解三角形里的基本不等式
三角形中的不等式

三角形中的不等式【知识点】若a、b为实数,则有-|a±b| ≤|a|-|b| ≤ |a ±b| ≤|a|+|b|。
1,绝对值不等式,一般指的是绝对值符号中含有未知数的不等式。
解绝对值不等式的基本方法是去绝对值符号,最常用的方法是分类讨论(“零点分区间法”),还有两边平方或者利用绝对值的定义等方法。
2,三角不等式,可以通过绝对值的性质对不等式进行缩放,以确定含绝对值的代数式(函数式)的取值范围、最大/小值问题,以及不等式的证明等综合运用。
这里省略绝对值的意义、以及三角不等式的证明过程一万字......【例①】求函数 y = |x-3|-|x+1| 的最小值和最大值。
【解析】利用三角不等式的性质,选择合适的不等号方向求得最大/小值。
求最大值时,选择不等号方向为≤;求最小值时,选择不等号的方向为≥。
因为|x-3|-|x+1| ≤|(x-3)-(x+1)| = 4,所以,y 的最大值为 4;又因为|x-3|-|x+1| ≥-|(x-3)-(x+1)| = - 4,所以,y 的最小值为- 4。
【例②】若关于x 的不等式|x-4|-|x+3| ≤ a 对一切x∈R 恒成立,求实数 a 的取值范围。
【解析】对不等式解集的“转义(等价于)”理解,利用三角不等式求得最值。
令 y = |x-4|-|x+3| ,则原不等式y ≤ a 对一切x ∈R 恒成立⟺ a 大于等于 y 的最大值。
因为|x-4|-|x +3| ≤|(x-4)-(x+3)| = 7,即 y 的最大值为 7,所以,实数 a 的取值范围为 a ≥ 7。
【例③】若关于x 的不等式|x+1| +|2-x| ≤ a 的解集不是空集,求实数 a 的取值范围。
【解析】对不等式解集的“转义(等价于)”理解,利用三角不等式求得最值。
令 y = |x+1| +|2-x| ,则原不等式y ≤ a 的解集不是空集⟺ a 大于等于 y 的最小值。
因为|x+1| +|2-x| ≥|(x+1)+(2-x)| = 3,即 y 的最小值为 3,所以,实数 a 的取值范围为 a ≥ 3。
三角不等式公式大全

三角不等式公式大全三角不等式是初中数学中的一个重要概念,它是指任意两边之和大于第三边的三角形中的关系。
在几何学和代数学中,三角不等式都有着重要的应用。
下面将对三角不等式的相关公式进行大全总结,希望对大家有所帮助。
1. 一般三角不等式公式:对于任意三角形ABC,有以下不等式成立:AB + BC > AC。
AC + BC > AB。
AB + AC > BC。
这是最基本的三角不等式公式,它表明了三角形中任意两边之和大于第三边。
2. 余弦定理:在三角形ABC中,设三边分别为a、b、c,夹角A对应的边为a,夹角B对应的边为b,夹角C对应的边为c,则有余弦定理:c^2 = a^2 + b^2 2abcosC。
b^2 = a^2 + c^2 2accosB。
a^2 = b^2 + c^2 2bccosA。
余弦定理可以用来求解三角形的边长和角度大小,是三角形中常用的重要公式。
3. 正弦定理:在三角形ABC中,设三边分别为a、b、c,夹角A对应的边为a,夹角B对应的边为b,夹角C对应的边为c,则有正弦定理:a/sinA = b/sinB = c/sinC = 2R。
其中R为三角形外接圆半径。
正弦定理可以用来求解三角形的边长和角度大小,也是三角形中常用的重要公式。
4. 三角形面积公式:设三角形ABC的三边分别为a、b、c,三角形的面积S可以用以下公式表示:S = √[p(p-a)(p-b)(p-c)]其中p为半周长,即p=(a+b+c)/2。
三角形面积公式是计算三角形面积常用的公式,可以通过三边长度直接求解三角形的面积。
5. 海伦公式:海伦公式是用来计算任意三角形面积的公式,对于任意三角形ABC,设三边分别为a、b、c,半周长为p,则三角形的面积S可以用以下公式表示:S = √[p(p-a)(p-b)(p-c)]海伦公式是三角形面积公式的一种推广,适用于任意三角形的面积计算。
以上是关于三角不等式的相关公式大全总结,这些公式在解决三角形相关问题时都有着重要的应用价值。
应用基本不等式,破解三角形最值

2024年3月上半月㊀学习指导㊀㊀㊀㊀应用基本不等式,破解三角形最值◉河南省固始县高级中学㊀沈玉洁㊀㊀利用基本不等式破解三角形中的角㊁边㊁周长㊁面积以及相应代数式等的最值及其综合应用问题,一直是高考命题中的一个重点与难点,交汇点多,综合性强,难度较大,灵活多样,备受各方关注.本文中结合实例,合理通过基本不等式的巧妙放缩,得以确定相应的最值.1角的最值问题利用基本不等式求解三角形中角的最值问题,是高考的一个考点.解决这类问题的关键是,利用正㊁余弦定理及基本不等式求出三角形中相应内角的某一三角函数值的取值范围或进一步利用三角函数的单调性求出角的最值等.例1㊀在әA B C 中,已知0<A <π2,0<B <π2,2s i n A =c o s (A +B )s i n B ,则t a n A 的最大值为.解析:由2s i n A =c o s (A +B )s i n B =-c o s C s i n B 及正弦定理和余弦定理,可得2a =-a 2+b 2-c22a bˑb ,化简可得5a 2+b 2=c 2.而t a n 2A =s i n 2A c o s 2A =1c o s 2A-1,又A 为锐角,可得c o s A >0,t a n A >0,因此只要求出c o s A 的最小值,就可求得t a n A 的最大值.结合基本不等式,利用余弦定理有c o s A =b 2+c 2-a 22b c =3b 2+2c 25b c ȡ23b 2ˑ2c 25b c =265,当且仅当3b 2=2c2,即c =62b 时等号成立,所以t a n 2A =1c o s 2A -1ɤ1(265)2-1=124,解得t a n A ɤ612,则t a n A 的最大值为612.点评:解决本题的关键是利用正弦定理㊁余弦定理化角为边的关系式,并结合基本不等式与余弦定理求出角A 的余弦值的取值范围,然后利用三角关系式的变形与转化,以及不等式的性质来确定角A 的正切值的平方的最值,进而获解.2边的最值问题求解三角形中边(或对应的线段长度等)的最值问题是高考的一个基本考点,解决这类问题的关键是利用余弦定理表示出所要求的边,然后利用基本不等式或三角形的三边关系等条件求出边的最值.例2㊀在әA B C 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知3a c o s C -a s i n C =3b .(1)求角A 的大小;(2)若D 为B C 的中点,且A D =2,求a 的最大值.解析:(1)由3a c o s C -a s i n C =3b ,结合正弦定理,可得3s i n A c o s C -s i n A s i n C =3s i n B =3s i n (A +C ),整理可得-s i n A s i n C =3c o s A s i n C ,即t a n A =-3.又A ɪ(0,π),所以A =2π3.(2)由于D 为B C 的中点,可得2A D ң=A B ң+A C ң,式子两边同时平方,有4A D ң2=AB ң2+2A Bң A C ң+A C ң2,又A D =2,所以16=c 2+b 2+2b c c o s A =c 2+b 2-b c ,即b 2+c 2=16+b c .而结合余弦定理,可得a 2=b 2+c 2-2b c c o s A =b 2+c 2+b c =16+2b c .由基本不等式,可得2b c ɤb 2+c 2=16+b c ,解得b c ɤ16,当且仅当b =c 时等号成立,所以2b c +16ɤ48,即a 2=16+2b c ɤ48,解得a ɤ43,当且仅当b =c ,即әA B C为等腰三角形时,等号成立.所以a 的最大值为43.点评:利用平面向量的线性关系的两边平方处理以及余弦定理的应用,用b 2+c 2及b c 的线性关系式表示出a 2是解决本题的关键,同时注意利用基本不等式来合理放缩b 2+c 2与b c 之间的不等关系,为确定边的最值奠定基础.3三角形周长的最值问题三角形周长的最值问题是高考的一个热点与常见题型,这类问题一般可以求出一条边(或已知一边),然后利用余弦定理表示出另两条边满足的关系式,最后利用基本不等式求出周长的最值.例3㊀在әA B C 中,角A ,B ,C 所对的边分别是a ,b ,c ,已知c o s B a b +c o s C a c +2c o s Ab c=0.54学习指导2024年3月上半月㊀㊀㊀(1)求A ;(2)若a =23,求әA B C 周长的取值范围.解析:(1)由c o s B a b +c o s C a c +2c o s Ab c=0及正弦定理,可得c o s B s i n A s i n B +c o s C s i n A s i n C +2c o s A s i n B s i n C=0.整理得s i n C c o s B +s i n B c o s C +2s i n A c o s A =0,即s i n (B +C )=-2s i n A c o s A .在әA B C 中,s i n (B +C )=s i n A ʂ0,所以可得c o s A =-12,而A ɪ(0,π),可得A =2π3.(2)由(1)及余弦定理可得a 2=b 2+c 2-2b c c o s A =(b +c )2-2b c +b c =(b +c )2-b c ,合理变形并结合基本不等式,可得(b +c )2=a 2+b c ɤa 2+(b +c2)2,当且仅当b =c 时等号成立,所以(b +c )2ɤ43a 2=43ˑ(23)2=16,解得b +c ɤ4.又利用三角形的基本性质有b +c >a =23,即b +c ɪ(23,4].所以әA B C 周长的取值范围为(43,4+23].点评:涉及三角形周长的最值问题,经常在已知或已求得其中一边的基础上,通过另外两边之和的最值转化来综合,而这时往往需要借助基本不等式来合理放缩与应用,同时也离不开三角形的基本性质等.4三角形面积的最值问题三角形面积的最值问题一直是高考命题的一个热点,解决这类问题的关键是找出两边(这两边的夹角往往已知或可求)之积满足的不等关系式,借助基本不等式合理放缩,再利用三角形面积公式解决问题.例4㊀在әA B C 中,D ,E 分别是线段A C ,B D 的中点,øB A C =120ʎ,A E =4,则әA B C 面积的最大值为.(323)解析:略.点评:解决本题的关键是利用余弦定理,或利用平面向量中的线性运算,或利用坐标运算等表示出b ,c 满足的关系式,然后利用基本不等式求出b c 满足的不等关系,最后利用三角形面积公式解决问题.5涉及角或边的代数式的最值问题关于三角形中的边长或角的代数式的最值问题是新课标高考的一个新趋向,创新新颖,变化多端,解决这类问题的关键是消元 消边或消角,对元素进行统一化处理,然后利用基本不等式求出最值即可.例5㊀记әA B C 的内角A ,B ,C 的对边分别为a ,b ,c ,已知c o s A 1+s i n A =s i n 2B1+c o s 2B.(1)若C =2π3,求B ;(2)求a 2+b 2c2的最小值.解析:(1)利用二倍角公式,可得c o s A1+s i n A=s i n 2B 1+c o s 2B =2s i n B c o s B 2c o s 2B =s i n Bc o s B ,则有s i n B =c o s A c o s B -s i n A s i n B =c o s (A +B )=-c o s C =-c o s 2π3=12,而0<B <π3,所以B =π6.(2)由(1)可得-c o s C =s i n B >0,则知c o s C <0,则有C ɪ(π2,π),于是有B =C -π2,可得s i n A =s i n (B +C )=s i n (2C -π2)=-c o s 2C .结合基本不等式,利用正弦定理可得㊀㊀㊀㊀a 2+b 2c 2=s i n 2A +s i n 2Bs i n 2C=c o s 22C +c o s 2C s i n 2C=(1-2s i n 2C )2+(1-s i n 2C )s i n 2C=4s i n 4C -5s i n 2C +2s i n 2C=4s i n 2C +2s i n 2C-5ȡ24s i n 2C ˑ2s i n 2C -5=42-5,当且仅当4s i n 2C =2s i n 2C ,即s i n C =142时,等号成立.所以a 2+b 2c 2的最小值为42-5.点评:解决本题中涉及边的代数式的最值问题的关键在于利用正弦定理化边为角,结合诱导公式与二倍角公式的转化,综合三角关系式的恒等变形,利用基本不等式来确定相应的最值问题.当然,除了巧妙利用基本不等式的放缩来确定三角形中的角㊁边㊁周长㊁面积以及相应的代数式等的最值及其综合应用,还可以利用平面几何图形的直观性质㊁三角函数的有界性㊁函数与方程的基本性质以及导数等相关知识来解决.而这当中基本不等式的放缩与应用是最简单有效的一种方法,也是最常见的,要结合问题的实质加以合理转化,巧妙构建 一正㊁二定㊁三相等 的条件,为利用基本不等式来处理三角形最值问题提供条件.Z64。
不等式 向量 解三角形复习

一、不等式的解法:1.一元一次不等式:Ⅰ、(0)ax b a >≠:⑴若0a >,则 ;⑵若0a <,则 ;Ⅱ、(0)ax b a <≠:⑴若0a >,则 ;⑵若0a <,则 ;2.一元二次不等式:0a >时的解集与∆有关 (数形结合:二次函数、方程、不等式联系)3. 高次不等式:数轴标根 步骤:正化,求根,标轴,穿线(奇穿偶不穿),定解.4.分式不等式的解法:通解变形为整式不等式; ⑴()0()f x g x >⇔;⑵()0()f x g x <⇔; ⑶()0()f xg x ≥⇔ ;⑷()0()f xg x ≤⇔;5.解含有参数的不等式:解含参数的不等式时,首先应注意考察是否需要进行分类讨论.如果遇到下述情况则一般需要讨论: ①不等式两端乘除一个含参数的式子时,则需讨论这个式子的正、负、零性.②在求解过程中,需要使用指数函数、对数函数的单调性时,则需对它们的底数进行讨论.③在解含有字母的一元二次不等式时,需要考虑相应的二次函数的开口方向,对应的一元二次方程根的状况(有时要分析△),比较两个根的大小,设根为12,x x (或更多)但含参数,要分12x x >、12x x =、12x x <讨论。
例:解关于x 的不等式: 2(1)10ax a x -++< ()R a ∈)例:实系数方程2()20f x x ax b =++=的一个根在(0,1)内,另一个根在(1,2)内,则21b a --∈;22(1)(2)a b -+- ∈ ;3a b +- ∈二、不等式的性质 (几个重要不等式) (1)0,0||,2≥≥∈a a R a 则若 (2))2||2(2,2222ab ab baab ba Rb a ≥≥+≥+∈+或则、若(当仅当a=b 时取等号)(3)如果a ,b 都是正数,那么.2a b +(当仅当a=b 时取等号)极值定理:若,,,,x y R x y S xy P +∈+==则:○1如果P 是定值, 那么当x=y 时,S 的值最小; ②如果S 是定值, 那么当x =y 时,P 的值最大.利用极值定理求最值的必要条件: 一正、二定、三相等.常用的方法为:拆、凑、平方;例1:设12,,,x a a y 成等差数列,12,,,x b b y 成等比数列,则21212()a a b b +的取值范围是___ 。
三角不等式深入理解三角不等式的证明和应用

三角不等式深入理解三角不等式的证明和应用三角不等式是初中数学中的重要知识点,它是解决三角形相关问题的基础。
深入理解三角不等式的证明和应用,不仅有助于提升数学思维能力,还能在实际问题中灵活运用。
本文将对三角不等式进行深入剖析,从证明到应用,帮助读者全面理解和掌握。
一、三角不等式的证明三角不等式是通过三角函数的性质进行推导得到的,下面将介绍常见的三角函数形式的三角不等式证明。
1. 正弦函数形式的三角不等式证明考虑任意角A,由正弦函数的性质可知,-1 ≤ sinA ≤ 1。
将该不等式两边同乘以正数a得-a ≤ a*sinA ≤ a。
对于任意角A,左侧的-a是常数,右侧的a*sinA则是关于角A的函数。
由于-a是常数,故不等式可以保持不变,因此得到-a ≤ a*sinA ≤ a。
这就是正弦函数形式的三角不等式。
2. 余弦函数形式的三角不等式证明类似地,考虑任意角A,由余弦函数的性质可知,-1 ≤ cosA ≤ 1。
同样,将该不等式两边同乘以正数a得-a ≤ a*cosA ≤ a。
对于任意角A,左侧的-a是常数,右侧的a*cosA则是关于角A的函数。
由于-a是常数,故不等式可以保持不变,因此得到-a ≤ a*cosA ≤ a。
这就是余弦函数形式的三角不等式。
3. 正切函数形式的三角不等式证明对于正切函数,由于正切函数的定义域为除去所有传统角的终边上的点外的全体实数,而正切函数值的范围为实数,所以不存在类似于正弦函数和余弦函数形式的三角不等式证明。
通过以上三个函数形式的三角不等式证明,我们可以看出三角不等式的基本思想是利用三角函数值的性质进行推导,从而得到关于角的不等式。
二、三角不等式的应用三角不等式广泛应用于各种几何问题和实际问题的求解中。
接下来,将介绍三角不等式在几何问题和实际问题中的应用。
1. 几何问题中的应用在解决几何问题时,经常需要根据已知条件来推导出额外的条件以求解未知量。
三角不等式在这方面起到了关键作用。
三角形不等式公式大全

三角形不等式公式大全三角形是几何学中的基本图形之一,它具有丰富的性质和特点。
而三角形不等式则是研究三角形性质的重要内容之一。
在本文中,我们将详细介绍三角形不等式的相关公式,包括三角形的边长不等式、角度不等式以及面积不等式等内容。
一、三角形的边长不等式1. 任意两边之和大于第三边对于任意三边长分别为a、b、c的三角形来说,有下列不等式成立:a +b > ca + c > bb +c > a2. 两边之差小于第三边对于任意三边长分别为a、b、c的三角形来说,有下列不等式成立:|a - b| < c|a - c| < b|b - c| < a3. 两边之和大于两边之差对于任意三边长分别为a、b、c的三角形来说,有下列不等式成立:a +b > |a - b|a + c > |a - c|b +c > |b - c|二、三角形的角度不等式1. 三个内角之和为180度对于任意三角形来说,其三个内角A、B、C的和等于180度,即:A +B +C = 180°2. 任意内角的大小对于任意三角形来说,其任意内角A所对的边长为a、B所对的边长为b、C所对的边长为c,有下列不等式成立:sinA/a = sinB/b = sinC/c其中,sin为正弦函数。
三、三角形的面积不等式1. 海伦公式对于任意三角形来说,其面积S可以由三边长a、b、c计算得出,公式如下:S = √[s(s-a)(s-b)(s-c)]其中,s为半周长,即s = (a + b + c)/2。
2. 三角形面积与边长关系对于任意三角形来说,其面积S与任意两边之积的正弦函数成正比,公式如下:S = (1/2)ab·sinCS = (1/2)ac·sinBS = (1/2)bc·sinA以上便是关于三角形不等式的一些常用公式。
通过掌握和应用这些公式,可以更好地理解和分析三角形的性质,解决与三角形相关的问题。
详细介绍三角不等式

详细介绍三角不等式
三角不等式是数学中的一个基本定理,它是指:对于任意的三角形ABC,AB+BC>AC、AC+CB>AB、BC+AB>AC。
这个定理的意义在于,它告诉我们三条边之间的关系,使我们能够更好地理解和解决与三角形有关的问题。
三角不等式的证明方法有很多种,其中一种比较简单的方法是使用向量。
假设三角形ABC的三个顶点的坐标分别为
A(x1,y1),B(x2,y2),C(x3,y3),则AB、BC、AC所对应的向量分别为AB=(x2-x1,y2-y1),BC=(x3-x2,y3-y2),AC=(x3-x1,y3-y1)。
根据向量的加法和模长的定义,我们可以得到:
|AB+BC| ≤ |AB|+|BC|
|BC+AC| ≤ |BC|+|AC|
|AC+AB| ≤ |AC|+|AB|
由于三角形ABC的三边的长度分别为|AB|、|BC|、|AC|,因此上述不等式可以改写为:
BC<AB+AC
AC<AB+BC
AB<AC+BC
这就是三角不等式的向量证明方法,它利用了向量的几何性质,简单而且直观。
除了向量证明方法外,还有很多其他的证明方法,例如几何证明、代数证明和不等式证明等。
无论采用哪种方法,都要注意证明过程的
严谨性和清晰性,以确保结论的正确性。
总之,三角不等式是数学中的一个基本定理,它对于解决与三角形有关的问题非常重要。
掌握了三角不等式,我们可以更好地理解三角形的性质和特点,从而更加熟练地处理与三角形有关的各种问题。
第24讲_三角不等式

第四讲 三角不等式含有未知数的三角函数的不等式叫做三角不等式.三角不等式首先是不等式,因此,处理不等式的常用方法如配方法、比较法、放缩法、基本不等式法、反证法、数学归纳法等也是解决三角不等式的常用方法.其次,三角不等式又有自己的特点——含有三角式,因而三角函数的单调性、有界性以及图像特征、三角公式及三角恒等变形的方法等都是处理三角不等式的常用工具.A 类例题例1 已知α、β为锐角,且()02x παβ+->,求证对一切0x ≠,有(cos )(sin )x x αβ<分析 要证的不等式两边均为指数式,且指数相同,可考虑利用函数()f x x α=的单调性,因此首先应比较cos α与sin β的大小,而函数()f x x α=的单调性与α的符号有关,可分情况讨论.证明 (1)若x >0,则2παβ+>,则022ππβα>>->,由正弦函数的单调性,得0sin()sin 12παβ<-<<,即0cos sin 1αβ<<<,又x >0,故有(cos )(sin )x x αβ<.(2)若x <0,则2παβ+<,则022ππβα<<-<,由正弦函数的单调性,得0s i n s i n ()12πβα<<-<,即0s i n c o s 1βα<<<,又x <0,故有(cos )(sin )x x αβ<.说明 比较不同角的正弦与余弦的大小,可先化同名,再利用正余弦函数的单调性比较,而一组2πα±的诱导公式是实现正、余弦转化的有力工具.例2 已知0απ<<,试比较2sin2α和cot 2α的大小.分析 两个式子分别含有2α与2α的三角函数,故可考虑都化为α的三角函数,注意到两式均为正,可考虑作商来比较.解法一2sin 21cos 4sin cos tan4sin cos 2sin cot2ααααααααα-== =2214cos 4cos 4(cos )12ααα-=--+,∵0απ<<,所以当1cos 2α=,即3πα=时,上式有最大值1,当0απ<<且3πα≠时,上式总小于1.因此,当3πα=时,2sin2α=cot2α;当0απ<<且3πα≠时,2sin2α<cot2α.解法二 设tan2t α=,由0απ<<得022απ<<,故tan 02t α=>,则1cot 2tα=,2224(1)22sin 24sin cos (1)t t t ααα-⋅==+,于是有 cot 2α-2sin2α=2422222222214(1)2961(31)0(1)(1)(1)t t t t t t t t t t t -⋅-+--==≥+++ 因此,当3πα=时,2sin2α=cot 2α;当0απ<<且3πα≠时,2sin2α<cot2α.例3 已知[0,]x π∈,求证:cos(sin x )>sin(cos x )分析一 从比较两数大小的角度来看,可考虑找一个中间量,比cos(sin x )小,同时比sin(cos x )大,即可证明原不等式.证法一 (1)当0,,2x ππ=时,显然cos(sin x )>sin(cos x )成立.(2)当2x ππ<<时,0s i n 12x π<<<,cos 02x π-<<,则cos(sin x )>0>sin(cos x ). (3)当02x π<<时,有0<sin x <x <2π,而函数y =cos x 在(0,)2π上为减函数,从而有cos(sin x )>cos x ;而0c o s 2x π<<,则sin(cos x )<cos x ,因此cos(sin x ) >cos x >sin(cos x ),从而cos(sin x )>sin(cos x ).分析二 cos(sin x )可看作一个角sin x 的余弦,而sin(cos x )可看作一个角cos x 的正弦,因此可考虑先用诱导公式化为同名三角函数,再利用三角函数的单调性来证明.证法二 当02x π<<时,有0<sin x <1,0<cos x <1,且sin x +cos x )4x π+2π≤,即0<sin x <2π-cos x <2π,而函数y =cos x在(0,)2π上为减函数,所以cos(sin x )>cos(2π-cos x )=sin(cos x ),即cos(sin x )>sin(cos x ).x 在其他区域时,证明同证法1.说明 (1)本题的证明运用到结论:(0,)2x π∈时,sin tan x x x <<,这是实现角与三角函数值不等关系转化的重要工具,该结论可利用三角函数线知识来证明.(2)证法一通过中间量cos x 来比较,证法二利用有界性得sin x +cos x 2π<,再利用单调性证明,这是比较大小常用的两种方法;(3)本题结论可推广至x R ∈.情景再现1.在锐角△ABC 中,求证: sin sin sin cos cos cos A B C A B C ++>++.2.已知,(0,)2x y π∈,tan 3tan x y =,求证:6x y π-≤.3.当[0,]2x π∈时,求证:coscos sinsin x x >.B 类例题例4 在ABC ∆中,证明: sin sin sin A B C ++≤分析一 本题中有三个变量A 、B 、C ,且满足A +B +C =180°,先固定其中一个如角C ,由于A +B =180°- C ,故对不等式的左边进行和差化积,将其转化为与A -B 有关的三角函数进行研究.证法一 我们先假定C 是常量,于是A +B =π-C 也是常量.sin sin sin 2sincos sin 22A B A B A B C C +-++=+2cos cos sin 22c A BC -=+,显然,对于同一个C 值,当A =B 时,上式达到最大值.同样,对同一个A 或B ,有类似结论;因此,只要A 、B 、C 中任意两个不等,表达式sin sin sin A B C ++就没有达到最大值,因而,当A =B =C =3π时,sin sin sin A B C ++,∴原不等式得证. 说明 不等式中含有多个变量时,我们往往固定其中部分变量,求其他变量变化时,相应表达式的最值,这种方法称为逐步调整法.分析二 即证sin sin sin 3A B C ++观察左边的形式,从而考虑用琴生不等式进行证明.证法二 函数sin y x =是区间(0,π)上的上凸函数,从而对任意的三个自变量123,,(0,)x x x π∈,总有123123sin sin sin sin()33x x x x x x ++++≥,等号当123x x x ==时成立.因此有sin sin sin sin()33A B C A B C++++≥,从而有sin sin sin 180sin 33A B C ++︒≤=,因此原不等式成立. 说明 本方法是利用凸函数性质解题,三角函数在一定区间内均为凸x )为上凸函数,不等号反向.例5 已知,,x y z R ∈,02x y z π<<<<.求证:2sin cos 2sin cos sin 2sin 2sin 22x y y z x y zπ++>++(90年国家集训队测试题)分析 将二倍角均化为单角的正余弦,联想单位圆中的三角函数线,两两正余弦的乘积联想到图形的面积.证明 即证sin cos sin cos sin cos sin cos sin cos 4x y y z x x y y z z π++>++即证明sin (cos cos )sin (cos cos )sin cos 4x x y y y z z z π>-+-+注意到上式右边是如图所示单位圆中三个阴影矩形的面积之和,而4π为此单位圆在第一象限的面积,所以上式成立,综上所述,原不等式成立.例6 63)cos()2sin 24sin cos a πθθθθ+-+-+36a <+对于[0,]2πθ∈恒成立.求a 的取值范围.(2004年首届东南地区数学奥赛试题)分析 所给不等式中有两个变量,给出其中一个的范围,求另一个的范围,常采用分离变量的方法.注意到与角θ有关的几个三角函数式,cos()cos )4πθθθ-=+,sin22sin cos θθθ=,因此考虑令sin cos x θθ+=进行变量代换,以化简所给不等式,再寻求解题思路.解 设sin cos x θθ+=,则2cos(),sin 2142x x πθθ-==-,当[0,]2πθ∈时,x ⎡∈⎣.从而原不等式可化为:26(23)2(1)36a x x a x ++--<+,即26223340x ax x a x ---++>,222()3()0x x a x a x x +--+->,()2(23)0(1)x x a x x ⎛⎫⎡-+->∈ ⎪⎣⎝⎭∴原不等式等价于不等式(1),1,,230x x ⎡∈∴-<⎣(1)不等式恒成立等价于()20x a x x⎡+-<∈⎣恒成立.从而只要m a x 2()()a x x x ⎡>+∈⎣.又2()f x x x =+在⎡⎣上递减,m a x 2()3()x x x⎡∴+=∈⎣,所以3a >. 例7 三个数a ,b ,c ∈(0,)2π,且满足cos a a =,sincos b b =,cossin c c =,按从小到大的顺序排列这三个数.(第16届全苏竞赛题)分析 比较a ,b ,c 三数的大小,cos a a =,sincos cos b b b =<,cossin cos c c c =>,等式的两边变量均不相同,直接比较不易进行,故考虑分类讨论,先比较a 与b ,由cos sin cos a ab b==,对等号两边分别比较,即先假定一边的不等号方向,再验证另一侧的不等号方向是否一致.解 (1)若a b =,则cos si n cos a a =,但由c o s a (0,)2π∈,故有cos si n cos a a >矛盾,即a ≠b .(2)若a b <,则由单调性可知cos cos a b >,又由a b <及题意可得cos sincos a b <,而sincos cos b b <,因此又可得cos cos a b <,从而产生矛盾.综上,a b >.类似地,若c a =,则由题意可得cos cossin a a =,从而可得sin a a =与sin a a >矛盾;若c a <,则s i n s i n c a a <<,即s i n c a <,cossin cos c a ∴>,即c a >矛盾.综上可得:b a c <<.说明 本题的实质是用排除法从两个实数的三种可能的大小关系排除掉两种,从而得第三种,体现了“正难则反”的解题策略.情景再现4.在三角形ABC 中,求证:(1)3sinsin sin 2222A B C ++≤;(2)sin sin sin A B C . 5.设12x y z π≥≥≥,且2x y z π++=,求乘积cos sin cos x y z 的最值.(1997年全国高中数学联赛)6.求证:|sin cos tan cot sec csc |1x x x x x x +++++≥(2004年福建省数学竞赛题)C 类例题例8 已知当[0,1]x ∈时,不等式22cos (1)(1)sin 0x x x x θθ--+->恒成立,试求θ的取值范围.(1999年全国高中数学联赛题)分析一 不等式左边按一、三两项配方,求出左边式子的最小值,根据最小值应当为正求出θ的取值范围.解法一 设22()cos (1)(1)sin f x x x x x θθ=--+-, 则由[0,1]x ∈时()0f x >恒成立,有(0)sin 0f θ=>,(1)cos 0f θ=>,22()([(12(12(1f x x x x x x ∴=+----(1)x x --21[(12(1)(02x x x =--->,当x =(10x -=,令0x =,则001x <<,0001()2(1)02f x x x =->12>,即1sin 22θ>,且sin 0,cos 0θθ>>,所求范围是:522,1212k k k Z ππθππ+<<+∈,反之,当522,1212k k k Z ππθππ+<<+∈时,有1sin 22θ>,且s i n 0,c o s 0θθ>>,于是只要[0,1]x ∈必有()0f x >恒成立.分析二 不等式左边视为关于x 的二次函数,求出此二次函数的最小值,令其大于0,从而求出θ的取值范围.解法二 由条件知,cos 0,sin 0θθ>>,若对一切[0,1]x ∈时,恒有()f x =22cos (1)(1)sin 0x x x x θθ--+->,即2()(cos 1sin )(12sin )sin 0f x x x θθθθ=++-++>对[0,1]x ∈时恒成立,则必有cos (1)0,sin (0)0f f θθ=>=>,另一方面对称轴为12sin 2(cos sin 1)x θθθ+=++[0,1]∈,故必有24(cos sin 1)sin (12sin )04(cos sin 1)θθθθθθ++-+>++,即4cos sin 10θθ->,1sin 22θ>,又由于cos 0,sin 0θθ>>故522,1212k k k Z πππθπ+<<+∈. 分析三 原不等式看作关于x 与1-x 的二次齐次式,两边同除x (1-x ). 解法三 原不等式化为:x 2cos θ+(1-x )2sin θ>x (1-x ),①x =0得sin θ>0,x =1得cos θ>0;②当x ≠0且x ≠1时,上式可化为:1x x -cos θ+1x x-sin θ>1对x ∈(0,1)恒成立,由基本不等式得1x x -cos θ+1xx-sin θ≥,∴1x x -cos θ+1xx-sin θ的最小值为,等号当1x x -cos θ=1x x -sin θ即x =时取到,因此.∴1sin 22θ>,又由于cos 0,sin 0θθ>>故522,1212k k k Z πππθπ+<<+∈. 例9已知,,,a b A B 都是实数,若对于一切实数x ,都有()1cos sin cos2sin 20f x a x b x A x B x =----≥,求证:222a b +≤,221A B +≤.(1977第十九届IMO ) 分析 根据函数式的特征及所要证明的式子易知,应首先将不等式化成()1))0f x x x θϕ=++≥,其中x 为任意实数,注意到所要证的结论中不含未知数x ,故考虑用特殊值方法.证明 若220a b +=,220A B +=,则结论显然成立; 故下设220a b +≠,220A B +≠: 令sin θθϕϕ===()1))f x x x θϕ=++,即对于一切实数x ,都有()1))0f x x x θϕ=++≥(1)()1))02f x x x πθϕ+=++≥ (2)(1)+(2)得:2)cos()]0x x θθ+++≥,即sin()cos()x x θθ+++≤对于一切实数x ≥因此222a b +≤.()1))0f x x x πθϕ+=++≥ (3)(1)+(3)得:2)0x ϕ-+≥,即sin(2)x ϕ+1≥,∴ 221A B +≤.例10 设αβγπ++=,求证:对任意满足0x y z ++=的实数,,x y z 有222sin sin sin 0yz zx xy αβγ++≤分析 由0x y z ++=消去一个未知数z ,再整理成关于y 的二次不等式,对x 恒成立,即可得证.证明 由题意,则将()z x y =-+代入不等式左边得, 不等式左边=2222222[sin sin (sin sin sin )]y x xy αβαβγ-+++- (1)当sin 0α=,易证不等式左边0≤成立.;(2)当sin 0α≠,整理成y 的二次方程,证△≤0. 左边2222(sin sin sin )[sin ]2sin x y αβγαα+-=-+22222222[(sin sin sin )4sin sin ]4sin x αβγαβα+--+, 由222222(sin sin sin )4sin sin αβγαβ+--222222(sin sin sin 2sin sin )(sin sin sin 2sin sin )αβγαβαβγαβ=+-++--2sin sin [1cos()]2sin sin [1cos()]αβαβαβαβ=-+⋅--+2224sin sin [1cos ()]0αβαβ=--+≤,∴22222222[(sin sin sin )4sin sin ]4sin x αβγαβα+--0≤,∴不等式左边0≤成立.情景再现7.证明:对于任意△ABC ,不等式a cos A +b cos B +c cos C ≤p 成立,其中a 、b 、c 为三角形的三边,A 、B 、C 分别为它们的对角,p 为半周长.(第十六届全俄数学竞赛题)8.设,,αβγ是一个锐角三角形的三个内角,求证:sin sin sin tan tan tan 2αβγαβγπ+++++>习题1.求证:对所有实数,x y ,均有22cos cos cos 3x y xy +-<. 2.在锐角三角形ABC 中,求证: tan tan tan 1A B C > 3.在锐角三角形ABC 中.求证: sin sin sin 2A B C ++>4.求证:222sin (cos(sin )sin(cos )2sin (44x x ππ≤-≤5.已知,(0,)2παβ∈,能否以sin ,sin ,sin()αβαβ+的值为边长,构成一个三角形?6.已知,αβ为锐角,求证:2222119cos sin sin cos ααββ+≥ 7.已知A +B +C =π,求证:222tan tan tan 1222A B C ++≥ 8.在三角形ABC 中,角A 、B 、C 的对边为a 、b 、c ,求证:3π≥++++c b a cC bB aA .9.设A 、B 、C 为锐角三角形之内角,n 为自然数,求证:12tan tan tan 3nnnnA B C +++≥.(93年第三届澳门数学奥林匹克赛题)10.已知02πθ<<,,0a b >,求证:223332()sin cos a b a b θθ+≥+11.设P 是三角形ABC 内任一点,求证:∠P AB ,∠PBC ,∠PCA 中至少有一个小于或等于30°.12.解方程coscoscoscos sinsinsinsin x x =(1995年全俄竞赛题)本节“情景再现”解答:1.证明:锐角三角形可知A+B 2π<,从而A 2π<-B ,从而sin cos A B >,同理sin cos ,sin cos B C C A >>,三式相加得证.2.证明:由已知得tan 3tan tan x y y =>及,(0,)2x y π∈知,x y >,从而(0,)2x y π-∈,要证6x y π-≤,只须证明tan()tan 6x y π-≤=,由于2tan tan 2tan tan()1tan tan 13tan x y yx y x y y--==++,于是问题归结为证22tan 13tan y y ≤+,即21)0y -≥,而上式显然成立,因此原不等式成立.3.证法一:当x ∈(0,2π)时,∵0<sin x <x <2π,∴sinsin x <sin x ,再比较sin x 与coscos x 的大小,由sin x =cos (2π-x ),即比较(2π-x )与cos x ,而cos x =sin (2π-x ),因此(2π-x )>cos x ,从而cos (2π-x )<coscos x ,即sin x <coscos x ,从而得证.证法二: sin x +cos x 2π≤,即0<cos x <2π-sin x <2π, 所以cos(cos x )>cos(2π-sin x )=sin(sin x ). 4.证明:(1)由琴生不等式即得.(2sin sin sin sin 33A B C A B C ++++≤,从而得证. 5.解:由条件知,312x y z ππ≥≥≥≥,()222123x y z ππππ=-+≤-⨯=,sin()0y z -≥,于是cos sin cos x y z =1cos [sin()sin()]2x y z y z ++-1cos sin()2x y z ≥+22111cos cos 2238x π=≥=,当,312x y z ππ===时取等号,故最小值为18(y 与z 相等,且x 达到最大时,乘积有最小值).又cos sin cos x y z =1cos [sin()sin()]2z x y x y +--211cos sin()cos 22z x y z ≤+=21cos 212π≤,且当5,1224z x y ππ===时等号成立,故cos sin cos x y z6.证明:设()|s i n c o s t a n c o t f x x x x x x x=+++++,sin cos t x x=+,则有21sin cos 2t x x -=,2222()||11t f x t t t =++--22|||11|11t t t t =+=-++-- 当1t >时,2()1111f x t t =-++≥-; 当1t <时,2()(1)111f x t t =--+-≥-因此|sin cos tan cot sec csc |1x x x x x x +++++≥.7.证明:因为cos x (x ∈(0,π))递减,所以a -b 与cos A -cos B 异号,从而(a -b )(cos A -cos B )≤0.即a cos A +b cos B ≤a cos B +b cos A =C (l )当且仅当a =b 时等号成立.同理a cos A +c cos C ≤b (2) b cos B +c cos C ≤a (3),1[(1)(2)(3)]2⨯++即得所要证的不等式. 8.证明:2242tan2tan4tan222sin tan 4tan 21tan 1tan 1tan 222ααααααααα+=+=>+--, 0,tan,sin tan 4tan22222πααααααα<<∴>∴+>>,同理得另两个,命题得证.“习题”解答:1.证明:22cos cos cos 3x y xy +-≤显然成立,下面证明等号不能成立.用反证法.若等号成立,则22cos 1,cos 1,cos 1x y xy ===-,则222,2,,*x k y n k n N ππ==∈,则2224,,*x y nk k n N π=∈,则,,*xy k n N =∈,cos 1xy ≠-,因此等号不成立.2.证明:锐角三角形可知A+B 2π<,从而A 2π<-B ,从而sin cos A B >,同理sin cos ,sin cos B C C A >>,三式相乘得sin sin sin cos cos cos A B C A B C >.从而可得tan tan tan 1A B C >.3.解:22sin sin ,sin sin A A B B >>,sin sin()sin cos cos sin C A B A B A B =+=+22cos cos cos cos cos cos B B A A B A >+=+,三式相加得证.4.证明:cos(sin )sin(cos )cos(sin )cos(cos )2x x x x π-=--cos sin cos sin 2sin()sin()4242x x x xππ+-=--又cos sin 2x x ±≤ cos sin 4424x x πππ±≤-≤,又04π>,4π2π<,由正弦函数在[0,]2π上的单调性可知,原不等式成立.5.证法一:sin sin 2sincos2sincossin()2222αβαβαβαβαβαβ+-+++=>=+ |sin sin |2cos|sin|2cossinsin()2222αβαβαβαβαβαβ+-++-=<=+,因此可以构成三角形.证法二:在直径为1的圆内作内接三角形ABC ,使,A B αβ∠=∠=,()C παβ∴∠=-+则sin ,sin ,sin()BC AC AB αβαβ===+,因此可构成三角形.6.解:左222222214145tan 4cot 9cos sin sin 2cos sin ααααβαα=+≥+=++≥. 7.证:左tantan tan tan tan tan 222222A B B C C A ≥++ tan tan tan (tan tan )22222A B C B A=++ tantan cot tan (1tan tan )1222222A B A B A B A B ++≥+-=8.分析:注意到π可写成A +B +C ,故即证:3(aA +bB +cC )≥(a +b +c )π,即证3(aA +bB +cC )≥(a +b +c )(A +B +C ),即证(a -b )(A -B )+(b -c )(B -C )+(c -a )(C -A )≥0,由大边对大角得上式成立.9.证明:设tan ,tan ,tan x A y B z C ===,则,,0x y z >,x y z xyz ++=,而x y z ++≥,代入得323xyz ≥,故123n n n nx y z +++≥≥.10.证明:要证原不等式,即证222333()()sin cos a b a b θθ+≥+,即2222222sin cos sin cos a b aba b θθθθ++≥++上式中将θ看作变量,,a b 看作常数,考虑从左边向右边转化即证222222sin cos cot tan 2sin cos a b abθθθθθθ+++≥即2222cot tan 2tan 2cot a b ab ab θθθθ+++≥因为22222c o t 2t a n c o t t a n t a a a b a a b a b b θθθθθ+=++,同理可得22tan 2cot b ab θθ+≥11.证明:如图,P A sin 1θ=PB sin θ5,PB sin θ2=PC sin θ6,PC sin θ3=P A sin θ4,三式相乘得sin 1θsin θ2 sin θ3= sin θ4 sin θ5 sin θ6,因此有(sin 1θsin θ2 sin θ3)2= sin 1θsin θ2 sin θ3 sin θ4 sin θ5 sin θ66123456sin sin sin sin sin sin 6θθθθθθ+++++⎛⎫≤ ⎪⎝⎭661234561sin ()62θθθθθθ+++++⎛⎫≤= ⎪⎝⎭,从而sin 1θsin θ2 sin θ331()2≤,因此sin 1θ、sin θ2 、sin θ3中至少有一个小于或等于12,不妨设sin 1θ12≤,则1θ≤30°或1θ≥150°,此时三个角中至少有一个角小于30°.12.解:考虑周期性,只要先解决[0,2)x π∈的解的情况,而当[,2)x ππ∈时,左边为正,右边非正,因此方程无解.由于[0,]2x π∈时有coscos sinsin x x >,将x 换成cos cos x 得(换成sinsin x也可以):coscoscoscos sinsincoscos x x >,又由于sin sin y x =在[0,]2x π∈时为增函数,因此有sinsincoscos sinsinsinsin x x >,综上可得:coscoscoscos sinsinsinsin x x >,因此原方程无解. 当(,)2x ππ∈时,令2y x π=-,则(0,)2y π∈,在coscos sinsin x x >,[0,]2x π∈中,将x 换成cossin y 得,coscos(cossin )sinsin(cossin )sinsin(sin cos )y y y >>,将2y x π=-代入得,coscoscoscos sinsinsinsin x x >,原方程也无解.综上所述,对x R ∈,恒有coscoscoscos sinsinsinsin x x >,原方程无解.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解三角形里的基本不等式
三角形是数学中最基本的图形。
《解三角形里的基本不等式》是
一个有益的数学主题。
这一主题研究三角形的基本不等式,帮助我们更好地理解三角形的结构,以及如何从结构中解释不等式。
首先,关于三角形的基本定义如下:三角形是由三条直线连接三个不同的点构成的图形,它们恰好有三个顶点和三条边。
它有三种不同类型:等腰三角形、直角三角形和斜角三角形。
其次,三角形的基本不等式是指对每个三角形,当其两个内角总度数等于180度,该不等式就成立,而不等式的特殊表示方式是:
[等腰三角形]
a +
b = c
[直角三角形]
a^2 + b^2 = c^2
[斜角三角形]
a^2 + b^2 > c^2
这种不等式可以用于计算三角形的面积,因为三角形的面积是由其顶点和边长来表示的。
对于等腰三角形,面积是由其两个半径相乘给出的,而对于直角三角形,面积是由其两个等腰边长乘以直角边长来表示的,而对于斜角三角形,面积则是由三角形的三条边长的海伦公式来表示的。
此外,三角形的基本不等式还可以用来进行根据图形来判断三角形的类型以及计算边长的长度。
如果两个内角的度数之和等于180度,
则可以确定该三角形的类型。
同时,可以根据不等式求出三角形的边长,例如:已知两个内角的度数分别为60°和50°,则可以确定该三角形应该是等腰三角形,并可以利用不等式求出该三角形的边长:a+b=c,即a+b=70,这样就能确定三角形的边长了。
最后,三角形基本不等式也可以应用于其他数学领域,例如可以用来分析复杂几何图形的性质,从而解决其他科学问题。
另外,三角形的基本不等式也被用于航海和航空行业,以帮助航海家和飞行员判断他们的位置。
本文详细讨论了三角形里的基本不等式,包括它的定义、性质、不同类型的特征、在解三角形中的应用以及在其他领域的应用。
这项研究将有助于我们更好地理解三角形的结构,从而更好地解释它的基本不等式。