3根小棒放进2个纸杯里。
(1)要把3枝小棒放进2个纸杯里,有几种放法?请同学们想一想,摆一摆,写一写,再把你的想法在小组内交流。
(2)反馈:两种放法:(3,0)和(2,1)。
(教师说板书)(3)从两种放法,同学们会有什么发现呢?(总有一个文具盒至少放进2枝铅笔)你是怎么发现的?(说得真有道理)(4)“总有”什么意思?(一定有)(5)“至少”有2枝什么意思?(不少于2枝)小结:在研究3根小棒放进2个纸杯时,同学们表现得很积极,发现了“不管怎么放,总有一个纸杯里放进2根小棒)2、研究4根小棒放进3个纸杯里。
(1)要把4根小棒放进3个纸杯里,有几种放法?请同学们动手摆一摆,再把你的想法在小组内交流。
(2)反馈:四种放法:(4,0,0)、(3,1,0)、(2,2,0)、(2,1,1)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
杜拉尔中心校
赵桂珍
“ 抽屉原理”又称“鸽笼原理”,最 先是由19世纪的德国数学家狄利克雷提 出来的,所以又称“狄里克雷原理”, 这一原理在解决实际问题中有着广泛的 应用。“抽屉原理”的应用是千变万化 的,用它可以解决许多有趣的问题,并 且常常能得到一些令人惊异的结果。下 面我们应用这一原理解决问题。
2
(四)拓展训练 从扑克牌中取出两张王牌,在剩下的52张扑克 牌任意抽牌。 (1)从中抽出18张牌,至少有几张是同花色? 18÷4=4(张)… …2 (张) 4+1=5(张) 答:至少有5张是同花色。 (2)从中抽出20张牌,至少有几张数字相同? 20÷13=1(张)… …7(张) 1+1=2(张) 答:至少有2张数字相同。
三、知识应用
(一)做一做
1. 5只鸽子飞进了3个鸽笼,总有一个 鸽笼至少飞进了2只鸽子。为什么?
5÷3=1……2 1+1=2
三、知识应用
2. 11只鸽子飞进了4个鸽笼,总有一个鸽笼 至少飞进了3只鸽子。为什么?
11÷4=2……3 2+1=3
三、知识应用
(二)解决问题
随意找13位老师,他们中至少 有2个人的属相相同。为什么?
例1、把4枝笔放进3个笔筒里,总有一 个笔筒里至少放进几枝笔?
活动要求:
• 每个小组拿出三个杯子,4枝笔 • 把4枝铅笔放在三个杯子里 • 每个小组的组长负责记录每种分法
至少放进2枝
如果我们先让每个笔筒里放1枝笔,最 多放3枝。剩下的1枝还要放进其中的 一个笔筒。所以不管怎么放,总有一个 笔筒里至少放进2枝笔。
7÷3=2……1 8÷3=2……2 10÷3=3……1
你是这样想的吗?你有什么发现?
二、探究新知
(二)例2
我发现……
物体数÷抽屉数=商……余数
至少数=商+1
如果物体数除以抽屉数有余数,用所得 的商加1,就会发现“总有一个抽屉里至少 有商加1个物体”。
数学小知识:抽屉原理的由来。 最先发现这些规律的人是谁 呢?最先是由19世纪的德国数学 家狄里克雷运用于解决数学问题 的,后人们为了纪念他从这么平 凡的事情中发现的规律,就把这 个规律用他的名字命名,叫“狄 里克雷原理”,又把它叫做“鸽 巢原理”,还把它叫做 “抽屉原 理”。
13÷12=1……1 1+1=2
为什么要用1+1呢?
把13只小兔子关在5个笼子里, 至少有小朋友要进4间屋子,至少有(9 )个小朋 友要进同一间屋子。 2、13个同学坐5张椅子,至少有( 3 )个同学坐在 同一张椅子上。 3、新兵训练,战士小王6枪命中了43环,战士小王 总有一枪至少打中( 8 )环。 4、咱们班上有58个同学,至少有( 5 )人在同一 个月出生。 5、从街上人群中任意找来20个人,可以确定,至少 有( )个人属相相同。
• 谈一谈:这节课你都学 会了什么?有什么收获 ?这节课对自己的表现 满意吗?
四、布置作业
作业:第71页练习十三,第2题、第3题。
想一想:
把5枝笔放在4个笔筒里,还是不 管怎么放,总有一个笔筒里至少放进了 2枝笔吗?
为什么会有这样 的结果?
这样分实际上是怎样分? 怎样列式?
二、探究新知
(二)例2
把7本书放进3个抽屉,不管 怎么放,总有一个抽屉里至 少放进3本书。为什么?
二、探究新知
(二)例2
如果有8本书会怎么样呢?10本呢? 7本书放进3个抽屉,有一个抽屉至少放3 本书。8本书……