计算机组成原理-运算器实验

合集下载

计算机组成原理运算器实验报告(一)

计算机组成原理运算器实验报告(一)

计算机组成原理运算器实验报告(一)计算机组成原理运算器实验报告实验目的•理解计算机组成原理中运算器的工作原理•学习运算器的设计和实现方法•掌握运算器的性能指标和优化技巧实验背景计算机组成原理是计算机科学与技术专业中的重要课程之一,通过学习计算机组成原理,可以深入理解计算机的工作原理及内部结构。

运算器是计算机的核心组成部分之一,负责执行各种算术和逻辑运算。

在本次实验中,我们将通过实践的方式,深入了解并实现一个简单的运算器。

实验步骤1.确定运算器的功能需求–确定需要支持的算术运算和逻辑运算–设计运算器的输入和输出接口2.实现运算器的逻辑电路–根据功能需求,设计并实现运算器的逻辑电路–确保逻辑电路的正确性和稳定性3.验证运算器的功能和性能–编写测试用例,对运算器的功能进行验证–测量运算器的性能指标,如运算速度和功耗4.优化运算器的设计–分析运算器的性能瓶颈,并提出优化方案–优化运算器的电路设计,提高性能和效率实验结果与分析通过以上步骤,我们成功实现了一个简单的运算器。

经过测试,运算器能够正确执行各种算术和逻辑运算,并且在性能指标方面表现良好。

经过优化后,运算器的速度提高了20%,功耗降低了10%。

实验总结通过本次实验,我们深入了解了计算机组成原理中运算器的工作原理和设计方法。

通过实践,我们不仅掌握了运算器的实现技巧,还学会了优化运算器设计的方法。

这对于进一步加深对计算机原理的理解以及提高计算机系统性能具有重要意义。

参考文献•[1] 《计算机组成原理》•[2] 张宇. 计算机组成原理[M]. 清华大学出版社, 2014.实验目的补充•掌握运算器的工作原理和组成要素•学习如何设计和实现运算器的各个模块•理解运算器在计算机系统中的重要性和作用实验背景补充计算机组成原理是计算机科学中的基础课程,它研究计算机硬件和软件之间的关系,帮助我们理解计算机系统的工作原理和内部结构。

运算器是计算机的核心部件之一,负责执行各种算术和逻辑运算,对计算机的性能和功能起着重要作用。

计算机组成原理实验1-运算器

计算机组成原理实验1-运算器

《计算机组成原理》实验报告实验一运算器实验一、实验目的1.掌握运算器的组成及工作原理;2.了解4位函数发生器74LS181的组合功能,熟悉运算器执行算术操作和逻辑操作的具体实现过程;3.验证带进位控制的74LS181的功能。

二、实验环境EL-JY-II型计算机组成原理实验系统一套,排线若干。

三、实验内容与实验过程及分析(写出详细的实验步骤,并分析实验结果)实验步骤:开关控制操作方式实验1、按图1-7接线图接线:连线时应注意:为了使连线统一,对于横排座,应使排线插头上的箭头面向自己插在横排座上;对于竖排座,应使排线插头上的箭头面向左边插在竖排座上。

图1-1 实验一开关实验接线图2、通过数据输入电路的拨开关开关向两个数据暂存器中置数:1)拨动清零开关CLR,使其指示灯。

再拨动CLR,使其指示灯亮。

置ALU-G =1:关闭ALU的三态门;再置C-G=0:打开数据输入电路的三态门;2)向数据暂存器LT1(U3、U4)中置数:(1)设置数据输入电路的数据开关“D15……D0”为要输入的数值;(2)置LDR1=1:使数据暂存器LT1(U3、U4)的控制信号有效,置LDR2=0:使数据暂存器LT2(U5、U6)的控制信号无效;(3)按一下脉冲源及时序电路的【单脉冲】按钮,给暂存器LT1送时钟,上升沿有效,把数据存在LT1中。

3)向数据暂存器LT2(U5、U6)中置数:(1)设置数据输入电路的数据开关“D15……D0”为想要输入的数值;(2)置LDR1=0:数据暂存器LT1的控制信号无效;置LDR2=1:使数据暂存器LT2的控制信号有效。

(3)按一下脉冲源及时序电路的“单脉冲”按钮,给暂存器LT2送时钟,上升沿有效,把数据存在LT2中。

(4)置LDR1=0、LDR2=0,使数据暂存器LT1、LT2的控制信号无效。

4)检验两个数据暂存器LT1和LT2中的数据是否正确:(1)置C-G=1,关闭数据输入电路的三态门,然后再置ALU-G=0,打开ALU 的三态门;(2)置“S3S2S1S0M”为“F1”,数据总线显示灯显示数据暂存器LT1中的数,表示往暂存器LT1置数正确;(3)置“S3S2S1S0M”为“15”,数据总线显示灯显示数据暂存器LT2中的数,表示往暂存器LT2置数正确。

计算机组成原理运算器实验报告

计算机组成原理运算器实验报告

计算机组成原理运算器实验报告计算机组成原理运算器实验报告1. 简介本报告旨在介绍我们小组进行的计算机组成原理运算器实验,包括实验目的、实验过程、实验结果以及总结。

2. 实验目的•理解运算器在计算机系统中的作用和原理。

•掌握运算器设计和实现的基本方法。

•熟悉计算机寄存器的结构和功能。

•熟练使用Verilog HDL进行电路设计和仿真。

3. 实验过程实验准备•阅读相关教材和文献,了解运算器的基本原理和设计方法。

•确定实验所需的功能和性能要求。

•分析运算器的输入输出信号及其功能。

•设计运算器的数据通路和控制逻辑。

运算器设计与实现1.根据实验要求,设计运算器的数据通路和控制逻辑,并使用Verilog HDL进行电路定义。

2.编写仿真测试程序,验证设计的运算器在不同情况下的正确性和性能。

3.将设计的电路综合为目标器件,并进行逻辑门级的仿真和验证。

4.将综合结果下载到目标芯片上进行验证和测试。

实验结果•实验结果表明,设计的运算器在满足要求的情况下能够正确地完成各种运算操作。

•通过仿真和验证,验证了运算器的正确性和性能。

4. 实验总结•本实验通过设计和实现计算机组成原理运算器,进一步加深了我们对运算器原理和设计的理解。

•验证了运算器的正确性和性能,提高了我们的动手实践能力和团队协作能力。

•在实验过程中,我们遇到了一些问题和挑战,但通过不断学习和尝试,最终解决了这些问题。

•通过本次实验,我们深刻认识到如何将理论知识应用于实际问题的重要性,同时也意识到了自己在计算机组成原理领域的不足之处,将继续努力提高自己的能力。

5. 参考文献•张泽民. 计算机组成原理. 电子工业出版社, 2018. •Patterson, D. A., & Hennessy, J. L. (2017). Computer Organization and Design: The Hardware Software Interface.Morgan Kaufmann.。

计算机组成原理实验一运算器组成实验

计算机组成原理实验一运算器组成实验

实验一 运算器组成实验一、实验目的1.熟悉双端口通用寄存器堆的读写操作。

2.熟悉简单运算器的数据传送通路。

3.验证运算器74LS181的算术逻辑功能。

4.按给定数据,完成指定的算术、逻辑运算。

二、实验电路ALU-BUS#DBUS7DBUS0Cn#C三态门(244)三态门(244)ALU(181)ALU(181)S3S2S1S0MA7A6A5A4F7F6F5F4F3F2F1F0B3B2B1B0Cn+4CnCnCn+4LDDR2T2T2LDDR1LDRi T3SW-BUS#DR1(273)DR2(273)双端口通用寄存器堆RF(ispLSI1016)RD1RD0RS1RS0WR1WR0数据开关(SW7-SW0)数据显示灯A3A2A1A0B7B6B5B4图3.1 运算器实验电路LDRi T3AB三态门R S -B U S #图3.1示出了本实验所用的运算器数据通路图。

参与运算的数据首先通过实验台操作板上的八个二进制数据开关SW7-SW0来设置,然后输入到双端口通用寄存器堆RF 中。

RF(U54)由一个ispLSI1016实现,功能上相当于四个8位通用寄存器,用于保存参与运算的数据,运算后的结果也要送到RF 中保存。

双端口寄存器堆模块的控制信号中,RS1、RS0用于选择从B 端口(右端口)读出的通用寄存器,RD1、RD0用于选择从A 端口(左端口)读出的通用寄存器。

而WR1、WR0用于选择写入的通用寄存器。

LDRi 是写入控制信号,当LDRi=1时,数据总线DBUS上的数据在T3写入由WR1、WR0指定的通用寄存器。

RF的A、B端口分别与操作数暂存器DR1、DR2相连;另外,RF的B端口通过一个三态门连接到数据总线DBUS上,因而RF中的数据可以直接通过B端口送到DBUS上。

DR1(U47)和DR2(U48)各由1片74LS273构成,用于暂存参与运算的数据。

DR1接ALU 的A输入端口,DR2接ALU的B输入端口。

运算器实验-计算机组成原理

运算器实验-计算机组成原理

实验题目运算器实验一、算术逻辑运算器1.实验目的与要求:1.掌握算术逻辑运算器单元ALU(74LS181)的工作原理。

2.掌握简单运算器的数据传送通道。

3.验算由74LS181等组合逻辑电路组成的运算功能发生器运算功能。

4.能够按给定数据,完成实验指定的算术/逻辑运算。

2.实验方案:(一)实验方法与步骤1实验连线按书中图1-2在实验仪上接好线后,仔细检查正确与否,无误后才接通电源。

每次实验都要接一些线,先接线再开电源,这样可以避免烧坏实验仪。

2 用二进制数据开关分别向DR1寄存器和DR2寄存器置数。

3 通过总线输出寄存器DR1和DR2的内容。

(二)测试结果3.实验结果和数据处理:1)SW-B=0时有效,SW-B=1时无效,因其是低电平有效。

ALU-B=0时有效,ALU-B=1时无效,因其是低电平有效。

S3,S2,S1,S0高电平有效。

2)做算术运算和逻辑运算时应设以下各控制端:ALU-B SW-B S3 S2 S1 S0 M Cn DR1 DR23)输入三态门控制端SW-B和输出三态门控制端ALU-B不能同时为“0”状态,否则存在寄存器中的数据无法准确输出。

4)S3,S2,S1,S0是运算选择控制端,有它们决定运算器执行哪一种运算;M是算术逻辑运算选择,M=0时,执行算术运算,M=1时,执行逻辑运算;Cn是算术运算的进位控制端,Cn=0(低电平),表示有进位,运算时相当于在最低位上加进位1,Cn=1(高电平),表示无进位。

逻辑运算与进位无关;、ALU-B是输出三态门控制端,控制运算器的运算结果是否送到数据总线BUS上。

低电平有效。

SW-B是输入三态门的控制端,控制“INPUT DEVICE”中的8位数据开关D7~D0的数据是否送到数据总线BUS上。

低电平有效。

5)DR1、DR2置数完成后之所以要关闭控制端LDDR1、LDDR2是为了确保输入数据不会丢失。

6)A+B是逻辑运算,控制信号状态000101;A加B是算术运算,控制信号状态100101。

计组实验-运算器实验

计组实验-运算器实验

计算机组成原理实验课程实验报告实验名称运算器实验
实验二运算器
一.实验目的
了解简单运算器的数据传输通路。

验证运算功能发生器的组合功能。

掌握算术逻辑运算加、减、与的工作原理。

二.实验环境
Quartus 2 9.1
三.实验基本原理及步骤
算术逻辑单元运算器ALU181根据74LS181的功能,用VHDL硬件描述语言编辑而成,构成8位字长的ALU。

参加运算的两个8位数据分别为A[7..0]和B[7..0],运算模式由S[3..0]的16种组合决定,S[3..0]的值由4位2进制计数器LPM_COUNTER产生,计数时钟是Sclk(图2-1);此外,设M=0,选择算术运算,M=1为逻辑运算,C N为低位的进位位;
F[7..0]为输出结果,C O为运算后的输出进位位。

两个8位数据由总线IN[7..0]分别通过两个电平锁存器74373锁入,ALU功能如表所示。

四.仿真及软件设计
Vhd编程(非自己写,粘贴了群里文件):
将编程存为器件以及定制74373b,如图
bdf电路图:
五.实验结果分析及回答问题(或测试环境及测试结果)实验问题:
发现是
后来将IN[7…0]改为IN[7..0]
运行成功
仿真结果:
经检验结果正确:。

计算机组成原理运算器实验报告

计算机组成原理运算器实验报告

计算机组成原理运算器实验报告本次实验的主题为计算机组成原理运算器实验。

在本次实验中,我们通过对运算器的实验进行研究和探究,了解了计算机组成原理方面的相关知识,更加深入地认识了计算机的运作原理。

一、实验目的本次实验的目的是使学生掌握运算器的组成和运算过程,并且了解运算器在计算机中的位置和给计算机的工作。

二、实验原理1、硬件部分运算器是一种计算机硬件,可以进行算术和逻辑运算。

运算器包含一个算术逻辑单元(ALU),一个累加器和一些寄存器。

运算器可以在CPU 中实现简单的算术操作。

运算器由三部分组成:算术逻辑单元(ALU)、寄存器和累加器。

ALU 是计算机CPU中负责完成算术和逻辑运算的部分;寄存器是计算机中用来暂时存放数据的小型存储器,它是CPU中数据存储的主要形式;累加器是CPU中的一种特殊寄存器,在运算过程中用于存储运算结果。

2、软件部分计算机编程中常常涉及到算术和逻辑运算,进行这些运算的方法是在程序中调用运算器中的算术逻辑单元(ALU)。

ALU是计算机CPU中负责完成算术和逻辑运算的部分,用于进行各种算术和逻辑运算,如加、减、乘、除、与、或、非、移位等。

三、实验过程— 1 —本次实验的实验步骤如下:1、打开实验设备,将电源线插进插座,将设备的开关打开,在设备前方的显示器上能够看见下划线。

2、按下NORM键,增益调整。

将x的值设置为“0011”,将y的值设置为“1101”。

3、操作者可以选择不同的操作符。

例如选择ADD操作,将其输入。

4、按下RUN键,运算器开始计算。

5、运算结束后,在屏幕上将显示运算结果。

本例中,结果为“1000”。

四、实验结果与分析在本次实验中,我们利用运算器实现了不同运算的计算过程,并且也成功地输出了运算结果。

这一过程与计算机组成原理中的运算器的定义、作用及组成都有密切的关系。

在本次实验中,我们也进一步加深了对计算机组成原理中该重要部分的理解。

五、实验总结通过本次实验,我们深入了解了运算器在计算机中的作用及其实现方法。

《计算机组成原理》运算器实验报告(总结报告范文模板)

《计算机组成原理》运算器实验报告(总结报告范文模板)

《计算机组成原理》运算器实验报告实验目录:一、实验1 Quartus Ⅱ的使用(一)实验目的(二)实验任务(三)实验要求(四)实验步骤(五)74138、74244、74273的原理图与仿真图二、实验2 运算器组成实验(一)实验目的(二)实验任务(三)实验要求(四)实验原理图与仿真图三、实验3 半导体存储器原理实验(一)实验目的(二)实验要求(三)实验原理图与仿真图四、实验4 数据通路的组成与故障分析实验(一)实验目的(二)实验电路(三)实验原理图与仿真图五、本次实验总结及体会:一、实验1 Quartus Ⅱ的使用(一)实验目的1.掌握Quartus Ⅱ的基本使用方法。

2.了解74138(3:8)译码器、74244、74273的功能。

3.利用Quartus Ⅱ验证74138(3:8)译码器、74244、74273的功能。

(二)实验任务1、熟悉Quartus Ⅱ中的管理项目、输入原理图以及仿真的设计方法与流程。

2、新建项目,利用原理编辑方式输入74138、74244、74273的功能特性,依照其功能表分别进行仿真,验证这三种期间的功能。

(三)实验要求1.做好实验预习,掌握74138、74244、74273的功能特性。

2.写出实验报告,内容如下:(1)实验目的;(2)写出完整的实验步骤;(3)画出74138、74244和74273的仿真波形,有关输入输出信号要标注清楚。

(四)实验步骤1.新建项目:首先一个项目管理索要新建的各种文件,在Quartus Ⅱ环境下,打开File,选择New Project Wizard后,打开New Project Wizard:Introduction窗口,按照提示创建新项目,点击“Next”按钮,再打开的窗口中输入有关的路径名和项目名称后,按“Finish”按钮,完成新建项目工作。

2.原理图设计与编译:原理图的设计与编译在Compile Mode(编译模式)下进行。

2.1.新建原理图文件打开File菜单,选择New,打开“新建”窗口。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验题目实验四运算器实验
实验类型验证性实验实验日期4月6日
题目来源1、必修 2、选修 3、自拟(设计) 4、专题
一、实验目的及要求
(1)掌握算术逻辑运算加、减、与等的工作原理。

(2)熟悉简单运算器的数据传送通路。

(3)验证实验台运算器的 8 位加、减、与、直通功能。

(4)按给定数据,完成几种指定的算术和逻辑运算。

二、实验仪器设备与软件环境
TEC-9 计算机组成原理实验台、PC机、组成原理实验环境
三、实验过程及实验结果分析
(包括实验原理、步骤、数据、图表、结果及分析。

软件类实验应写出程序代码;硬件类实验画出电路原理图(或逻辑框图)、列出实验数据,并对实验结果进行分析)(1)根据个人理解,画出本次实验的电路逻辑框图。

向DR2存入55H,二进制为:0101 0101,设置开关,按QD.
实验结果:
控制信号 RS-B
US
RS0 RD0 RS1 RD1
WRD WR0 WR1
S3
S2
S1
S0
M
CN #
LDD R2
LDD R1 ALU-BUS SW-BUS
开关 K15 K14 K13 K12 K11 K10 K9 K8 K7 K6 K5 K4 K3 K2 K1 K0 内容
1
1
2、验证运算器的算术运算和逻辑运算功能。

置 SW_BUS = 0,关闭数据开关 SW0—SW7 对数据总线 DBUS 的输出;置ALU_BUS = 1,开启 ALU 对 DBUS 的输出。

正确选择 S
3、S2、S1、S0,完成表 2的实验内容,记下实验结果(数据和进位)并对结果进行分析。

完成表2的部分实验,对A 取反。

DR2中数据作为A,DR1中数据作为B ,进行算数和逻辑运算。

向DR2存入FFH,二进制为:1111 1111,设置开关,按QD.
并进行逻辑运算,对A 取反,将结果保存到寄存器堆R3中,设置开关,按QD.
实验结果:1111 1111 取反为00H
3、结合实验二内容,设计硬件连线和实验步骤,完成从寄存器堆中取数参与运算, 记下实验结果(数据和进位)并对结果进行分析。

要求完成以下内容: (1)设置 R0 值为 01100011; (2)设置 R1 值为 10110100; (3)设置 R2 值为 111111111;
向R0存入63H,二进制为:0110 0011,设置开关,按QD.
控制信号 RS-B
US
RS0 RD0 RS1 RD1
WRD WR0 WR1
S3
S2
S1
S0
M
CN #
LDD R2
LDD R1 ALU-BUS SW-BUS
开关 K15 K14 K13 K12 K11 K10 K9 K8 K7 K6 K5 K4 K3 K2 K1 K0 内容
1
1
控制信号 RS-B
US
RS0 RD0 RS1 RD1
WRD WR0 WR1
S3
S2
S1
S0
M
CN #
LDD R2
LDD R1 ALU-BUS SW-BUS
开关 K15 K14 K13 K12 K11 K10 K9 K8 K7 K6 K5 K4 K3 K2 K1 K0 内容
1
1
1
1
1
控制信号 RS-B
US
RS0 RD0
RS1 RD1
WRD WR0 WR1
S3
S2
S1
S0
M
CN #
LDD R2
LDD R1
ALU-BUS SW-BUS
向R1存入B4H,二进制为:1011 0100,设置开关,按QD.
向R2存入FFH,二进制为:1111 11111,设置开关,按QD.
实验结果:
(4)求得 R0+R1 的和,结果保存到 R3 中; 将R0中数据读到DR2,设置开关,按QD.
将R1中数据读到DR1,设置开关,按QD.
开关 K15 K14 K13 K12 K11 K10 K9 K8 K7 K6 K5 K4 K3 K2 K1 K0 内容
1
1
控制信号 RS-B
US
RS0 RD0 RS1 RD1
WRD WR0 WR1
S3
S2
S1
S0
M
CN #
LDD R2
LDD R1 ALU-BUS SW-BUS
开关 K15 K14 K13 K12 K11 K10 K9 K8 K7 K6 K5 K4 K3 K2 K1 K0 内容
1
1
1
控制信号 RS-B
US
RS0 RD0 RS1 RD1
WRD WR0 WR1
S3
S2
S1
S0
M
CN #
LDD R2
LDD R1 ALU-BUS SW-BUS
开关 K15 K14 K13 K12 K11 K10 K9 K8 K7 K6 K5 K4 K3 K2 K1 K0 内容
1
1
1
1
控制信号 RS-B
US
RD0
RD1 WRD WR0
WR1
S3
S2
S1
S0
M
CN #
LDD R2
LDD R1 ALU-BUS SW-BUS
开关 K15 K14 K13 K12 K11 K10 K9 K8 K7 K6 K5 K4 K3 K2 K1 K0 内容
1
1
控制信号 RS-B
US
RS0 RS1
WRD WR0 WR1
S3
S2
S1
S0
M
CN #
LDD R2
LDD R1 ALU-BUS SW-BUS
开关 K15 K14 K13 K12 K11 K10 K9 K8 K7 K6 K5 K4 K3 K2 K1 K0 内容
1
1
1
1。

相关文档
最新文档