轻松掌握各种磁共振伪影(必点收藏)

合集下载

MR伪影知多少?

MR伪影知多少?

MR伪影知多少?伪影又称假影,鬼影。

是指各种原因引起的不代表人体真实组织信号(密度)的影像。

磁共振(MR)检查中容易形成各种伪影,也比较多。

有时单独存在,有时几种并存,与设备性能与扫描技术密切相关。

正确识别各种伪影,了解其产生的原因,才能减少或避免各种伪影带来的干扰,提高图像质量。

下面就几种常见的伪影加以叙述。

1、运动伪影是由于呼吸运动或人体移动产生的伪影,呈条带状或弧形,与相位编码方向一致。

如同老扫帚扫地留下的一样,故又俗称“扫把样伪影”。

呼吸运动伪影可利用呼吸门控技术,膈肌导航技术,改变相位编码方向来减少或抑制。

人体移动所造成的伪影需制动肢体,训练好病人来消除或减轻。

2、搏动伪影常见于心脏和大血管的搏动引起,与相位编码方向一致,形成明暗相间的圆形阴影,有时很容易误认为病变。

可用心电门控或脉搏门控技术加以抑制。

3、磁敏感伪影顺磁性物质干扰磁场形成的伪影,常见于金属,所以又称为“金属伪影”。

扫描前取除患者衣服上的金属钮扣,饰物,假牙等,体内金属顺磁性物质(如O形节育环)不易做相应部位的检查。

4、层间干扰伪影层组与层组之间在体内相交,形成层间干扰伪影。

常见于腰椎间盘的扫描。

避开层间在体内相交可避免。

5、卷折伪影是由于FOV过小,没有设置过相位采样或过相位采样设置过小,FOV把边框外的器官、组织剪切反折到对侧,形成卷折伪影,又称反折伪影。

准确定位,选择合适大小的FOV,设置合适的过采样值可以避免。

6、化学位移伪影化学位移伪影是由于相邻组织的氢质子差别太大,造成的信号不均匀伪影,往往会在膀胱,肾脏边缘出现,表现为一侧边缘清晰,一侧边缘不清晰,容易误认为异常。

7、噪声伪影噪声伪影是由于信-噪比过小,造成的图像背景噪声颗粒过大,影响图像的清晰度和对比度。

合理设置扫描参数可有效降低噪声伪影。

作者现将临床工作中经常见到的几种磁共振伪影归纳整理一下,供大家学习、参考。

准确认识和分析伪影,才能有效减少和避免伪影,提高扫描图像质量。

磁共振常见伪影的鉴别

磁共振常见伪影的鉴别

磁共振常见伪影的鉴别在磁共振成像中,伪影的出现比其他成像技术多,而且也教严重,因此正确鉴别和认识伪影、明确伪影产生的原因并采取相应的解决办法是临床诊断经常面临的问题。

下面就磁共振产生伪影主要原因、图像表现及解决办法进行介绍和探讨。

1、黑边界伪影:黑边界伪影是一种人为造成的沿水脂分界面、肌肉脂肪分界面分布的黑线状伪影。

这种伪影在视觉上可以清楚的勾画出组织轮廓。

但是它并不是正常的解剖结构。

胸部冠状位图像,回波时间为7ms,可以看到在肩部肌肉及肝脏周围分界清晰的黑边界伪影。

之所以会出现这种伪影,最常见的原因是在脂肪和水位于相同的层面时,设置TE时间恰好使水分子和脂肪分子的自旋处于反相位,使信号相互抵消。

在1.5磁场下,脂肪和水的频率相差3.5ppm,在T E取4.5ms的倍数时,可以消去伪影,如:4.5ms,9ms,13.6ms.2、化学位移伪影在推体、腹部、眼眶等含脂肪成份的组织边缘常可以看到化学位移伪影。

在频率编码方向上,磁共振系统利用不同分子的不同频率进行空间定位。

在不同器官中,由于水和肌肉组织与脂肪相比具有不同的共振频率,此时磁共振扫描仪依据这种频率差异进行空间定位时,含有脂肪成份的组织在频率编码方向上相对与正常位置发生偏移。

在脊柱扫描中,视觉表现为一侧椎体的边缘厚度明显大于对侧。

在腹部和眼眶扫描中,会在水、脂分界面上出现黑影,而在对侧出现亮条状伪影。

在肾脏轴位扫描过程中,这种伪影表现为,在肾脏顶端的亮条状伪影,以及底端的黑条状伪影,并且场强越高此伪影越明显。

消除此伪影的最好方法是使用脂肪饱技术。

3、卷折伪影当FOV小于采集窗时常常会出现卷折伪影。

在相位编码方向及3D序列的片层方向上,表现为超出部分的图像会折叠到对侧,这种现象可以进行更正。

如果必须去处此伪影,可以在相位编码方向增加更多的编码步数加以校正。

在相位编码方向增加过采样亦可去处此伪影。

4、吉布斯(截断)伪影吉布斯伪影是一种非常强烈的、平行排列、黑白相间的一种条状伪影。

磁共振伪影

磁共振伪影

斑马线伪影
封闭磁体间内某些放电辐射,伪影可出现在整 个序列,也可出现在单一图像,检查噪声滤波 器,检查内部有无松动部件,检查内部电缆 (工程师)
运动伪影
对策
• • • • 制动、辅助药物(镇静剂) 心电门控,呼吸门控 添加饱和带 流动补偿
• 椎体检查,在其前方加饱和带,减少动脉 血管,气管的运动伪影,添加饱和带时注 意调整位置,让开要观察的部位,避免交 叉伪影
磁共振伪影有哪些?
• 卷褶伪影、化学位移伪影、截断伪影、鬼影、运动 伪影、交叉伪影、金属伪影、磁化率伪影、斑马线 伪影、FID伪影、SENSE伪影、射频干扰伪影、介 电伪影、硬件故障伪影等等。
伪影出现的原因
• 环境因素(射频泄露/干扰、运动的金属、温度突然改变 磁体间温度:15°—21°相对湿度:30%—60% 设备间、操作间环境温度:15°—29相对湿度30%—60% 。) • 硬件因素(静磁场不均匀、射频场不均匀梯度场不均匀) • 图像处理因素(脉冲序列、扫描参数、软件BUG) • 操作因素(摆位、线圈、金属、屏气、定位线重叠、匀场 中心偏差) • 患者因素(运动、金属植入物、解剖相关伪影、磁敏感伪 影)
道损坏)
1、FOV太小,类似卷褶,多出现 在图像中心,增大FOV,设置预饱和 带。 2、扫描中病人运动(类似卷褶) 或线圈移动,(一条切割线将暗区 与亮区分开),固定好线圈绷带。 3、线圈摆放不正确(图像中心出 现条带状的部分组织的卷褶信号, 信噪比明显降低),线圈前后片对 齐左右对齐。 4、屏气方式不一致(类似呼吸的 运动伪影,但伪影处在图像偏下方, 且只有一条)
• • •
• • • •
• •
化学位移伪影的对策很多,主要包括以下四个方面: ⑴增加频率编码的宽度 频率编码带宽也就是采样带宽,在参数调整界面可以进行设置。在主磁场强度一定的 情况下,水质子与脂质子的进动频率差别是固定不变的,以场强为1.5T设备为例,脂 肪和水的化学位移约为225Hz,如果矩阵为256′256,频率编码带宽为±12.5kHz(约 100Hz/像素),那么化学位移225Hz相当于移位2.25个像素。如果把频率编码带宽改 为±25kHz(约200Hz/像素),则化学位移相当于1.13个像素。因此,增加频率编码 带宽可以减轻化学位移伪影,需要注意的是增加频率带宽后,回波的采样速度还可得 到提高,但图像的SNR降低。 ⑵选用主磁场较低的MR设备进行扫描 场强越高,水质子与脂质子的进动频率差别越大,化学位移伪影越明显,因此选用场 强较低的设备进行扫描可以减轻化学位移伪影。 ⑶改变频率编码的方向 化学位移伪影主要发生于与频率编码方向垂直的水脂界面上,如果改变频率编码方向 ,使脂肪组织与其它组织的界面与频率编码方向平行可消除或减轻肉眼观察到的伪影 的程度。 ⑷施加脂肪抑制技术 化学位移伪影形成的基础是脂肪组织相对于其它组织的位置错误移动,如果在成像脉 冲前先把脂肪组织的信号抑制掉,那么化学位移伪影将同时被抑制。

磁共振mri伪影学习

磁共振mri伪影学习
第13页/共18页
运动伪影
随机运动:图像较模糊, 也可能在相位编码方向得到很多 平行条带。 患者者制动、镇静、止痛; 呼吸补偿;6-542低张;更快速 的扫描序列;风车技术。
第14页/共18页
磁敏感伪影
图像上表现为组织-空气和组 织-脂肪界面(包括副鼻窦、颅底、 蝶鞍等部位)出现异常信号。 不同磁化率物质的交界面,磁 化率不同会导致局部磁场环境的变 形,造成自旋失相位,产生信号损 失或错误描述。常出现在磁化率差 异较大的两种界面。 均场;缩短回波时间;用自旋 回波代替梯度回波和平面回波;增 加频率编码梯度场强度;增大矩阵; 减小人为的磁化界面。
第5页/共18页
灯芯绒伪影
图像上表现为覆盖整个图 像的“棘刺状”伪影。可为单一 方向,也可为多个方向相交排列。 磁体间内存在放电辐射。 关闭或封闭放电辐射源,查 看有无松动的金属物。
第6页/共18页
交叉伪影
交叉部位(或有饱和脉冲的部位) 低信号或信噪比非常低。 层面内组织受到其它层面/额外 的射频脉冲激发,提前饱和,不能产 生信号。 定位时注意层面交叉让开要观察 的部位;FOV内预置饱和注意手动调整 位置,让开要观察的部位。
硬 件
磁场不均匀

射频不均匀

梯度场不均匀



图像处理算法


序列参数设置



影 分
环 境
射频泄漏、干扰


运动的金属

突然的温度改变

自主或非自主运动

金属或铁磁性物品
相 关
解剖相关差异
射频馈通 射频噪声 涡流 非线性 几何变形
卷褶伪影 化学位移 截断伪影 部分容积 细线伪影

MRI常见伪影及其定制化讲解

MRI常见伪影及其定制化讲解

MRI常见伪影及其定制化讲解在磁共振成像(MRI)中,伪影是指不应存在的图像扭曲或伪影。

这些伪影可以降低图像质量,影响诊断准确性。

本文将定制化讲解MRI中常见的七种伪影,包括运动伪影、截断伪影、化学位移伪影、磁敏感伪影、卷褶伪影、失真伪影和交叉成像伪影。

1.运动伪影运动伪影是由于扫描过程中患者或扫描设备移动而产生的。

为了减少运动伪影,可以采取以下措施:•嘱咐患者扫描过程中保持静止,对于无法配合的患者可采取适当的固定措施。

•采用快速扫描序列,缩短扫描时间,从而降低运动伪影的发生率。

•在扫描前对患者进行呼吸训练,使其适应扫描过程。

2.截断伪影截断伪影是由于信号被截断而产生的。

在MRI中,当信号强度低于预设阈值时,会被截断为零,从而导致图像中出现黑色区域。

为了减少截断伪影,可以采取以下措施:•适当调整图像重建的阈值,使其更适应实际的信号分布。

•采用饱和带技术,将信号强度过高的区域进行饱和处理,从而避免截断伪影的产生。

3.化学位移伪影化学位移伪影是由于原子核在磁场中的微小移动而产生的。

这种微小移动会导致图像中像素位置的偏移,从而产生伪影。

为了减少化学位移伪影,可以采取以下措施:•使用校准线圈来校正磁场不均匀性。

•采用傅里叶变换技术对图像进行校正,抵消化学位移伪影的影响。

4.磁敏感伪影磁敏感伪影是由于组织对磁场的敏感度不同而产生的。

在MRI中,磁敏感差异会导致图像失真和变形。

为了减少磁敏感伪影,可以采取以下措施:•在扫描前对患者进行适当的固定,避免磁场敏感度差异的影响。

•采用快速扫描序列,缩短扫描时间,从而降低磁敏感伪影的发生率。

•采用校正算法对图像进行校正,抵消磁敏感伪影的影响。

5.卷褶伪影卷褶伪影是由于信号重叠而产生的。

在MRI中,相邻组织的信号会相互干扰,导致图像中出现虚假轮廓和纹理。

为了减少卷褶伪影,可以采取以下措施:•在扫描前对患者进行适当的固定,避免组织间的相对移动。

•采用傅里叶变换技术对图像进行重建,消除信号重叠的影响。

MRI常见伪影及其对策

MRI常见伪影及其对策

MRI常见伪影及其对策每一幅MR图像都存在不同程度的伪影。

伪影是指MR图像中与实际解剖结构不相符的信号,可以表现为图像变形、重叠、缺失、模糊等。

MRI检查中伪影主要造成三个方面的问题:(1)使图像质量下降,甚至无法分析;(2)掩盖病灶,造成漏诊;(3)出现假病灶,造成误诊。

因此正确的认识伪影及其对策对于提高MRI临床诊断水平非常重要。

MRI的伪影主要分为装备伪影、运动伪影及磁化率敏感伪影等三大类。

本节将重点介绍MRI常见伪影的原因、表现及其对策。

一、设备伪影所谓设备伪影是指与MRI成像设备及MR成像固有技术相关的伪影。

设备伪影主要取决于生产产家的设备质量、安装调试等因素,成像参数的选择也是影响设备伪影的重要因素。

下面主要讨论与成像参数有关的设备伪影。

(一)化学位移伪影化学位移伪影是指由于化学位移现象导致的图像伪影。

化学位移现象我们已经在MRS一节作了介绍。

大家都知道MR图像是通过施加梯度场造成不同位置的质子进动频率出现差异来完成空间定位编码的。

由于化学位移现象,脂肪中的质子的进动频率要比水中的质子快3.5PPM(约147Hz/T),如果以水分子中的质子的进动频率为MR成像的中心频率,则脂肪信号在频率编码方向上将向梯度场强较低(进动频率较低)的一侧错位。

以盆腔横断面T2WI为例,如果左右方向为频率编码方向且梯度场为左侧高右侧低,膀胱内的尿液呈现高信号,周围脂肪也呈高信号。

膀胱左旁的脂肪向右侧移位并与膀胱内的尿液信号叠加,在膀胱左侧缘形成一条信号更高的白色条带;而膀胱右旁的脂肪也向右移位,从而在膀胱右缘处形成一条信号缺失的黑色条带。

化学位移伪影的特点包括:(1)出现在频率编码方向上;(2)脂肪组织的信号向频率编码梯度场强较低的一侧移位;(3)场强越高,化学位移伪影也越明显。

化学位移伪影的对策包括:伪影。

(2)施加脂肪抑制技术。

脂肪信号被抑制后,其化学位移伪影将同时被抑制。

(3)增加频率编码的带宽。

以1.0 T扫描机为例,脂肪和水的化学位移为147Hz,如果矩阵为256×256,频率编码带宽为25 KHz(约100Hz/像素),那么化学位移147Hz相当于移位1.5个像素,如果把频率编码带宽改为50KHz(约200Hz/像素),则化学位移相当于0.75个像素,伪影明显减轻。

MRI常见伪影分析与对策

MRI常见伪影分析与对策

MRI常见伪影分析与对策MRI(Magnetic Resonance Imaging)是一种通过利用磁共振现象来获取人体或动物体内部结构和功能信息的影像技术。

然而,在MRI图像中常常会出现一些伪影,这些伪影可能会对诊断结果产生干扰。

因此,对常见的MRI伪影进行分析并制定相应的对策非常重要。

1. 磁化传递伪影(Magnetization Transfer Effects)磁化传递伪影是由于组织之间的磁化传递所引起的,会导致图像的对比度降低。

对策可以使用磁化恢复序列,其中包括短时间反转恢复(STIR)和反转恢复(IR),以改善对比度。

2. 金属伪影(Metallic Artifacts)金属伪影主要是由于患者体内植入金属物体(如人工关节或牙填充物)所引起的。

这些金属物体会产生局部磁性畸变,导致伪影的产生。

对策可以使用短暂瞬时回波(STE)序列或化学抑制技术来减少或抑制金属伪影。

3. 运动伪影(Motion Artifacts)运动伪影是由于患者的呼吸、心跳或其他运动而引起的图像模糊或变形。

减少运动伪影的方法包括使用呼吸抑制技术、绑定患者以减少运动、延长扫描时间以获得清晰的图像等。

4. 化学位移伪影(Chemical Shift Artifacts)化学位移伪影是由于不同物质具有不同的磁共振频率而引起的。

这种伪影通常出现在脂肪和水之间的界面上,导致界面区域的图像模糊。

对策可以使用相移技术来减少化学位移伪影。

5. 波纹伪影(Aliasing Artifacts)波纹伪影是由于采样不足或持有时间不足而引起的,导致图像中出现波纹状伪影。

对策可以增加采样频率或使用平行成像技术来减少波纹伪影。

6. 部分饱和伪影(Partial Volume Artifacts)部分饱和伪影是由于扫描平面并未完全覆盖目标组织而引起的,导致图像中出现部分饱和的区域。

对策可以使用多个扫描平面或利用局部放大技术来减少部分饱和伪影。

总之,对常见的MRI伪影进行分析并制定相应的对策可以提高MRI图像质量,减少对诊断结果的干扰。

磁共振常见伪影的鉴别

磁共振常见伪影的鉴别

之阳早格格创做磁共振罕睹真影的鉴别正在磁共振成像中,真影的出现比其余成像技能多,而且也教宽沉,果此精确鉴别战认识真影、精确真影爆收的本果并采与相映的办理办法是临床诊疗时常里临的问题.底下便磁共振爆收真影主要本果、图像表示及办理办法举止介绍战探讨.1、乌鸿沟真影:乌鸿沟真影是一种人为制成的沿火脂分界里、肌肉脂肪分界里分散的乌线状真影.那种真影正在视觉上不妨领会的勾绘出构制表面.然而是它本去不是仄常的解剖结构.胸部冠状位图像,回波时间为7ms,不妨瞅到正在肩部肌肉及肝净周围分界浑晰的乌鸿沟真影.之所以会出现那种真影,最罕睹的本果是正在脂肪战火位于相共的层里时,树坐TE时间恰佳使火分子战脂肪分子的自旋处于反相位,使旗号相互对消.正在1.5磁场下,脂肪战火的频次出进3.5pp m,正在TE与4.5ms的倍数时,不妨消去真影,如:4.5ms, 9ms,13.6ms.2、化教位移真影正在推体、背部、眼眶等含脂肪成份的构制边沿常不妨瞅到化教位移真影.正在频次编码目标上,磁共振系统利用分歧分子的分歧频次举止空间定位.正在分歧器官中,由于火战肌肉构制与脂肪相比具备分歧的共振频次,此时磁共振扫描仪依据那种频次好别举止空间定位时,含有脂肪成份的构制正在频次编码目标上相对于与仄常位子爆收偏偏移.正在脊柱扫描中,视觉表示为一侧椎体的边沿薄度明隐大于对于侧.正在背部战眼眶扫描中,会正在火、脂分界里上出现乌影,而正在对于侧出现明条状真影.正在肾净轴位扫描历程中,那种真影表示为,正在肾净顶端的明条状真影,以及底端的乌条状真影,而且场强越下此真影越明隐.与消此真影的最佳要领是使用脂肪鼓技能.3、卷合真影当FOV小于支集窗时时常会出现卷合真影.正在相位编码目标及3D序列的片层目标上,表示为超出部分的图像会合叠到对于侧,那种局里不妨举止改正.如果必须去处此真影,不妨正在相位编码目标减少更多的编码步数加以矫正.正在相位编码目标减少过采样亦可去处此真影.4、凶布斯(截断)真影凶布斯真影是一种非常热烈的、仄止排列、乌黑相间的一种条状真影.正在椎体T2Wl扫描中,从很明的脑脊液到无旗号的推间盘内均不妨瞅阻挡易收觉到的很微强的凶布斯真影.那种真影正在脑真量与颅骨接界里也格中罕睹.它反应了从傅坐叶变换到图象沉修历程中,应用有限的相位编码步数.应用更多的相位编码步数不妨缩小那种真影的爆收.第一幅应用火模赢得的轴位像.正在火仄目标应用128次编码步数,正在笔曲目标使用256次编码步数.不妨很明隐的瞅到正在安排目标上,火模边沿存留明隐的乌黑相间的真影,而正在从顶到矮目标此真影明隐较强.第二幅像是正在二个目标上均采与256次编码步数.正在火模的边沿上那种细小的真影明隐消得.5、推链状真影很多本果不妨引起推链状真影,主要道述与硬件及硬件不太相搞的,而是由中部射频搞扰间接引起的真影.当正在图像支集历程中,由于扫描房间的门被挨启而使射频旗号加进而引起的那种推链真影很简单被预防战统制.那种由于无线电射频旗号引起的推链状真影正在图像上表示为笔曲于频次编码目标的线状影.由于设备战硬件问题引起的推链状真影不妨出当前任性轴进与. 相位编码目标上的疏通真影正在序列支集历程中,由于受检者的血管动摇、吞吐动做、呼吸疏通、爬动以及死理疏通等均可引起疏通真影.非常类似于出名的凶布斯真影.果为奇尔那种真影超出了FOV的范畴.而且它不象凶布斯真影那样正在边沿赶快的减强.应用分歧的技能以及分解真影爆收的部位战本果不妨采与相映的要领,与消正在相位编码目标上那种真影.正在血管人心的目标使用空间预鼓战技能,不妨减强血管的动摇真影.空间预鼓战技能也不妨减强由于吞吐、呼吸引起的疏通真影.应用表面线圈不妨减强感兴趣区近端的疏通真影.使用较短的脉冲序列,以及呼吸及心电触收技能均可减强疏通真影.片层的流进效力当不自旋鼓战的血液尾次加进片层大概片层组时,会引起血液的流进效力.它的特性是血流加进的第一个层里的血管(动脉战静脉)呈明隐的下旗号.常常不只只存留第一个层里,离得越近的层里衰减越明隐.那种真影对于血栓的诊疗存留明隐的误导效率.如果要进一步鉴别,不妨使用梯度回波的流进技能去辨别流进真影战血栓.6、片层接叠真影:片层接叠真影表示为正在腰椎的多片层、多角度扫描时,正在图像中部分旗号的拾得.如果通太过歧推间盘仄里的片层是不仄止的,那么片层便会爆收接叠.如果正在共一时间支集二个片层,比圆:L4-5战L5-S1.那么,火仄扫描赢得的第二幅图象部分旗号被鼓战掉.那表示为正在图像上出现火仄的戴状旗号拾得的局里.正在下图腰推轴位像中那种真影表示为,正在图像底部矮旗号的、火仄走背的戴状真影.果而,阻拦咱们对于推管后部的益伤情况的评估.8、魔角效力:魔角效力,最罕睹于肌键战韧戴走背与主碰场目标夹角呈55度时出现.正在仄常情况下,火分子与肌键的胶本纤维正在奇极一奇极效力的效率下,具备很短的T2时间,此时正在图像上表示为无旗号.当肌键与主碰场夹角正在55度时,奇极效力消得,使T2时间延少了一倍.此时,正在惯例序列上肌键的旗号是不妨瞅睹的.比圆正在肩袖战膝闭节肌键上不妨瞅到此局里.9、波纹状真影,正在使用体部线圈应用梯度回波序列扫描时,正在图像上那种真影是很罕睹的.果为正在体部的二侧主碰场本去不是匀称普遍的,使得正在分歧时相相加战相减时一侧旗号叠加到另一侧上边.10、射频溢出真影,正在头颅轴位图像上表示为图像的不匀称局里.那种真影的存留是由于扫描仪从病人接支到太强的旗号.常常自动预扫描常常不妨安排担当器去预防此局里的爆收.如果此真影依旧存留,不妨使用脚动调谐.11、核心面状真影是一种正在图像核心、小圆面状的下旗号影.爆收本果是由于担当器的曲流电压持绝偏偏离制成的.通过傅坐叶变换后,那些电压恒定偏偏离的局里正在图像上表示为明了小圆面.12、磁化真影:磁化真影爆收的本果是正在微强的梯度变更大概者磁场强度爆收微强变更时,出当前具备分歧磁化率的二种物量的接界里附近.大的磁化真影罕睹于铁磁性物量与代了非磁性物量 (比圆人体)时,正在其周围产死很大的磁化真影.梯度变更使周围构制爆收自旋得相战频次位移.进而引起周围仄常解剖结构形变,并可睹乌、明相间的地区.那种局里正在梯度回波序列上非常敏感,具备很少的回波时间.头颅的轴位像,患者眼险涂抹了睫毛膏.由于睫毛膏引起的磁化真影使得眼球前半部分仄常结构易以隐现.13、整弥补真影,由于K空间数据支集较少,大概者需要0弥补.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

轻松掌握各种磁共振伪影(必点收藏)展开全文与其他医学影像技术相比,MRI是出现伪影最多的一种影像技术。

所谓伪影是指在磁共振扫描或信息处理过程中,由于某种或几种原因出现了一些人体本身不存在的图像信息,可以表现为图像变形、重叠、缺失、模糊等,致使图像质量下降的影像,也称假影或鬼影(ghost)。

识别和设法消除/减小这些伪影非常造重要,从而也要求我们对MRI的物理原理和基本硬件构造有所了解。

MRI图像中每个点的信息,都由频率和相位编码决定。

当接收信息的频率和相位编码受到外界干扰时,将导致图像伪影的出现。

与其他医学影像技术相比,MRI是出现伪影最多的一种影像技术。

所谓伪影是指在磁共振扫描或信息处理过程中,由于某种或几种原因出现了一些人体本身不存在的图像信息,可以表现为图像变形、重叠、缺失、模糊等,致使图像质量下降的影像,也称假影或鬼影(ghost)。

识别和设法消除/减小这些伪影非常造重要,从而也要求我们对MRI的物理原理和基本硬件构造有所了解。

MRI图像中每个点的信息,都由频率和相位编码决定。

当接收信息的频率和相位编码受到外界干扰时,将导致图像伪影的出现。

1、卷褶伪影原因:扫描视野FOV小于解剖结构,则会发生“卷折”伪影,表现为一侧FOV之外的图像卷折到对侧FOV之内。

原理:射频接收装置,不能识别带宽以外的频率,任何超出范围外的频率将同带宽内的一个频率相“混叠”。

卷折总发生在相位编码FOV方向,因为频率编码方向默认使用两倍FOV大小的频率编码。

卷褶伪影具有以下特点:由于FOV小于受检部位所致;常出现在相位编码方向上;表现为FOV外一侧的组织信号卷褶并重叠到图像另一侧。

分类:•2D卷折•3D卷折对策:•增大扫描视野FOV•改变频率编码方向•添加FOV之外的饱和带•3D卷折,自动删除最上下的图像2、化学位移伪影原因:水和脂肪中的氢质子以稍微不同的共振频率进动,在梯度场内,所有的氢质子被激励后,脂肪氢质子信号来源的位置将会被错误记录。

水内的质子相对向更高频率编码方向运动,而脂肪则相反。

化学位移导致在较低频率发生重叠,而较高频率处信号衰减。

分类:•I类化学位移•II类化学位移对策:•增加接收带宽•添加脂肪抑制•增加图像分辨率•水脂分离成像技术I类化学位移II类化学位移3、截断伪影原因:截断伪影是由于数据采集不足所致,在空间分辨力较低的图像比较明显。

在图像中高、低信号差别大的两个组织的界面,如颅骨与脑表面、脂肪与肌肉界面等会产生信号振荡,出现环形黑白条纹,此即截断伪影。

像素尺寸越大,包括的组织结构就越多,相邻像素间所产生的截断差别越大,就可能出现肉眼可见的明暗相间的条带。

截断伪影容易出现在两种情况下:图像的空间分辨力较低(即像素较大);在两种信号强度差别很大的组织间,如T2WI上脑脊液与骨皮质之间。

对策:•增加采样时间(减小带宽)以减小波纹•降低像素大小(增加Np或减小FOV)4、部分容积效应原因:当选择的扫描层面较厚或病变较小且又骑跨于扫描切层之间时,周围高信号组织掩盖小的病变或出现假影,这种现象称为部分容积效应。

对策:减少扫描层厚而不是减小观察野是克服部分容积效应的有效方法。

在可疑是部分容积效应造成的伪病灶的边缘作垂直方向定位,也可消除部分容积效应造成的假像。

5、鬼影原因:回波中心偏移、持续相位编码偏移,或回波幅度不稳定。

往往可由于系统不稳定或患者运动所致。

伪影特点:伪影特点:往往出现在相位编码方向。

由于患者运动的伪影只出现在运动的部位,而系统原因的伪影可在整个FOV中出现伪影。

对策:•病人制动•请工程师帮助检修6、磁敏感性伪影原因:磁化率伪影出现在不同的磁化率物质的交界面,由于磁化率不同导致局部磁场环境的变形,造成自旋失相位,产生信号损失或错误描绘。

尤其是铁磁性物质,具有很大的磁化率,导致明显的磁场变形和伪影。

对策:•去除外源性金属异物。

•使用螺旋桨采集,尤其是弥散成像•增大接收带宽•采用水脂分离成像技术7、运动伪影运动伪影包括人体生理性运动和自主性运动所产生的伪影。

7.1 生理性运动伪影原因:是因MR成像时间较长,在MR成像过程中心脏收缩、大血管搏动、呼吸运动、血流以及脑脊液流动等引起的伪影,这种伪影是引起MR图像质量下降的最常见的原因。

生理性运动伪影是生理性周期性运动的频率和相位编码频率一致、叠加的信号在傅立叶变换时使数据发生空间错位,导致在相位编码方向上产生间断的条形或半弧形阴影。

这种伪影与运动方向无关,而影像的模糊程度取决于运动频率、运动幅度、重复时间和激励次数。

对策:⑴心脏收缩、大血管搏动伪影:可采用心电门控或脉搏门控加以控制。

脉搏门控通过传感器控制射频脉冲触发可有效地控制伪影产生。

⑵呼吸运动伪影:在高磁场设备显得更加明显。

使用呼吸门控或快速成像技术屏气扫描。

但在无快速成像的低磁场设备,因呼吸运动频率较慢,通过呼吸门控阈值时MR成像时间过长,而限制了这种技术的使用价值。

低场强设备应尽可能缩短检查时间,以便减少产生伪影的机率。

如减小矩阵、增加激励次数以及通过呼吸补偿技术去除呼吸时腹壁运动产生的伪影。

高场强MR设备,呼吸门控与心电门控同时使用,做心脏大血管扫描能获得更加理想的效果。

当前MR设备迅速发展,快速梯度回波脉冲序列屏气扫描10~14ms,能获得10~14 层图像,可以完全克服呼吸伪影。

⑶流动血液伪影:当扫描层面与血管走行方向平行时,在相位编码方向上会产生与血管形状类似的条状阴影(血流伪影)。

动脉血流伪影多因血管搏动引起,类似运动产生的伪影。

预饱和技术可消除来自扫描层上下方的血流搏动产生的伪影。

另外梯度变换(相位、频率方向交换)可使伪影方向变换90°。

⑷脑脊液流动伪影:血流补偿(flow compensation, FC)技术是减少和抑制脑脊液搏动伪影的最有效方法,必要时与心电门控同时使用会取得抑制伪影的更好效果。

变换梯度或改变脉冲序列也可消除脑脊液流动伪影。

7.2 自主性运动伪影原因:由于患者运动,如颈部检查时吞咽运动、咀嚼运动,头部检查时病人躁动、眼眶检查时眼球运动等均可在图像上造成各种不同形状的伪影,致使图像模糊、质量下降。

图像模糊的原因与生理性运动伪影相似。

策略:克服自主性运动伪影的最有效的办法是改变扫描参数,尽量缩短检查时间,如快速成像技术、减少信号激励次数、改变矩阵等。

另外,固定患者及检查部位,减少自主性运动。

8、金属异物伪影原因:铁磁性物质具有很大的磁化率,可能导致明显的磁场变形。

不同的序列,金属伪影大小不同。

FSE<><>伪影特点:图像变形。

或明显异常高/低/混杂信号在不同层面上伪影位置往往改变——“会走动的伪影”。

解决办法:去掉病人身上或磁体洞内的金属物品,尽量使用FSE 序列。

9、交叉伪影原因:层面内组织受到其它层面/额外的射频脉冲激发,提前饱和,不能产生信号。

往往在斜位定位时出现。

有时预置饱和也可能带来同样的伪影!策略:定位时注意层面交叉让开要观察的部位。

FOV内预置饱和注意手动调整位置,让开要观察的部位。

10、电介质效应,Dielectric Resonance原因:如果成像物体的直径与B1场的波长成正比,则B1场与成像物体之间发生共振效应,在成像物体中产生驻波,造成成像物体中心信号高,边缘信号低。

随着场强增加,电介质效应越明显。

对策:•多点驱动射频系统•多源射频系统•优化多通道表面线圈结构•抗饱和垫的使用•成像参数方面可以考虑缩短回波链,减小TE时间11、ASSET伪影原因:ASSET 采集K空间时,在相位方向上隔行采集。

每一个线圈单元采集一半的相位方向的信息,存在明显的相位卷褶,需要利用线圈敏感性数据重建图像并去掉卷褶。

calibration的信息与采集的信息不匹配将导致伪影出现。

对策:•对于FOV过小(伪影特点:类似卷褶伪影,但多出现在图像中心。

图像中心条带状伪影,信噪比明显降低),增大扫描FOV,phaseFOV必须尽量选择 1•Calibration定位偏中心(伪影特点:在图像中心出现条状、带状的部分组织的卷褶信号),Calibration中心放置在患者身体中心,防止卷褶•Calibration扫描范围太小(伪影特点:在cal范围外的数据信号为0),大范围的 cal. 完整的ASSET重建图像。

•线圈摆放不正确(在图像中心出现条状、带状的部分组织的卷褶信号),调整线圈位置,使前后片上下、左右对齐。

•线圈通道或者接收通道坏(伪影特点:噪音移到相应区域的中心),请工程师帮忙检修。

•Cal/Scan 屏气方式不一致(伪影特点:类似呼吸的运动伪影,但伪影处在图像中心,“马赛克”伪影),Cal/Scan 屏气方式一致12、电解质伪影:原因:如果成像物体的直径与B1场的波长成正比,则B1场与成像物体之间发生共振效应,在成像物体中产生驻波,造成成像物体中心信号高,边缘信号低。

随着场强增加,电介质效应越明显。

对策:多点驱动射频系统多源射频系统优化多通道表面线圈结构抗饱和垫的使用成像参数方面可以考虑缩短回波链,减小TE时间13、白噪声(灯芯绒伪影):原因:封闭磁体间内某些放电辐射。

这些放电活动往往由于某些电弧引起,甚至是由于某些干燥环境中的静电放电引起的。

其中最常见的一个原因是在磁体内部存在着一些(甚至是没有磁性的)金属部件松动,在扫描过程中振荡而移动,从而导致这种噪声的出现。

当发生放电时,短暂的电弧会瞬时激发电磁场,这个瞬时激发的电磁波就会被MRI机器中灵敏的接收单元所接受,从而引起原始数据中信号的一个极短时的升高。

如果这时候观察原始图像,就会在其中看到信号非常高,类似于“白色”的像素点--这也是“白噪声”这个名词的来源。

伪影特点:覆盖整个图像的棘刺状伪影。

可为单一方向,也可为多个方向相交排列。

可出现在序列的某一幅图像中,也可出现在整个序列。

策略:(请工程师帮忙检修)•检查噪声滤波器。

•检查内部有无松动部件,检查内部电缆。

14、Annefact伪影原因:来源于FOV以外的信号,该信号处于非线性的梯度中。

伪影特点:相位编码方向出现的条带影或点状影。

往往在脊柱扫描,选取线圈单元过多时出现。

策略:扫描时启用符合扫描视野的线圈单元组合,不要启用过多。

15、细线伪影:原因:来源于射频脉冲的受激回波对图像采集的第一个回波产生干扰。

图像特点:伪影较细小,出现在图像的局部,可能比较模糊,甚至需要在特殊窗宽窗位下才能发现。

Zip512可以使伪影更佳明显。

解决方法:•采用真正的偶数NEX•User CV: fine line artifact cancellation16、线圈信号不均原因:线圈本身的采集特点,相控阵线圈单元采集信号能力存在差异伪影特点:图像信号欠均匀策略:SCIC或PURE17、拉链伪影、原因:自由感应衰减还没有完全衰减之前,180°脉冲的侧峰就与它产生重叠。

相关文档
最新文档