高三数学试卷及答案

合集下载

高三数学试卷电子版附答案

高三数学试卷电子版附答案

一、选择题(本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

)1. 函数f(x) = ax^2 + bx + c的图像开口向上,且顶点坐标为(1, 2),则a、b、c的取值分别为:A. a > 0, b = -2, c = 2B. a < 0, b = -2, c = 2C. a > 0, b = 2, c = 2D. a < 0, b = 2, c = 22. 已知等差数列{an}的首项为2,公差为3,则第10项an的值为:A. 29B. 30C. 31D. 323. 若复数z满足|z - 1| = |z + 1|,则复数z的取值范围为:A. 实部为0B. 实部大于0C. 实部小于0D. 虚部为04. 已知向量a = (2, 3),向量b = (-1, 2),则向量a与向量b的点积为:A. 1B. 5C. -1D. -55. 函数y = log2(x - 1)的定义域为:A. x > 1B. x ≥ 1C. x < 1D. x ≤ 16. 已知等比数列{bn}的首项为4,公比为1/2,则第5项bn的值为:A. 1B. 2C. 4D. 87. 若不等式2x - 3 > 5x + 2,则x的取值范围为:A. x < -1B. x > -1C. x ≤ -1D. x ≥ -18. 函数y = sin(x)的图像上,函数值y的最大值为:A. 1B. 2C. 0D. -19. 若三角形的三边长分别为3、4、5,则该三角形的面积S为:A. 6B. 8C. 10D. 1210. 已知函数y = x^3 - 3x^2 + 4x - 1,则该函数的对称中心为:A. (1, 0)B. (1, 1)C. (1, -1)D. (0, 1)11. 若向量a = (2, 1),向量b = (-1, 2),则向量a与向量b的夹角θ的余弦值为:A. 1/5B. 2/5C. 3/5D. 4/512. 函数y = e^x的图像上,函数值y的最小值为:A. 1B. eC. e^2D. e^3二、填空题(本大题共6小题,每小题5分,共30分。

全国高三高中数学专题试卷带答案解析

全国高三高中数学专题试卷带答案解析

全国高三高中数学专题试卷班级:___________ 姓名:___________ 分数:___________一、选择题1.已知命题“如果x⊥y,y∥z,则x⊥z”是假命题,那么字母x,y,z在空间所表示的几何图形可能是() A.全是直线B.全是平面C.x,z是直线,y是平面D.x,y是平面,z是直线2.已知m,n为异面直线,m⊥平面α,n⊥平面β.直线l满足l⊥m,l⊥n,l⊄α,l⊄β,则()A.α∥β且l∥αB.α⊥β且l⊥βC.α与β相交,且交线垂直于lD.α与β相交,且交线平行于l3.已知异面直线a,b分别在平面α,β内,且α∩β=c,那么直线c一定()A.与a,b都相交B.只能与a,b中的一条相交C.至少与a,b中的一条相交D.与a,b都平行4.设α,β是两个不同的平面,l是一条直线,以下命题正确的是()A.若l⊥α,α⊥β,则l⊂βB.若l∥α,α∥β,则l⊂βC.若l⊥α,α∥β,则l⊥βD.若l∥α,α⊥β,则l⊥β5.已知m,n是两条不同直线,α,β,γ是三个不同平面,下列命题中正确的有()A.若m∥α,n∥α,则m∥n B.若α⊥γ,β⊥γ,则α∥βC.若m∥α,m∥β,则α∥βD.若m⊥α,n⊥α,则m∥n6.将图(1)中的等腰直角三角形ABC沿斜边BC的中线折起得到空间四面体ABCD(如图(2)),则在空间四面体ABCD中,AD与BC的位置关系是()A.相交且垂直B.相交但不垂直C.异面且垂直D.异面但不垂直二、填空题1.已知E,F,G,H是空间四点,命题甲:E,F,G,H四点不共面,命题乙:直线EF和GH不相交,则甲是乙成立的________条件.2.如图,AB为圆O的直径,点C在圆周上(异于点A,B),直线PA垂直于圆O所在的平面,点M为线段PB的中点.有以下四个命题:①PA∥平面MOB;②MO∥平面PAC;③OC⊥平面PAC;④平面PAC⊥平面PBC.其中正确的命题是________(填上所有正确命题的序号).3.如图,正方体ABCD -A 1B 1C 1D 1的棱长为1,点M ∈AB 1,N ∈BC 1,且AM =BN ≠,有以下四个结论:①AA 1⊥MN ;②A 1C 1∥MN ;③MN ∥平面A 1B 1C 1D 1;④MN 与A 1C 1是异面直线.其中正确命题的序号是________.(注:把你认为正确命题的序号都填上)三、解答题1.已知四棱锥P -ABCD 中,底面ABCD 为正方形,PD ⊥平面ABCD ,EC ∥PD ,且PD =2EC .(1)求证:BE ∥平面PDA ;(2)若N 为线段PB 的中点,求证:NE ⊥平面PDB .2.如图,在三棱锥S -ABC 中,平面SAB ⊥平面SBC ,AB ⊥BC ,AS =AB .过A 作AF ⊥SB ,垂足为F ,点E ,G 分别是棱SA ,SC 的中点.求证:(1)平面EFG ∥平面ABC ;(2)BC ⊥SA .3.如图,点C 是以AB 为直径的圆上的一点,直角梯形BCDE 所在平面与圆O 所在平面垂直,且DE ∥BC ,DC ⊥BC ,DE =BC .(1)证明:EO ∥平面ACD ;(2)证明:平面ACD ⊥平面BCDE .全国高三高中数学专题试卷答案及解析一、选择题1.已知命题“如果x ⊥y ,y ∥z ,则x ⊥z ”是假命题,那么字母x ,y ,z 在空间所表示的几何图形可能是( )A .全是直线B .全是平面C .x ,z 是直线,y 是平面D .x ,y 是平面,z 是直线【答案】D【解析】当x 、y 、z 是A 、B 、C 中的几何图形时,命题“如果x ⊥y ,y ∥z ,则x ⊥z ”是真命题,故选D.2.已知m ,n 为异面直线,m ⊥平面α,n ⊥平面β.直线l 满足l ⊥m ,l ⊥n ,l ⊄α,l ⊄β,则( )A .α∥β且l ∥αB .α⊥β且l ⊥βC .α与β相交,且交线垂直于lD .α与β相交,且交线平行于l【答案】D【解析】根据所给的已知条件作图,如图所示.由图可知α与β相交,且交线平行于l,故选D3.已知异面直线a,b分别在平面α,β内,且α∩β=c,那么直线c一定()A.与a,b都相交B.只能与a,b中的一条相交C.至少与a,b中的一条相交D.与a,b都平行【答案】C【解析】若c与a,b都不相交,则c与a,b都平行,根据公理4,知a∥b,与a,b异面矛盾.故选C.4.设α,β是两个不同的平面,l是一条直线,以下命题正确的是()A.若l⊥α,α⊥β,则l⊂βB.若l∥α,α∥β,则l⊂βC.若l⊥α,α∥β,则l⊥βD.若l∥α,α⊥β,则l⊥β【答案】C【解析】选项A中也可以l∥β,选项B中也可以l∥β,选项D中也可以l⊂β,l∥β或l与β斜交.5.已知m,n是两条不同直线,α,β,γ是三个不同平面,下列命题中正确的有()A.若m∥α,n∥α,则m∥n B.若α⊥γ,β⊥γ,则α∥βC.若m∥α,m∥β,则α∥βD.若m⊥α,n⊥α,则m∥n【答案】D【解析】若m∥α,n∥α,m,n可以平行,可以相交,也可以异面,故①不正确;若α⊥γ,β⊥γ,α,β可以相交,故②不正确;若m∥α,m∥β,α,β可以相交,故③不正确;若m⊥α,n⊥α,则m∥n,④正确.故选D.6.将图(1)中的等腰直角三角形ABC沿斜边BC的中线折起得到空间四面体ABCD(如图(2)),则在空间四面体ABCD中,AD与BC的位置关系是()A.相交且垂直B.相交但不垂直C.异面且垂直D.异面但不垂直【答案】C【解析】在题图(1)中的等腰直角三角形ABC中,斜边上的中线AD就是斜边上的高,则AD⊥BC,翻折后如题图(2),AD与BC变成异面直线,而原线段BC变成两条线段BD、CD,这两条线段与AD垂直,即AD⊥BD,AD⊥CD,BD∩CD=D,故AD⊥平面BCD,所以AD⊥BC.故选C.二、填空题1.已知E ,F ,G ,H 是空间四点,命题甲:E ,F ,G ,H 四点不共面,命题乙:直线EF 和GH 不相交,则甲是乙成立的________条件.【答案】充分不必要【解析】E ,F ,G ,H 四点不共面时,EF ,GH 一定不相交,否则,由于两条相交直线共面,则E ,F ,G ,H 四点共面,与已知矛盾,故甲可以推出乙;反之,EF ,GH 不相交,含有EF ,GH 平行和异面两种情况,当EF ,GH 平行时,E ,F ,G ,H 四点共面,故乙不能推出甲.即甲是乙的充分不必要条件.2.如图,AB 为圆O 的直径,点C 在圆周上(异于点A ,B ),直线PA 垂直于圆O 所在的平面,点M 为线段PB 的中点.有以下四个命题:①PA ∥平面MOB ;②MO ∥平面PAC ;③OC ⊥平面PAC ;④平面PAC ⊥平面PBC .其中正确的命题是________(填上所有正确命题的序号).【答案】②④【解析】①错误,PA ⊂平面MOB ;②正确;③错误,否则,有OC ⊥AC ,这与BC ⊥AC 矛盾;④正确,因为BC ⊥平面PAC .3.如图,正方体ABCD -A 1B 1C 1D 1的棱长为1,点M ∈AB 1,N ∈BC 1,且AM =BN ≠,有以下四个结论:①AA 1⊥MN ;②A 1C 1∥MN ;③MN ∥平面A 1B 1C 1D 1;④MN 与A 1C 1是异面直线.其中正确命题的序号是________.(注:把你认为正确命题的序号都填上)【答案】①③【解析】过N 作NP ⊥BB 1于点P ,连接MP ,可证AA 1⊥平面MNP ,得AA 1⊥MN ,①正确;过M ,N 分别作MR ⊥A 1B 1,NS ⊥B 1C 1于点R ,S ,则当M 不是AB 1的中点,N 不是BC 1的中点时,直线A 1C 1与直线RS 相交;当M ,N 分别是AB 1,BC 1的中点时,A 1C 1∥RS ,所以A 1C 1与MN 可以异面,也可以平行,故②④错误;由①正确知,AA 1⊥平面MNP ,而AA 1⊥平面A 1B 1C 1D 1,所以平面MNP ∥平面A 1B 1C 1D 1,故③正确.三、解答题1.已知四棱锥P -ABCD 中,底面ABCD 为正方形,PD ⊥平面ABCD ,EC ∥PD ,且PD =2EC .(1)求证:BE ∥平面PDA ;(2)若N 为线段PB 的中点,求证:NE ⊥平面PDB .【答案】(1)见解析(2)见解析【解析】(1)∵EC ∥PD ,PD ⊂平面PDA ,EC ⊄平面PDA ,∴EC ∥平面PDA ,同理可得BC ∥平面PDA .∵EC ⊂平面EBC ,BC ⊂平面BEC 且EC ∩BC =C , ∴平面BEC ∥平面PDA .又∵BE ⊂平面BEC ,∴BE ∥平面PDA .(2)连接AC ,交BD 于点F ,连接NF ,∵F 为BD 的中点,∴NF∥PD且NF=PD,又EC∥PD且EC=PD,∴NF∥EC且NF=EC.∴四边形NFCE为平行四边形,∴NE∥FC,∵PD⊥平面ABCD,AC⊂平面ABCD,∴AC⊥PD,又DB⊥AC,PD∩BD=D,∴AC⊥平面PDB,∴NE⊥平面PDB.2.如图,在三棱锥S-ABC中,平面SAB⊥平面SBC,AB⊥BC,AS=AB.过A作AF⊥SB,垂足为F,点E,G分别是棱SA,SC的中点.求证:(1)平面EFG∥平面ABC;(2)BC⊥SA.【答案】(1)见解析(2)见解析【解析】(1)因为AS=AB,AF⊥SB,垂足为F,所以F是SB的中点.又因为E是SA的中点,所以EF∥AB.因为EF⊄平面ABC,AB⊂平面ABC,所以EF∥平面ABC.同理EG∥平面ABC.又EF∩EG=E,所以平面EFG∥平面ABC.(2)因为平面SAB⊥平面SBC,且交线为SB,又AF⊂平面SAB,AF⊥SB,所以AF⊥平面SBC.因为BC⊂平面SBC,所以AF⊥BC.又因为AB⊥BC,AF∩AB=A,AF⊂平面SAB,AB⊂平面SAB,所以BC⊥平面SAB.因为SA⊂平面SAB,所以BC⊥SA.3.如图,点C是以AB为直径的圆上的一点,直角梯形BCDE所在平面与圆O所在平面垂直,且DE∥BC,DC⊥BC,DE=BC.(1)证明:EO∥平面ACD;(2)证明:平面ACD⊥平面BCDE.【答案】(1)见解析(2)见解析【解析】(1)如图,取BC的中点M,连结OM、ME.在△ABC中,O为AB的中点,M为BC的中点,∴OM∥AC,在直角梯形BCDE中,DE∥BC,且DE=BC=CM,∴四边形MCDE为平行四边形,∴EM∥DC,∴面EMO∥面ACD,又∵EO⊂面EMO,∴EO∥面ACD.(2)∵C在以AB为直径的圆上,∴AC⊥BC,又∵面BCDE⊥面ABC,面BCDE∩面ABC=BC,∴AC⊥面BCDE,又∵AC⊂面ACD,∴面ACD⊥面BCDE.。

全国高三高中数学专题试卷带答案解析

全国高三高中数学专题试卷带答案解析

全国高三高中数学专题试卷班级:___________ 姓名:___________ 分数:___________一、选择题1.已知两条直线a,b与两个平面α,β,b⊥α,则下列命题中正确的是().①若a∥α,则a⊥b;②若a⊥b,则a∥α;③若b⊥β,则α∥β;④若α⊥β,则b∥β.A.①③B.②④C.①④D.②③2.已知α,β,γ是三个不重合的平面,a,b是两条不重合的直线,有下列三个条件:①a∥γ,b⊂β;②a∥γ,b∥β;③b∥β,a⊂γ.如果命题“α∩β=a,b⊂γ,且________,那么a∥b”为真命题,则可以在横线处填入的条件是().A.①或②B.②或③C.①或③D.只有②3.已知m和n是两条不同的直线,α和β是两个不重合的平面,那么下面给出的条件中一定能推出m⊥β的是().A.α⊥β,且m⊂αB.m∥n,且n⊥βC.α⊥β,且m∥αD.m⊥n,且n∥β4.已知两条不同的直线m,n和两个不同的平面α,β,给出下列四个命题:①若m∥α,n∥β,且α∥β,则m∥n;②若m∥α,n⊥β,且α⊥β,则m∥n;③若m⊥α,n∥β,且α∥β,则m⊥n;④若m⊥α,n⊥β,且α⊥β,则m⊥n.其中正确的个数有().A.1B.2C.3D.45.如图所示,在四边形A-BCD中,AD∥BC,AD=AB,∠BCD=45°,∠BAD=90°,将△ABD沿BD折起,使平面ABD⊥平面BCD,构成三棱锥A-BCD,则在三棱锥ABCD中,下列命题正确的是().A.平面ABD⊥平面ABCB.平面ADC⊥平面BDCC.平面ABC⊥平面BDCD.平面ADC⊥平面ABC二、填空题1.设α和β为两个不重合的平面,给出下列四个命题:①若α内的两条相交直线分别平行于β内的两条直线,则α平行于β;②若α外一条直线l与α内的一条直线平行,则l和α平行;③设α和β相交于直线l,若α内有一条直线垂直于l,则α和β垂直;④直线l与α垂直的充分必要条件是l与α内的两条直线垂直.其中为真命题的是________(写出所有真命题的序号).2.下列四个正方体中,A,B为正方体的两个顶点,M,N,P分别为其所在棱的中点,能得出直线AB∥平面MNP的图形的序号是________(写出所有符合要求的图形序号).3.如图,在长方形ABCD 中,AB =2,BC =1,E 为DC 的中点,F 为线段EC 上一动点.现将△AFD 沿AF 折起,使平面ABD ⊥平面ABC .在平面ABD 内过点D 作DK ⊥AB ,K 为垂足.设AK =t ,则t 的取值范围是________.三、解答题1.如图,正方形ABCD 和三角形ACE 所在的平面互相垂直,EF ∥BD ,AB =EF .(1)求证:BF ∥平面ACE ;(2)求证:BF ⊥BD .2.如图,在四棱锥P-ABCD 中,PA ⊥平面ABCD ,底面ABCD 是菱形,点O 是对角线AC 与BD 的交点,M 是PD 的中点,AB =2,∠BAD =60°.(1)求证:OM ∥平面PAB ;(2)求证:平面PBD ⊥平面PAC ;(3)当四棱锥P-ABCD 的体积等于时,求PB 的长.3.如图,在四棱台ABCD-A 1B 1C 1D 1中,D 1D ⊥平面ABCD ,底面ABCD 是平行四边形,AB =2AD ,AD =A 1B 1,∠BAD =60°.(1)证明:AA 1⊥BD ;(2)证明:CC 1∥平面A 1BD .全国高三高中数学专题试卷答案及解析一、选择题1.已知两条直线a,b与两个平面α,β,b⊥α,则下列命题中正确的是().①若a∥α,则a⊥b;②若a⊥b,则a∥α;③若b⊥β,则α∥β;④若α⊥β,则b∥β.A.①③B.②④C.①④D.②③【答案】A【解析】过直线a作平面γ使α∩γ=c,则a∥c,再根据b⊥α可得b⊥c,从而b⊥a,命题①是真命题;下面考虑命题③,由b⊥α,b⊥β,可得α∥β,命题③为真命题.故正确选项为A.2.已知α,β,γ是三个不重合的平面,a,b是两条不重合的直线,有下列三个条件:①a∥γ,b⊂β;②a∥γ,b∥β;③b∥β,a⊂γ.如果命题“α∩β=a,b⊂γ,且________,那么a∥b”为真命题,则可以在横线处填入的条件是().A.①或②B.②或③C.①或③D.只有②【答案】C【解析】由定理“一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行”可得,横线处可填入条件①或③,结合各选项知,选C.3.已知m和n是两条不同的直线,α和β是两个不重合的平面,那么下面给出的条件中一定能推出m⊥β的是().A.α⊥β,且m⊂αB.m∥n,且n⊥βC.α⊥β,且m∥αD.m⊥n,且n∥β【答案】B【解析】根据定理、性质、结论逐个判断.因为α⊥β,m⊂α⇒m,β的位置关系不确定,可能平行、相交、m在β面内,故A错误;由线面垂直的性质定理可知B正确;若α⊥β,m∥α,则m,β的位置关系也不确定,故C错误;若m⊥n,n∥β,则m,β的位置关系也不确定,故D错误.4.已知两条不同的直线m,n和两个不同的平面α,β,给出下列四个命题:①若m∥α,n∥β,且α∥β,则m∥n;②若m∥α,n⊥β,且α⊥β,则m∥n;③若m⊥α,n∥β,且α∥β,则m⊥n;④若m⊥α,n⊥β,且α⊥β,则m⊥n.其中正确的个数有().A.1B.2C.3D.4【答案】B【解析】①中m,n可能异面或相交,故不正确;②因为m∥α,n⊥β且α⊥β成立时,m,n两直线的关系可能是相交、平行、异面,故不正确;③因为m⊥α,α∥β可得出m⊥β,再由n∥β可得出m⊥n,故正确;④分别垂直于两个垂直平面的两条直线一定垂直,正确.故选B.5.如图所示,在四边形A-BCD中,AD∥BC,AD=AB,∠BCD=45°,∠BAD=90°,将△ABD沿BD折起,使平面ABD⊥平面BCD,构成三棱锥A-BCD,则在三棱锥ABCD中,下列命题正确的是().A.平面ABD⊥平面ABCB.平面ADC⊥平面BDCC.平面ABC⊥平面BDCD.平面ADC⊥平面ABC【答案】D【解析】在平面图形中CD⊥BD,折起后仍有CD⊥BD,由于平面ABD⊥平面BCD,故CD⊥平面ABD,CD⊥AB.又AB⊥AD,故AB⊥平面ADC.所以平面ABC⊥平面ADC.D选项正确.二、填空题1.设α和β为两个不重合的平面,给出下列四个命题:①若α内的两条相交直线分别平行于β内的两条直线,则α平行于β;②若α外一条直线l与α内的一条直线平行,则l和α平行;③设α和β相交于直线l,若α内有一条直线垂直于l,则α和β垂直;④直线l与α垂直的充分必要条件是l与α内的两条直线垂直.其中为真命题的是________(写出所有真命题的序号).【答案】①②【解析】由①知α内两条相交直线分别平行于平面β,则两条相交直线确定的平面α平行于平面β,故①为真命题;由线面平行的判定定理知,②为真命题;对于③,如图,α∩β=l,a⊂α,a⊥l,但不一定有α⊥β,故③为假命题;对于④,直线l与平面α垂直的充分必要条件是l与α内的两条相交直线垂直,故④为假命题.综上所述,真命题的序号为①②.2.下列四个正方体中,A,B为正方体的两个顶点,M,N,P分别为其所在棱的中点,能得出直线AB∥平面MNP的图形的序号是________(写出所有符合要求的图形序号).【答案】①③【解析】对于①,注意到该正方体的面中过直线AB的侧面与平面MNP平行,因此直线AB平行于平面MNP;对于②,注意到直线AB和过点A的一个与平面MNP平行的平面相交,因此直线AB与平面MNP相交;对于③,注意到此时直线AB与平面MNP内的一条直线MP平行,且直线AB位于平面MNP外,因此直线AB与平面MNP平行;对于④,易知此时AB与平面MNP相交.综上所述,能得出直线AB平行于平面MNP的图形的序号是①③.3.如图,在长方形ABCD中,AB=2,BC=1,E为DC的中点,F为线段EC上一动点.现将△AFD沿AF折起,使平面ABD⊥平面ABC.在平面ABD内过点D作DK⊥AB,K为垂足.设AK=t,则t的取值范围是________.【答案】【解析】如图,过D作DG⊥AF,垂足为G,连接GK,∵平面ABD⊥平面ABC,DK⊥AB,∴DK⊥平面ABC,∴DK⊥AF.又DG⊥AF,∴AF⊥平面DKG,∴AF⊥GK.容易得到,当F运动到E点时,K为AB的中点,t=AK==1;当F运动到C点时,在Rt△ADF中,易得AF=,且AG=,GF=,又易知Rt△AGK∽Rt△ABF,则,又AB=2,AK=t,则t=.∴t的取值范围是.三、解答题1.如图,正方形ABCD和三角形ACE所在的平面互相垂直,EF∥BD,AB=EF.(1)求证:BF∥平面ACE;(2)求证:BF⊥BD.【答案】见解析【解析】(1)设AC与BD交于O点,连接EO.在正方形ABCD中,BO=AB,又因为AB=EF,∴BO=EF,又因为EF∥BD,∴四边形EFBO是平行四边形,∴BF∥EO,又∵BF⊄平面ACE,EO⊂平面ACE,∴BF∥平面ACE.(2)在正方形ABCD中,AC⊥BD,又因为正方形ABCD和三角形ACE所在的平面互相垂直,BD⊂平面ABCD,平面ABCD∩平面ACE=AC,∴BD⊥平面ACE,∵EO⊂平面ACE,∴BD⊥EO,∵EO∥BF,∴BF⊥BD.2.如图,在四棱锥P-ABCD中,PA⊥平面ABCD,底面ABCD是菱形,点O是对角线AC与BD的交点,M是PD的中点,AB=2,∠BAD=60°.(1)求证:OM∥平面PAB;(2)求证:平面PBD⊥平面PAC;(3)当四棱锥P-ABCD的体积等于时,求PB的长.【答案】【解析】(1)证明∵在△PBD中,O,M分别是BD,PD的中点,∴OM是△PBD的中位线,∴OM∥PB.∵OM⊄平面PAB,PB⊂平面PAB,∴OM∥平面PAB.(2)证明∵底面ABCD是菱形,∴BD⊥AC.∵PA⊥平面ABCD,BD⊂平面ABCD,∴PA⊥BD.又AC⊂平面PAC,PA⊂平面PAC,AC∩PA=A,∴BD⊥平面PAC.∵BD⊂平面PBD,∴平面PBD⊥平面PAC.(3)解∵底面ABCD是菱形,AB=2,∠BAD=60°,∴S=2××AB×AD×sin 60°=2×2×=2.菱形ABCD∵四棱锥P-ABCD的高为PA,∴×2×PA=,解得PA=.又∵PA⊥平面ABCD,AB⊂平面ABCD,∴PA ⊥AB .在Rt △PAB 中,PB = ==.3.如图,在四棱台ABCD-A 1B 1C 1D 1中,D 1D ⊥平面ABCD ,底面ABCD 是平行四边形,AB =2AD ,AD =A 1B 1,∠BAD =60°.(1)证明:AA 1⊥BD ;(2)证明:CC 1∥平面A 1BD .【答案】见解析【解析】(1)法一因为D 1D ⊥平面ABCD ,且BD ⊂平面ABCD ,所以D 1D ⊥BD .在△ABD 中,由余弦定理,得BD 2=AD 2+AB 2-2AD ·AB cos ∠BAD .又因为AB =2AD ,∠BAD =60°,所以BD 2=3AD 2.所以AD 2+BD 2=AB 2,因此AD ⊥BD .又AD ∩D 1D =D ,所以BD ⊥平面ADD 1A 1.又AA 1⊂平面ADD 1A 1,所以AA 1⊥BD .法二因为DD 1⊥平面ABCD ,且BD ⊂平面ABCD ,所以BD ⊥D 1D .如图1,取AB 的中点G ,连接DG .图1在△ABD 中,由AB =2AD ,得AG =AD .又∠BAD =60°,所以△ADG 为等边三角形,所以GD =GB ,故∠DBG =∠GDB .又∠AGD =60°,所以∠GDB =30°,所以∠ADB =∠ADG +∠GDB =60°+30°=90°,所以BD ⊥AD .又AD ∩D 1D =D ,所以BD ⊥平面ADD 1A 1.又AA 1⊂平面ADD 1A 1,所以AA 1⊥BD .(2)如图2,连接AC ,A 1C 1.设AC ∩BD 于点E ,图2连接EA 1.因为四边形ABCD 为平行四边形,所以EC =AC .由棱台的定义及AB =2AD =2A 1B 1知,A 1C 1∥EC 且A 1C 1=EC ,所以四边形A 1ECC 1为平行四边形,因此CC 1∥EA 1.又因为EA 1⊂平面A 1BD ,CC 1⊄平面A 1BD ,所以CC 1∥平面A 1BD .。

数学丨黑龙江省哈尔滨市第三中学2025届高三10月月考数学试卷及答案

数学丨黑龙江省哈尔滨市第三中学2025届高三10月月考数学试卷及答案

哈三中2024—2025学年度上学期高三学年十月月考数学试卷考试说明:本试卷分第I卷(选择题)和第II卷(非选择题)两部分,满分150分.考试时间为120分钟.1.答题前,考生先将自己的姓名、准考证号码填写清楚.2.选择题必须使用2B铅笔填涂,非选择题必须使用0.5毫米黑色字迹签字笔书写,字体工整,字迹清楚.3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效,在草稿纸、试题卷上答题无效.4.保持卡面清洁,不得折叠、不要弄破、弄皱,不准使用涂改液、刮纸刀.第I卷(选择题,共58分)一、单选题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合,,则()A. B.C. D.2.已知是关于的方程的一个根,则()A.20B.22C.30D.323.已知,,,则的最小值为()A.2B.C.D.44.数列中,若,,,则数列的前项和()A. B. C. D.5.在中,为中点,,,若,则()A. B. C. D.6.在三棱柱中,点在棱上,且,点为中点,点在棱上,若平面,则()A.2B.3C.4D.57.已知偶函数定义域为,且,当时,,则函数在区间上所有零点的和为()A.B. C.D.8.已知平面向量,,,满足,且,,则的最小值为()A.B.0C.1D.2二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求,全部选对的得6分,部分选对的得部分分,有选错的得0分.9.对于函数,下列说法正确的是()A.函数最大值为B.是函数图象的一个对称中心C.是函数图象的一个对称轴D.将函数的图象向右平移个单位,即可得到函数的图象10.在正方形中,,为中点,将沿直线翻折至位置,使得二面角为直二面角,若为线段的中点,则下列结论中正确的是()A.若点在线段上,则的最小值为B.三棱锥的体积为C.异面直线、所成的角为D.三棱锥外接球的表面积为11.已知函数,则下列结论中正确的是()A.函数有两个零点B.恒成立C.若方程有两个不等实根,则的范围是D.直线与函数图象有两个交点第II卷(非选择题,共92分)三、填空题:本大题共3小题,每小题5分,共15分.将答案填在答题卡相应的位置上.12.等差数列中,是其前项和.若,,则______.13.在中,,的平分线与交于点,且,,则的面积为______.14.已知三棱锥中,平面,,,,,、分别为该三棱锥内切球和外接球上的动点,则线段的长度的最小值为______.四、解答题:本题共5小题,共77分.解答应写出必要的文字说明、证明过程或演算步骤.15.在三棱柱中,,,,,为中点.(1)求证:平面;(2)求直线与平面所成角的正弦值.16.已知函数.(1)讨论函数的单调性;(2)设函数,若在恒成立,求实数的取值范围.17.已知在锐角中,,,分别为内角,,的对边,.(1)求;(2)若,为中点,,求;(3)若,求内切圆半径的取值范围.18.某汽车销售公司为了提升公司的业绩,将最近一段时间内每日的汽车销售情况进行了统计,如图所示.(1)求的值,并求该公司这段时间内每日汽车销售量的第60百分位数;(2)以频率估计概率,若在这段时间内随机选择4天,设每日汽车销售量在内的天数为,在恰有1天的汽车销售量不超过150辆的条件下,求的分布列及数学期望;(3)为增加销售量,公司规定顾客每购买一辆汽车可以进行一次抽奖活动,规则如下:在三棱锥中,、均是边长为2的正三角形,,现从写有数字1~8的八个标签中随机选择两个分别贴在、两个顶点,记顶点、上的数字分别为和,若为侧棱上一个动点,满足,当“二面角大于”即为中奖,求中奖的概率.19.如图,在四棱锥中,底面为正方形,,是中点,平面,.(1)求四棱锥体积最大值;(2)设,为线段上的动点.①求平面与平面的夹角余弦值的取值范围;②四棱锥外接球记为球,当为线段中点时,求平面截球所得的截面面积.数学试卷考试说明:本试卷分第I卷(选择题)和第II卷(非选择题)两部分,满分150分.考试时间为120分钟.1.答题前,考生先将自己的姓名、准考证号码填写清楚.2.选择题必须使用2B铅笔填涂,非选择题必须使用0.5毫米黑色字迹签字笔书写,字体工整,字迹清楚.3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效,在草稿纸、试题卷上答题无效.4.保持卡面清洁,不得折叠、不要弄破、弄皱,不准使用涂改液、刮纸刀.第I卷(选择题,共58分)一、单选题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合,,则()A. B.C. D.【答案】B【解析】【分析】分别求出集合,,再根据交集的定义求.【详解】对集合:因为,所以,即;对集合:因为恒成立,所以.所以.故选:B2.已知是关于的方程的一个根,则()A.20B.22C.30D.32【答案】D【解析】【分析】根据虚根成对原理可知方程的另一个虚根为,再由韦达定理计算可得.【详解】因为是关于的方程的一个根,所以方程的另一个虚根为,所以,解得,所以.故选:D.3.已知,,,则的最小值为()A.2B.C.D.4【答案】D【解析】【分析】由已知可得,利用,结合基本不等式可求最小值.【详解】因为,所以,所以,所以,所以,当且仅当,即时等号成立,所以的最小值为.故选:D.4.数列中,若,,,则数列的前项和()A. B. C. D.【答案】C【解析】【分析】结合递推关系利用分组求和法求.【详解】因为,,所以,,,,,又,,,所以.故选:C.5.在中,为中点,,,若,则()A. B. C. D.【答案】C【解析】【分析】选择为平面向量的一组基底,表示出,再根据表示的唯一性,可求的值.【详解】选择为平面向量的一组基底.因为为中点,所以;又.由.故选:C6.在三棱柱中,点在棱上,且,点为中点,点在棱上,若平面,则()A.2B.3C.4D.5【答案】B【解析】【分析】根据已知条件及线面平行的判定定理,利用面面平行的判定定理和性质定理,结合平行四边形的性质即可得结论.【详解】依题意,作出图形如图所示设为的中点,因为为的中点,所以,又平面,平面,所以平面,连接,又因为平面,,平面,所以平面平面,又平面平面,平面,所以,又,所以四边形是平行四边形,所以,所以,又,所以,所以,所以.故选:B.7.已知偶函数定义域为,且,当时,,则函数在区间上所有零点的和为()A. B. C. D.【答案】A【解析】【分析】函数在区间上的零点的集合等于函数和函数在区间内的交点横坐标的集合,分析函数的图象特征,作出两函数的图象,观察图象可得结论.【详解】因为函数,的零点的集合与方程在区间上的解集相等,又方程可化为,所以函数,的零点的集合与函数和函数在区间内的交点横坐标的集合相等,因为函数为定义域为的偶函数,所以,函数的图象关于轴对称,因为,取可得,,所以函数为偶函数,所以函数的图象关于对称,又当时,,作出函数,的区间上的图象如下:观察图象可得函数,的图象在区间上有个交点,将这个交点的横坐标按从小到大依次记为,则,,,,所以函数在区间上所有零点的和为.故选:A.8.已知平面向量,,,满足,且,,则的最小值为()A. B.0 C.1 D.2【答案】B【解析】【分析】可设,,,由得到满足的关系,再求的最小值.【详解】可设,,,则.可设:,则.故选:B【点睛】方法点睛:由题意可知:,都是单位向量,且夹角确定,所以可先固定,,这样就只有发生变化,求最值就简单了一些.二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求,全部选对的得6分,部分选对的得部分分,有选错的得0分.9.对于函数,下列说法正确的是()A.函数的最大值为B.是函数图象的一个对称中心C.是函数图象的一个对称轴D.将函数的图象向右平移个单位,即可得到函数的图象【答案】ACD【解析】【分析】先利用两角和与差的三角函数公式和二倍角公式,把函数化成的形式,再对函数的性质进行分析,判断各选项是否正确.【详解】因为.所以,故A正确;函数对称中心的纵坐标必为,故B错误;由,得函数的对称轴方程为:,.令,得是函数的一条对称轴.故C正确;将函数的图象向右平移个单位,得,即将函数的图象向右平移个单位,可得到函数的图象.故D正确.故选:ACD10.在正方形中,,为中点,将沿直线翻折至位置,使得二面角为直二面角,若为线段的中点,则下列结论中正确的是()A.若点在线段上,则的最小值为B.三棱锥的体积为C.异面直线、所成角为D.三棱锥外接球的表面积为【答案】AC【解析】【分析】对于A,的最小值为可判断A;对于B,过作于,求得,可求三棱锥的体积判断B;对于C;取的中点,则,取的中点,连接,求得,由余弦定理可求异面直线、所成的角判断C;对于D,取的中点,过点在平面内作的垂线交于,求得外接球的半径,进而可求表面积判断D.【详解】对于A,将沿直线翻折至,可得的最小值为,故A正确;对于B,过作于,因为二面角为直二面角,所以平面平面,又平面平面,所以平面,由题意可得,由勾股定理可得,由,即,解得,因为为线段的中点,所以到平面的距离为,又,所以,故B错误;对于C,取的中点,则,且,,所以,因为,所以是异面直线、所成的角,取的中点,连接,可得,所以,在中,可得,由余弦定理可得,所以,在中,由余弦定理可得,所以,所以异面直线、所成的角为,故C正确;对于D,取的中点,过点在平面内作的垂线交于,易得是的垂直平分线,所以是的外心,又平面平面,又平面平面,所以平面,又因为直角三角形的外心,所以是三棱锥的外球的球心,又,所以,所以三棱锥外接球的表面积为,故D错误.故选:AC.11.已知函数,则下列结论中正确的是()A.函数有两个零点B.恒成立C.若方程有两个不等实根,则的范围是D.直线与函数图象有两个交点【答案】BCD【解析】【分析】分和两种情况探讨的符号,判断A的真假;转化为研究函数的最小值问题,判断B的真假;把方程有两个不等实根,为有两个根的问题,构造函数,分析函数的图象和性质,可得的取值范围,判断C的真假;直线与函数图象有两个交点转化为有两解,分析函数的零点个数,可判断D的真假.【详解】对A:当时,;当时,;时,,所以函数只有1个零点.A错误;对B:欲证,须证在上恒成立.设,则,由;由.所以在上单调递减,在上单调递增.所以的最小值为,因为,所以.故B正确;对C:.设,则,.由;由.所以在上单调递增,在单调递减.所以的最大值为:,又当时,.如图所示:所以有两个解时,.故C正确;对D:问题转化为方程:有两解,即有两解.设,,所以.由;由.所以在上单调递增,在上单调递减.所以的最大值为.因为,,所以所以.且当且时,;时,.所以函数的图象如下:所以有两解成立,所以D 正确.故选:BCD【点睛】方法点睛:导数问题中,求参数的取值范围问题,通常有如下方法:(1)分离参数,转化为不含参数的函数的值域问题求解.(2)转化为含参数的函数的极值问题求解.第II 卷(非选择题,共92分)三、填空题:本大题共3小题,每小题5分,共15分.将答案填在答题卡相应的位置上.12.等差数列中,是其前项和.若,,则______.【答案】【解析】【分析】设数列的公差为,将条件关系转化为的方程,解方程求,由此可求结论.【详解】设等差数列的公差为,因为,,所以,,所以,,所以,故答案为:.13.在中,,的平分线与交于点,且,,则的面积为______.【答案】【解析】【分析】根据三角形面积公式,余弦定理列方程求,再由三角形面积公式求结论.【详解】因为,为的平分线,所以,又,所以,由余弦定理可得,又,所以所以,所以的面积.故答案为:.14.已知三棱锥中,平面,,,,,、分别为该三棱锥的内切球和外接球上的动点,则线段的长度的最小值为______.【答案】【解析】【分析】根据已知可得的中点外接球的球心,求得外接球的半径与内切球的半径,进而求得两球心之间的距离,可求得线段的长度的最小值.【详解】因为平面,所以是直角三角形,所以,,在中,由余弦定理得,所以,所以,所以是直角三角形,所以,因为平面,平面,所以,又,平面,结合已知可得平面,所以是直角三角形,从而可得的中点外接球的球心,故外接球的半径为,设内切球的球心为,半径为,由,根据已知可得,所以,所以,解得,内切球在平面的投影为内切球的截面大圆,且此圆与的两边相切(记与的切点为),球心在平面的投影为在的角平分线上,所以,由上易知,所以,过作于,,从而,所以,所以两球心之间的距离,因为、分别为该三棱锥的内切球和外接球上的动点,所以线段的长度的最小值为.故答案为:.【点睛】关键点点睛:首先确定内外切球球心位置,进而求两球半径和球心距离,再利用空间想象判断两球心与位置关系求最小值.四、解答题:本题共5小题,共77分.解答应写出必要的文字说明、证明过程或演算步骤.15.在三棱柱中,,,,,为中点.(1)求证:平面;(2)求直线与平面所成角的正弦值.【答案】(1)证明见解析(2)【解析】【分析】(1)由题意可得,利用勾股定理的逆定理可得,可证结论;(2)以为坐标原点,所在直线为,过作的平行线为轴建立如图所示的空间直角坐标系,利用向量法可求得直线与平面所成角的正弦值.【小问1详解】连接,因为,为中点,所以,因为,所以,所以,又,所以,所以,又,平面,所以平面;【小问2详解】以为坐标原点,所在直线为,过作平行线为轴建立如图所示的空间直角坐标系,因为,所以,则,则,设平面的一个法向量为,则,令,则,所以平面的一个法向量为,又,所以,设直线与平面所成的角为,则,所以直线与平面所成角的正弦值为.16.已知函数.(1)讨论函数的单调性;(2)设函数,若在恒成立,求实数的取值范围.【答案】(1)答案见解析(2)的取值范围为.【解析】【分析】(1)求函数的定义域及导函数,分别在,,,条件下研究导数的取值情况,判断函数的单调性;(2)由条件可得,设,利用导数求其最小值,由此可得结论.【小问1详解】函数的定义域为,导函数,当时,,函数在上单调递增,当且时,即时,,函数在上单调递增,当时,,当且仅当时,函数在上单调递增,当时,方程有两个不等实数根,设其根为,,则,,由,知,,,所以当时,,函数在上单调递增,当时,,函数在上单调递减,当时,,函数在上单调递增,所以当时,函数在上单调递增,当时,函数在上单调递增,函数在上单调递减,函数在上单调递增,【小问2详解】因为,,所以,不等式可化为,因为在恒成立,所以设,则,当时,,函数在上单调递增,当时,,函数在上单调递减,所以当时,函数取最小值,最小值为,故,所以的取值范围为.17.已知在锐角中,,,分别为内角,,的对边,.(1)求;(2)若,为中点,,求;(3)若,求内切圆半径的取值范围.【答案】(1)(2)(3)【解析】【分析】(1)利用正弦定理进行边化角,再结合三角形内角和定理及两角和与差的三角函数公式,可求,进而得到角.(2)利用向量表示,借助向量的数量积求边.(3)利用与正弦定理表示出,借助三角函数求的取值范围.【小问1详解】因为,根据正弦定理,得,所以,因为,所以,所以.【小问2详解】因为为中点,所以,所以,所以,解得或(舍去),故.【小问3详解】由正弦定理:,所以,,因为,所以,所以,,设内切圆半径为,则.因为为锐角三角形,所以,,所以,所以,即,即内切圆半径的取值范围是:.18.某汽车销售公司为了提升公司的业绩,将最近一段时间内每日的汽车销售情况进行了统计,如图所示.(1)求的值,并求该公司这段时间内每日汽车销售量的第60百分位数;(2)以频率估计概率,若在这段时间内随机选择4天,设每日汽车销售量在内的天数为,在恰有1天的汽车销售量不超过150辆的条件下,求的分布列及数学期望;(3)为增加销售量,公司规定顾客每购买一辆汽车可以进行一次抽奖活动,规则如下:在三棱锥中,、均是边长为2的正三角形,,现从写有数字1~8的八个标签中随机选择两个分别贴在、两个顶点,记顶点、上的数字分别为和,若为侧棱上一个动点,满足,当“二面角大于”即为中奖,求中奖的概率.【答案】(1),175(2)分布列见解析,(3)【解析】【分析】(1)根据频率之和为1可求的值,再根据百分位数的概念求第60百分位数.(2)根据条件概率计算,求的分布列和期望.(3)根据二面角大于,求出可对应的情况,再求中奖的概率.【小问1详解】由.因为:,,所以每日汽车销售量的第60百分位数在,且为.【小问2详解】因为抽取的1天汽车销售量不超过150辆的概率为,抽取的1天汽车销售量在内的概率为.所以:在恰有1天的汽车销售量不超过150辆的条件下,抽取的1天汽车销售量在内的概率为.由题意,的值可以为:0,1,2,3.且,,,.所以的分布列为:0123所以.【小问3详解】如图:取中点,链接,,,,.因为,都是边长为2的等边三角形,所以,,,平面,所以平面.平面,所以.所以为二面角DE平面角.在中,,所以.若,在中,由正弦定理:.此时:,.所以,要想中奖,须有.由是从写有数字1~8的八个标签中随机选择的两个,所以基本事件有个,满足的基本事件有:,,,,,,,,共9个,所以中奖的概率为:.【点睛】关键点点睛:在第(2)问中,首先要根据条件概率的概念求出事件“在恰有1天的汽车销售量不超过150辆的条件下,抽取的1天汽车销售量在内的概率”.19.如图,在四棱锥中,底面为正方形,,是中点,平面,.(1)求四棱锥体积的最大值;(2)设,为线段上的动点.①求平面与平面的夹角余弦值的取值范围;②四棱锥的外接球记为球,当为线段中点时,求平面截球所得的截面面积.【答案】(1)(2)①;②【解析】【分析】(1)设,用表示四棱锥体积,分析函数的单调性,可求四棱锥体积的最大值.(2)①建立空间直角坐标系,设点坐标,用空间向量求二面角的余弦,结合二次函数的值域,可得二面角余弦的取值范围.②先确定球心,求出球心到截面的距离,利用勾股定理可求截面圆的半径,进而得截面圆的面积.【小问1详解】设则,所以四棱锥体积,.所以:.由;由.所以在上单调递增,在上单调递减.所以四棱锥体积的最大值为.【小问2详解】①以为原点,建立如图空间直角坐标系.则,,,所以,,.设平面的法向量为,则.令,则.取平面的法向量.因为平面与平面所成的二面角为锐角,设为.所以.因为,,所以.②易得,则,此时平面的法向量,所以点到平面的距离为:,设四棱锥的外接球半径为,则,所以平面截球所得的截面圆半径.所以平面截球所得的截面面积为:.【点睛】关键点点睛:平面截球的截面面积问题,要搞清球心的位置,球的半径,球心到截面的距离,再利用勾股定理,求出截面圆的半径.。

高三数学试卷题及答案

高三数学试卷题及答案

1. 若函数f(x)=ax²+bx+c的图象过点(1,2),则下列哪个方程不可能是f(x)=0的解?A. x₁=1,x₂=1B. x₁=1,x₂=-2C. x₁=-1,x₂=2D. x₁=-2,x₂=1答案:C2. 已知等差数列{an}的公差为d,且a₁=3,a₄=11,则d的值为:A. 2B. 3C. 4D. 5答案:B3. 若log₂x+log₃x=1,则x的值为:A. 2B. 3C. 6D. 9答案:C4. 在三角形ABC中,角A、B、C的对边分别为a、b、c,若a²+b²-c²=ab,则下列哪个选项正确?A. 角A是锐角B. 角B是锐角C. 角C是锐角D. 角A、B、C都是锐角答案:B5. 已知函数f(x)=(x-1)²+1,则下列哪个选项正确?A. f(x)在x=1处取得极小值B. f(x)在x=1处取得极大值C. f(x)在x=1处无极值D. f(x)在x=1处取得拐点答案:A6. 已知等比数列{an}的公比为q,且a₁=2,a₄=16,则q的值为:A. 2B. 4C. 8D. 16答案:C7. 已知函数f(x)=x³-3x²+4x,则f(x)的极值点为:A. x=1B. x=2C. x=3D. x=4答案:B8. 在三角形ABC中,角A、B、C的对边分别为a、b、c,若a²+b²=c²,则下列哪个选项正确?A. 角A是直角B. 角B是直角C. 角C是直角D. 角A、B、C都是直角答案:C9. 已知函数f(x)=ax²+bx+c,若f(x)在x=1处取得极小值,则下列哪个选项正确?A. a>0B. a<0C. b>0D. b<0答案:A10. 在三角形ABC中,角A、B、C的对边分别为a、b、c,若a²+b²+c²=ab+bc+ac,则下列哪个选项正确?A. 角A是锐角B. 角B是锐角C. 角C是锐角D. 角A、B、C都是锐角答案:D11. 已知函数f(x)=x²+2x+1,则f(x)的对称轴为:A. x=-1B. x=1C. y=-1D. y=1答案:A12. 已知函数f(x)=x³-3x²+4x,则f(x)的单调递增区间为:A. (-∞,0)B. (0,1)C. (1,+∞)D. (-∞,1)∪(1,+∞)答案:C二、填空题(本大题共6小题,每小题5分,共30分)13. 若函数f(x)=ax²+bx+c的图象开口向上,则a的取值范围是______。

江西省九江市2024-2025学年高三上学期开学考试 数学含答案

江西省九江市2024-2025学年高三上学期开学考试 数学含答案

数学试卷(答案在最后)试卷共4页,19小题,满分150分.考试用时120分钟.注意事项:1.答卷前,考生务必将自己的姓名、准考证号等填写在答题卡指定位置上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考生必须保持答题卡的整洁.考试结束后,请将答题卡交回.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.96i2i i -+的虚部为()A.7- B.6- C.7i- D.6i-2.已知等差数列{}n a 的前n 项和为n S ,若2612a a +=,则7S =()A.48B.42C.24D.213.已知一组数据:3,5,7,,9x 的平均数为6,则该组数据的40%分位数为()A.4.5 B.5C.5.5D.64.定义运算:a b ad bc c d=-.已知()sin cos180sin 270cos tan60ααα=+,则tan α=()A.2B.3C.2-D.3-5.已知某地区高考二检数学共有8000名考生参与,且二检的数学成绩X 近似服从正态分布()295,N σ,若成绩在80分以下的有1500人,则可以估计()95110P X ≤≤=()A.532B.516C.1132 D.3166.已知函数()2122,1e ,1x x ax a x f x x x -⎧-+->=⎨--≤⎩在上单调递减,则a 的取值范围为()A.[]2,4- B.[)4,+∞ C.(],4∞- D.0,47.已知圆台的上、下底面的面积分别为4π,25π,侧面积为35π,则该圆台外接球的球心到上底面的距离为()A.278B.274C.378D.3748.已知O 为坐标原点,抛物线2:2(0)C x py p =>的焦点F 到准线l 的距离为1,过点F 的直线1l 与C 交于,M N 两点,过点M 作C 的切线2l 与,x y 轴分别交于,P Q 两点,则PQ ON ⋅=()A.12B.12-C.14D.14-二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知函数()()π3sin ,3cos 232x x f x g x ⎛⎫=+= ⎪⎝⎭,则()A.()f x 的最小正周期为4πB.()f x 与()g x 有相同的最小值C.直线πx =为()f x 图象的一条对称轴D.将()f x 的图象向左平移π3个单位长度后得到()g x 的图像10.已知函数()3223f x x x =-,则()A.1是()f x 的极小值点B.()f x 的图象关于点11,22⎛⎫-⎪⎝⎭对称C.()()1g x f x =+有3个零点D.当01x <<时,()()211f x f x ->-11.已知正方体1111ABCD A B C D -的体积为8,线段1,CC BC 的中点分别为,E F ,动点G 在下底面1111D C B A 内(含边界),动点H 在直线1AD 上,且1GE AA =,则()A.三棱锥H DEF -的体积为定值B.动点G 的轨迹长度为5π2C.不存在点G ,使得EG ⊥平面DEFD.四面体DEFG 体积的最大值为1526三、填空题:本题共3小题,每小题5分,共15分.12.已知向量()()3,2,2,a b x =-=,若()2b a a -⊥ ,则x =______.13.定义:如果集合U 存在一组两两不交(两个集合的交集为空集时,称为不交)的非空真子集1A ,()*2,,k A A k ∈N ,且12k A A A U =U U L U ,那么称子集族{}12,,,k A A A 构成集合U 的一个k 划分.已知集合{}2650I x x x =∈-+<N∣,则集合I 的所有划分的个数为__________.14.已知O 为坐标原点,双曲线2222:1(0,0)x y C a b a b -=>>的左、右焦点分别为12,F F ,点M 在以2F 为圆心、2OF 为半径的圆上,且直线1MF 与圆2F 相切,若直线1MF 与C 的一条渐近线交于点N ,且1F M MN = ,则C 的离心率为__________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.已知ABC V 中,角,,A B C 所对的边分别为,,a b c ,其中23sin cos sin a B A b A =.(1)求A 的值;(2)若ABC V 36,求ABC V 的外接圆面积.16.如图,在四棱锥S ABCD -中,底面ABCD 为正方形,45,,ASD ADS M N ∠∠== 分别在棱,SB SC 上,且,,,A D N M 四点共面.(1)证明:SA MN ⊥;(2)若SM BM =,且二面角S AD C --为直二面角,求平面SCD 与平面ADNM 夹角的余弦值.17.已知椭圆2222:1(0)x y C a b a b +=>>的离心率为22,右焦点为F ,点23(,22-在C 上.(1)求C 的方程;(2)已知O 为坐标原点,点A 在直线():0l y kx m k =+≠上,若直线l 与C 相切,且FA l ⊥,求OA 的值.18.已知函数()1ee xf x x x +=-.(1)求曲线()y f x =在点()()1,1f --处的切线方程;(2)记(1)中切线方程为()y F x =,比较()(),f x F x 的大小关系,并说明理由;(3)若0x >时,()()ln 2e 1f x x a x -≥---,求a 的取值范围.19.已知首项为1的数列{}n a 满足221144n n n n a a a a ++=++.(1)若20a >,在所有{}()14n a n ≤≤中随机抽取2个数列,记满足40a <的数列{}n a 的个数为X ,求X 的分布列及数学期望EX ;(2)若数列{}n a 满足:若存在5m a ≤-,则存在{}(1,2,,12k m m ∈-≥ 且)*m ∈N ,使得4km aa -=.(i )若20a >,证明:数列{}n a 是等差数列,并求数列{}n a 的前n 项和n S ;(ii )在所有满足条件的数列{}n a 中,求使得20250s a +=成立的s 的最小值.数学试卷试卷共4页,19小题,满分150分.考试用时120分钟.注意事项:1.答卷前,考生务必将自己的姓名、准考证号等填写在答题卡指定位置上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考生必须保持答题卡的整洁.考试结束后,请将答题卡交回.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.96i2i i -+的虚部为()A.7- B.6- C.7i- D.6i-【答案】A 【解析】【分析】根据复数的运算化简得67i --,再根据虚部的定义即可求解.【详解】2296i 9i 6i 2i 2i 69i 2i 67i i i--+=+=--+=--,则所求虚部为7-.故选:A .2.已知等差数列{}n a 的前n 项和为n S ,若2612a a +=,则7S =()A.48B.42C.24D.21【答案】B 【解析】【分析】利用等差数列项的性质求出17a a +的值,再由等差数列的求和公式即可求得.【详解】因{}n a 为等差数列,故172612a a a a +==+,则1772)7(712422a a S +==⨯=.故选:B.3.已知一组数据:3,5,7,,9x 的平均数为6,则该组数据的40%分位数为()A.4.5B.5C.5.5D.6【答案】C 【解析】【分析】由平均数及百分位数的定义求解即可.【详解】依题意,357965x ++++=,解得6x =,将数据从小到大排列可得:3,5,6,7,9,又50.42⨯=,则40%分位数为565.52+=.故选:C.4.定义运算:a b ad bc c d=-.已知()sin cos180sin 270cos tan60ααα=+,则tan α=()A.2B.3C.2- D.3-【答案】D 【解析】cos cos ααα+=-,再根据同角三角函数的商数关系即可求解.cos cos ααα+=-2cos αα=-,故sin tan cos 3ααα==-.故选:D .5.已知某地区高考二检数学共有8000名考生参与,且二检的数学成绩X 近似服从正态分布()295,N σ,若成绩在80分以下的有1500人,则可以估计()95110P X ≤≤=()A.532B.516C.1132 D.316【答案】B 【解析】【分析】解法一,求出3(80)16P X <=,根据正态分布的对称性,即可求得答案;解法二,求出数学成绩在80分至95分的人数,由对称性,再求出数学成绩在95分至110分的人数,即可求得答案.【详解】解法一:依题意,得15003(80)800016P X <==,故()()135951108095(95)(80)21616P X P X P X P X ≤≤=≤≤=<-<=-;解法二:数学成绩在80分至95分的有400015002500-=人,由对称性,数学成绩在95分至110分的也有2500人,故()2500595110800016P X ≤≤==.故选:B.6.已知函数()2122,1e ,1x x ax a x f x x x -⎧-+->=⎨--≤⎩在上单调递减,则a 的取值范围为()A.[]2,4- B.[)4,+∞ C.(],4∞- D.0,4【答案】D 【解析】【分析】由函数在R 上单调递减,列出相应的不等式组14222a a a ⎧≤⎪⎨⎪-+-≤-⎩,即可求解.【详解】当(],1x ∞∈-时,()1ex f x x -=--,因为1e x y -=-和y x =-都是减函数,所以()f x 在−∞,1上单调递减,当()1,x ∈+∞时,()222f x x ax ax =-+-,要使其在()1,+∞上单调递减,则14a≤,所以14222a a a ⎧≤⎪⎨⎪-+-≤-⎩,解得04a ≤≤,故D 正确.故选:D.7.已知圆台的上、下底面的面积分别为4π,25π,侧面积为35π,则该圆台外接球的球心到上底面的距离为()A.278B.274C.378D.374【答案】C 【解析】【分析】由圆台的侧面积公式求出母线长,再由勾股定理得到高即可计算;【详解】依题意,记圆台的上、下底面半径分别为12,r r ,则2212π4π,π25πr r ==,则122,5r r ==,设圆台的母线长为l ,则()12π35πr r l +=,解得5l =,则圆台的高4h ==,记外接球球心到上底面的距离为x ,则()2222245x x +=-+,解得378=x .故选:C.8.已知O 为坐标原点,抛物线2:2(0)C x py p =>的焦点F 到准线l 的距离为1,过点F 的直线1l 与C 交于,M N 两点,过点M 作C 的切线2l 与,x y 轴分别交于,P Q 两点,则PQ ON ⋅=()A.12B.12-C.14D.14-【答案】C 【解析】【分析】通过联立方程组的方法求得,P Q 的坐标,然后根据向量数量积运算求得PQ ON ⋅.【详解】依题意,抛物线2:2C x y =,即212y x =,则1,0,2y x F ⎛⎫= ⎪⎝⎭',设221212,,,22x x M x N x ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭,直线11:2l y kx =+,联立22,1,2x y y kx ⎧=⎪⎨=+⎪⎩得2210x kx --=,则121x x =-.而直线()21211:2x l y x x x -=-,即2112x y x x =-,令0y =,则12x x =,即1,02x P ⎛⎫ ⎪⎝⎭,令0x =,则212x y =-,故210,2x Q ⎛⎫- ⎪⎝⎭,则211,22x x PQ ⎛⎫=-- ⎪⎝⎭ ,故2212121244x x x x PQ ON ⋅=--=.故选:C【点睛】求解抛物线的切线方程,可以联立切线的方程和抛物线的方程,然后利用判别式来求解,也可以利用导数来进行求解.求解抛物线与直线有关问题,可以利用联立方程组的方法来求得公共点的坐标.二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知函数()()π3sin ,3cos 232x x f x g x ⎛⎫=+=⎪⎝⎭,则()A.()f x 的最小正周期为4πB.()f x 与()g x 有相同的最小值C.直线πx =为()f x 图象的一条对称轴D.将()f x 的图象向左平移π3个单位长度后得到()g x 的图像【答案】ABD 【解析】【分析】对于A :根据正弦型函数的最小正周期分析判断;对于B :根据解析式可得()f x 与()g x 的最小值;对于C :代入求()πf ,结合最值与对称性分析判断;对于D :根据三角函数图象变换结合诱导公式分析判断.【详解】因为()()π3sin ,3cos 232x x f x g x ⎛⎫=+=⎪⎝⎭,对于选项A :()f x 的最小正周期2π4π12T ==,故A 正确;对于选项B :()f x 与()g x 的最小值均为3-,故B 正确;对于选项C :因为()5π3π3sin362f ==≠±,可知直线πx =不为()f x 图象的对称轴,故C 错误;对于选项D :将()f x 的图象向左平移π3个单位长度后,得到()ππ3sin 3cos 3222x x f x g x ⎛⎫⎛⎫+=+== ⎪ ⎪⎝⎭⎝⎭,故D 正确.故选:ABD.10.已知函数()3223f x x x =-,则()A.1是()f x 的极小值点B.()f x 的图象关于点11,22⎛⎫-⎪⎝⎭对称C.()()1g x f x =+有3个零点D.当01x <<时,()()211f x f x ->-【答案】AB 【解析】【分析】利用导数求函数极值点判断选项A ;通过证明()()11f x f x +-=-得函数图象的对称点判断选项B ;利用函数单调性和零点存在定理判断选项C ;利用单调性比较函数值的大小判断选项D.【详解】对于A ,函数()3223f x x x =-,()()26661f x x x x x =='--,令()0f x '=,解得0x =或1x =,故当(),0x ∞∈-时′>0,当∈0,1时,′<0,当∈1,+∞时′>0,则()f x 在(),0∞-上单调递增,在0,1上单调递减,在1,+∞上单调递增,故1是()f x 的极小值点,故A 正确:对于B,因为()()3232322321232(1)3(1)2326623631f x f x x x x x x x x x x x x +-=-+---=-+-+--+-=-,所以()f x 的图象关于点11,22⎛⎫-⎪⎝⎭对称,故B 正确;对于C ,()()321231g x f x x x =+=-+,易知()(),g x f x 的单调性一致,而()10g =,故()()1g x f x =+有2个零点,故C 错误;对于D ,当01x <<时,21110x x -<-<-<,而()f x 在()1,0-上单调递增,故()()211f x f x -<-,故D 错误.故选:AB.11.已知正方体1111ABCD A B C D -的体积为8,线段1,CC BC 的中点分别为,E F ,动点G 在下底面1111D C B A 内(含边界),动点H 在直线1AD 上,且1GE AA =,则()A.三棱锥H DEF -的体积为定值B.动点G 的轨迹长度为5π2C.不存在点G ,使得EG ⊥平面DEFD.四面体DEFG 体积的最大值为1526【答案】ACD 【解析】【分析】对于A ,由题意可证1AD ∥平面DEF ,因此点H 到平面DEF 的距离等于点A 到平面DEF 的距离,其为定值,据此判断A ;对于B ,根据题意求出正方体边长及1C G 的长,由此可知点G 的运动轨迹;对于C ,建立空间直角坐标系,求出平面DEF 的法向量,假设点G 的坐标,求出EG 的方向向量,假设EG ⊥平面DEF ,则平面DEF 的法向量和EG 的方向向量共线,进而求出点G 的坐标,再判断点G 是否满足B 中的轨迹即可;对于D ,利用空间直角坐标系求出点G 到平面DEF 的距离,求出距离的最大值即可.【详解】对于A ,如图,连接1BC 、1AD ,依题意,EF ∥1BC ∥1AD ,而1AD ⊄平面,DEF EF ⊂平面DEF ,故1AD ∥平面DEF ,所以点H 到平面DEF 的距离等于点A 到平面DEF 的距离,其为定值,所以点H 到平面DEF 的距离为定值,故三棱维H DEF -的体积为定值,故A 正确;对于B ,因为正方体1111ABCD A B C D -的体积为8,故12AA =,则2GE =,而11EC =,故22113C G GE EC =-=故动点G 的轨迹为以1C 31111D C B A 内的部分,即四分之一圆弧,故所求轨迹长度为13π2π342⨯=,故B 错误;以1C 为坐标原点,11111,,C D C B C C 所在直线分别为,,x y z轴,建立如图所示的空间直角坐标系,则()()()2,0,2,0,0,1,0,1,2D E F ,故()()2,0,1,0,1,1DE EF =--=,设 =s s 为平面DEF 的法向量,则0,0,n EF n DE ⎧⋅=⎪⎨⋅=⎪⎩故0,20,y z x z +=⎧⎨--=⎩令2z =,故()1,2,2n =--为平面DEF 的一个法向量,设()()0000,,00,0G x y x y ≥≥,故()00,,1EG x y =-,若EG ⊥平面DEF ,则//n EG uuu rr,则001122x y -==--,解得001,12x y ==,但22003x y +≠,所以不存在点点G ,使得EG ⊥平面DEF ,故C 正确;对于D ,因为DEF 为等腰三角形,故2211323222222DEFEF S EF DE ⎛⎫=⋅-== ⎪⎝⎭,而点G 到平面DEF 的距离0000222233EG n x y x y d n ⋅++++===,令03cos x θ=,则0π3sin ,0,2y θθ⎡⎤=∈⎢⎥⎣⎦,则()222333d θϕθθ+++++==≤,其中1tan 2ϕ=,则四面体DEFG 体积的最大值为13223236++⨯⨯=,故D 正确.故选:ACD.三、填空题:本题共3小题,每小题5分,共15分.12.已知向量()()3,2,2,a b x =-=,若()2b a a -⊥ ,则x =______.【答案】10-【解析】【分析】利用向量的线性运算并由向量垂直的坐标表示列式即可求解.【详解】依题意,()24,4b a x -=-+,故()212280b a a x -⋅=---= ,解得10x =-.故答案为:10-13.定义:如果集合U 存在一组两两不交(两个集合的交集为空集时,称为不交)的非空真子集1A ,()*2,,k A A k ∈N ,且12k A A A U =U U L U ,那么称子集族{}12,,,k A A A 构成集合U 的一个k 划分.已知集合{}2650I x x x =∈-+<N∣,则集合I 的所有划分的个数为__________.【答案】4【解析】【分析】解二次不等式得到集合I ,由子集族的定义对集合I 进行划分.【详解】依题意,{}{}{}2650152,3,4I x x x x x =∈-+<=∈<<=N N∣,I 的2划分为{}{}{}{2,3},{4},{2,4},{3},{3,4},{2},共3个,I 的3划分为{}{}{}{}2,3,4,共1个,故集合I 的所有划分的个数为4.故答案为:414.已知O 为坐标原点,双曲线2222:1(0,0)x y C a b a b -=>>的左、右焦点分别为12,F F ,点M 在以2F 为圆心、2OF 为半径的圆上,且直线1MF 与圆2F 相切,若直线1MF 与C 的一条渐近线交于点N ,且1F M MN = ,则C 的离心率为__________.【答案】2【解析】【分析】由题意可得21F M NF ⊥,由此求出1F M ,1230MF F ∠=o,即可求出N 点坐标,代入b y x a=,即可得出答案.【详解】不妨设点M 在第一象限,连接2F M ,则212,F M NF F M c ⊥=,故1F M ==,1230MF F ∠=o,设()00,N x y ,因为1F M MN =,所以M 为1NF 的中点,112NF F M ==,故0y =.0sin30,cos302x c c ==⋅-= ,将()2N c 代入b y x a =中,故32b a =,则2c e a ===.故答案为:72.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.已知ABC V 中,角,,A B C 所对的边分别为,,a b c ,其中2sin cos sin B A b A =.(1)求A 的值;(2)若ABC V 6,求ABC V 的外接圆面积.【答案】(1)π3A =(2)4π3【解析】【分析】(1)利用正弦定理化简已知条件,从而求得A .(2)根据三角形的面积公式、余弦定理等知识求得外接圆的半径,从而求得外接圆的面积.【小问1详解】2sin cos sin sinA B A B A=,因为sin,sin0A B≠sinA A=,则tan A=,因为()0,πA∈,故π3A=.【小问2详解】由题意13sin24ABCS bc A===,故4bc=.由余弦定理得222222cos()3(6)12a b c bc A b c bc a=+-=+-=--,解得2a=.故ABCV的外接圆半径2sinaRA==,故所求外接圆面积24ππ3S R==.16.如图,在四棱锥S ABCD-中,底面ABCD为正方形,45,,ASD ADS M N∠∠== 分别在棱,SB SC 上,且,,,A D N M四点共面.(1)证明:SA MN⊥;(2)若SM BM=,且二面角S AD C--为直二面角,求平面SCD与平面ADNM夹角的余弦值.【答案】(1)证明见解析(2)12【解析】【分析】(1)先证明线面平行再应用线面平行性质定理得出MN//AD,再结合SA AD⊥,即可证明;(2)应用面面垂直建系,应用空间向量法求出面面角的余弦值.【小问1详解】因为45ASD ADS ∠∠== ,故90SAD ∠= ,则SA AD ⊥,因为AD //,BC AD ⊄平面,SBC BC ⊂平面SBC ,故AD //平面SBC ,而平面ADNM 平面,SBC MN AD =⊂平面ADNM ,故MN //AD ,则SA MN ⊥.【小问2详解】因为二面角S AD C --为直二面角,故平面SAD ⊥平面ABCD .而平面SAD ⋂平面,ABCD AD SA =⊂平面,SAD SA AD ⊥,故SA ⊥平面ABCD ,又底面ABCD 为正方形,所以,,SA AB SA AD AB AD ⊥⊥⊥,以点A 为坐标原点,,,AB AD AS 所在直线分别为,,x y z 轴,建立如图所示的空间直角坐标系A xyz -,不妨设2AB =,则()()()()()0,0,0,0,0,2,2,2,0,0,2,0,1,0,1A S C D M ,故()()()()2,2,2,0,2,2,0,2,0,1,0,1SC SD AD AM =-=-==,设平面ADNM 的法向量为()111,,n x y z =,则1110,20,n AM x z n AD y ⎧⋅=+=⎪⎨⋅==⎪⎩ 令11x =,可得()1,0,1n =- .设平面SCD 的法向量为()222,,m x y z =,则22222220,2220,m SD y z m SC x y z ⎧⋅=-=⎪⎨⋅=+-=⎪⎩ 令21y =,可得()0,1,1m = ,故平面SCD 与平面ADNM 夹角的余弦值1cos 2m n m n θ⋅== .17.已知椭圆2222:1(0)x y C a b a b +=>>,右焦点为F ,点23(,22-在C 上.(1)求C 的方程;(2)已知O 为坐标原点,点A 在直线():0l y kx m k =+≠上,若直线l 与C 相切,且FA l ⊥,求OA 的值.【答案】(1)2212x y +=(2)OA =【解析】【分析】(1)根据椭圆离心率定义和椭圆上的点以及,,a b c 的关系式列出方程组,解之即得;(2)将直线与椭圆方程联立,消元,根据题意,由Δ0=推得2221m k =+,又由FA l ⊥,写出直线FA 的方程,与直线l 联立,求得点A 坐标,计算2||OA ,将前式代入化简即得.【小问1详解】设s 0,依题意,222222131,24c a a b a b c ⎧=⎪⎪⎪+=⎨⎪=+⎪⎪⎩解得222,1,a b ==故C 的方程为2212x y +=.【小问2详解】如图,依题意1,0,联立22,1,2y kx m x y =+⎧⎪⎨+=⎪⎩消去y ,可得()222214220k x kmx m +++-=,依题意,需使()()2222Δ16421220k m k m =-+-=,整理得2221m k =+(*).因为FA l ⊥,则直线FA 的斜率为1k-,则其方程为()11y x k =--,联立1(1),y x k y kx m ⎧=--⎪⎨⎪=+⎩解得221,1,1km x kk m y k -⎧=⎪⎪+⎨+⎪=⎪+⎩即221,11km k m A k k -+⎛⎫ ⎪++⎝⎭故()()()()()2222222222222222211(1)()11||1111k m km k m k m k m mOA k k k k ++-++++++====++++,将(*)代入得,22221222,11m k k k++==++故OA =18.已知函数()1ee xf x x x +=-.(1)求曲线()y f x =在点()()1,1f --处的切线方程;(2)记(1)中切线方程为()y F x =,比较()(),f x F x 的大小关系,并说明理由;(3)若0x >时,()()ln 2e 1f x x a x -≥---,求a 的取值范围.【答案】(1)e 1y x =--(2)()()f x F x ≥,理由见解析(3)(],0-∞【解析】【分析】(1)根据导数的几何意义,即可求得答案;(2)令()()()1e1x m x f x F x x +=-=+,求出其导数,进而求得函数最值,即可得结论;(3)将原问题变为1e ln 2x x x x ax +---≥,即()ln 1eln 11x x x x ax ++-++-≥在()0,∞+上恒成立,同构函数,利用导数判断函数单调性,结合讨论a 的范围,即可求得答案.【小问1详解】依题意,()1e 1f -=-,而()()11e e x f x x +=+-',故()1e,f '-=-故所求切线方程为()e 1e 1y x -+=-+,即e 1y x =--.【小问2详解】由(1)知()e 1F x x =--,结论;()()f x F x ≥,下面给出证明:令()()()1e1x m x f x F x x +=-=+,则()()11e x m x x +=+',当1x <-时,()()0,m x m x '<在(),1∞--上单调递减,当1x >-时,()()0,m x m x '>在()1,-+∞上单调递增,故()()10m x m ≥-=,即()()f x F x ≥.【小问3详解】依题意得1e ln 2x x x x ax +---≥,则()ln 1eln 11x x x x ax ++-++-≥在()0,∞+上恒成立,令()e 1xg x x =--,则()e 1xg x '=-,令()0g x '=,得0x =,故当(),0x ∈-∞时,()0g x '<,当()0,x ∞∈+时,()0g x '>,故()g x 在区间(),0-∞上单调递减,在区间()0,∞+上单调递增,则()()00g x g ≥=,当0a ≤时,10,e ln 20,0x x x x x ax +∀>---≥≤,此时10,e ln 2x x x x x ax +∀>---≥;当0a >时,令()ln 1h x x x =++,显然()h x 在区间()0,∞+上单调递增,又()221110,120e eh h ⎛⎫=-=⎪⎝⎭,故存在021,1e x ⎛⎫∈ ⎪⎝⎭,使得()00h x =,则01000e ln 20x x x x +---=,而00ax >,不合题意,舍去.综上所述,a 的取值范围为(],0-∞.【点睛】不等式恒成立问题常见方法:①分离参数()a f x ≥恒成立(()max a f x ≥即可)或()a f x ≤恒成立(()min a f x ≤即可);②数形结合(()y f x =图象在()y g x =上方即可);③分类讨论参数.19.已知首项为1的数列{}n a 满足221144n n n n a a a a ++=++.(1)若20a >,在所有{}()14n a n ≤≤中随机抽取2个数列,记满足40a <的数列{}n a 的个数为X ,求X的分布列及数学期望EX ;(2)若数列{}n a 满足:若存在5m a ≤-,则存在{}(1,2,,12k m m ∈-≥ 且)*m ∈N ,使得4km aa -=.(i )若20a >,证明:数列{}n a 是等差数列,并求数列{}n a 的前n 项和n S ;(ii )在所有满足条件的数列{}n a 中,求使得20250s a +=成立的s 的最小值.【答案】(1)分布列见解析,1(2)(i )证明见解析,22n S n n =-(ii )1520【解析】【分析】(1)根据递推关系化简可得14n n a a +=+,或1,n n a a +=-写出数列的前四项,利用古典概型即可求出分布列及期望;(2)(i )假设数列{}n a 中存在最小的整数()3i i ≥,使得1i i a a -=-,根据所给条件可推出存在{}1,2,,1k i ∈- ,使得41k i a a =+≤-,矛盾,即可证明;(ii )由题意可确定1,5,9,,2017,2021,2025------ 必为数列{}n a 中的项,构成新数列{}n b ,确定其通项公式及5072025b =-,探求s a 与n b 的关系得解.【小问1详解】依题意,221144n n n n a a a a ++=++,故22114444a n n n a a a a ++-+=++,即()()22122n n a a +-=+,故14n n a a +=+,或1,n n a a +=-因为121,0a a =>,故25a =;则:1,5,9,13;:1,5,9,9;:1,5,5,5;:1,5,5,1n n n n a a a a ----,故X 的可能取值为0,1,2,故()()()21122222222444C C C C 1210,12C 6C 3C 6P X P X P X =========,故X 的分布列为X012P162316故1210121636EX =⨯+⨯+⨯=.【小问2详解】(i )证明:由(1)可知,当2n ≥时,1n n a a -=-或124,5n n a a a -=+=;假设此时数列{}n a 中存在最小的整数()3i i ≥,使得1i i a a -=-,则121,,,i a a a - 单调递增,即均为正数,且125i a a -≥=,所以15i i a a -=-≤-;则存在{}1,2,,1k i ∈- ,使得41k i a a =+≤-,此时与121,,,i a a a - 均为正数矛盾,所以不存在整数()3i i ≥,使得1i i a a -=-,故14n n a a -=+.所以数列{}n a 是首项为1、公差为4的等差数列,则()21422n n n S n n n -=+⋅=-.(ii )解:由20250s a +=,可得2025s a =-,由题设条件可得1,5,9,,2017,2021,2025------ 必为数列{}n a 中的项;记该数列为{}n b ,有()431507n b n n =-+≤≤;不妨令n j b a =,则143j j a a n +=-=-或1447j j a a n +=+=-+,均不为141;n b n +=--此时243j a n +=-+或41n +或47n -或411n -+,均不为141s b n +=--.上述情况中,当1243,41j j a n a n ++=-=+时,32141j j n a a n b +++=-=--=,结合11a =,则有31n n a b -=.由5072025b =-可知,使得20250s a +=成立的s 的最小值为350711520⨯-=.【点睛】关键点点睛:第一问数列与概率结合,关键在于得出数列前四项的所有可能,即可按照概率问题求解,第二问的关键在于对于新定义数列,理解并会利用一般的抽象方法推理,反证,探求数列中项的变换规律,能力要求非常高,属于困难题目.。

北京市海淀区2023-2024学年高三上学期期末考试 数学含答案

北京市海淀区2023-2024学年高三上学期期末考试 数学含答案

海淀区2023—2024学年第一学期期末练习高三数学(答案在最后)2024.01本试卷共6页,150分.考试时长120分钟.考生务必将答案答在答题纸上,在试卷上作答无效.考试结束后,将本试卷和答题纸一并交回.第一部分(选择题共40分)一、选择题共10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知集合{}1,2,3,4,5,6U =,{}1,3,5A =,{}1,2,3B =,则()U A B = ð()A .{}2,4,5,6B .{}4,6C .{}2,4,6D .{}2,5,62.如图,在复平面内,复数1z ,2z 对应的点分别为1Z ,2Z ,则复数12z z ⋅的虚部为()A .i-B .1-C .3i -D .3-3.已知直线1:12yl x +=,直线2:220l x ay -+=,且12l l ∥,则a =()A .1B .1-C .4D .4-4.已知抛物线2:8C y x =的焦点为F ,点M 在C 上,4MF =,O 为坐标原点,则MO =()A .B .4C .5D .5.在正四棱锥P ABCD -中,2AB =,二面角P CD A --的大小为4π,则该四棱锥的体积为()A .4B .2C .43D .236.已知22:210C x x y ++-= ,直线()10mx n y +-=与C 交于A ,B 两点.若ABC △为直角三角形,则()A .0mn =B .0m n -=C .0m n +=D .2230m n -=7.若关于x 的方程log 0xa x a -=(0a >且1a ≠)有实数解,则a 的值可以为()A .10B .eC .2D .548.已知直线1l ,2l 的斜率分别为1k ,2k ,倾斜角分别为1α,2α,则“()12cos 0->αα”是“120k k >”的()A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件9.已知{}n a 是公比为q (1q ≠)的等比数列,n S 为其前n 项和.若对任意的*N n ∈,11n a S q<-恒成立,则()A .{}n a 是递增数列B .{}n a 是递减数列C .{}n S 是递增数列D .{}n S 是递减数列10.蜜蜂被誉为“天才的建筑师”.蜂巢结构是一种在一定条件下建筑用材面积最小的结构.下图是一个蜂房的立体模型,底面ABCDEF 是正六边形,棱AG ,BH ,CI ,DJ ,EK ,FL 均垂直于底面ABCDEF ,上顶由三个全等的菱形PGHI ,PIJK ,PKLG 构成.设1BC =,GPI IPK ∠=∠KPG =∠=θ10928'≈︒,则上顶的面积为()(参考数据:1cos 3=-θ,tan2=θ)A .B .2C .2D .4第二部分(非选择题共110分)二、填空题共5小题,每小题5分,共25分.11.在51x ⎫-⎪⎭的展开式中,x 的系数为______.12.已知双曲线221x my -=0y -=,则该双曲线的离心率为______.13.已知点A ,B ,C 在正方形网格中的位置如图所示.若网格纸上小正方形的边长为1,则AB BC ⋅=______;点C 到直线AB 的距离为______.14.已知无穷等差数列{}n a 的各项均为正数,公差为d ,则能使得1n n a a +为某一个等差数列{}n b 的前n 项和(1n =,2,…)的一组1a ,d 的值为1a =______,d =______.15.已知函数()cos f x x a =+.给出下列四个结论:①任意a ∈R ,函数()f x 的最大值与最小值的差为2;②存在a ∈R ,使得对任意x ∈R ,()()π2f x f x a +-=;③当0a ≠时,对任意非零实数x ,ππ22f x f x ⎛⎫⎛⎫ ⎪ ⎪-⎝⎭⎝+⎭≠;④当0a =时,存在()0,πT ∈,0x ∈R ,使得对任意n ∈Z ,都有()()00f x f x nT =+.其中所有正确结论的序号是______.三、解答题共6小题,共85分.解答应写出文字说明,演算步骤或证明过程.16.(本小题13分)如图,在四棱柱1111ABCD A B C D -中,侧面11ABB A 是正方形,平面11ABB A ⊥平面ABCD ,AB CD ∥,12AD DC AB ==,M 为线段AB 的中点,1AD B M ⊥.(Ⅰ)求证:1C M ∥平面11ADD A ;(Ⅱ)求直线1AC 与平面11MB C 所成角的正弦值.17.(本小题14分)在ABC △中,2cos 2c A b a =-.(Ⅰ)求C ∠的大小;(Ⅱ)若c =ABC △存在,求AC 边上中线的长.条件①:ABC △的面积为条件②:1sin sin 2B A -=;条件③:2222b a -=.注:如果选择的条件不符合要求,得0分;如果选择多个符合要求的条件分别解答,按第一个解答计分.18.(本小题13分)甲、乙、丙三人进行投篮比赛,共比赛10场,规定每场比赛分数最高者获胜,三人得分(单位:分)情况统计如下:场次12345678910甲8101071288101013乙9138121411791210丙121191111998911(Ⅰ)从上述10场比赛中随机选择一场,求甲获胜的概率;(Ⅱ)在上述10场比赛中,从甲得分不低于10分的场次中随机选择两场,设X 表示乙得分大于丙得分的场数,求X 的分布列和数学期望()E X ;(Ⅲ)假设每场比赛获胜者唯一,且各场相互独立,用上述10场比赛中每人获胜的频率估计其获胜的概率.甲、乙、丙三人接下来又将进行6场投篮比赛,设1Y 为甲获胜的场数,2Y 为乙获胜的场数,3Y 为丙获胜的场数,写出方差()1D Y ,()2D Y ,()3D Y 的大小关系.19.(本小题15分)已知椭圆2222:1x y E a b+=(0a b >>)过点()3,0A ,焦距为(Ⅰ)求椭圆E 的方程,并求其短轴长;(Ⅱ)过点()1,0P 且不与x 轴重合的直线l 交椭圆E 于两点C ,D ,连接CO 并延长交椭圆E 于点M ,直线AM 与l 交于点N ,Q 为OD 的中点,其中O 为原点.设直线NQ 的斜率为k ,求k 的最大值.20.(本小题15分)已知函数()2sin f x ax x x b =-+.(Ⅰ)当1a =时,求证:①当0x >时,()f x b >;②函数()f x 有唯一极值点;(Ⅱ)若曲线1C 与曲线2C 在某公共点处的切线重合,则称该切线为1C 和2C 的“优切线”.若曲线()y f x =与曲线cos y x =-存在两条互相垂直的“优切线”,求a ,b 的值.21.(本小题15分)对于给定的奇数m (3m ≥),设A 是由m m ⨯个实数组成的m 行m 列的数表,且A 中所有数不全相同,A 中第i 行第j 列的数{}1,1ij a ∈-,记()r i 为A 的第i 行各数之和,()c j 为A 的第j 列各数之和,其中{},1,2,,i j m ∈⋅⋅⋅.记()()()()2212m r r m f r A -++⋅⋅⋅+=.设集合()()(){}{},00,,1,2,,ij ij H i j a r a c j i m i j =⋅<⋅<∈⋅⋅⋅或,记()H A 为集合H 所含元素的个数.(Ⅰ)对以下两个数表1A ,2A ,写出()1f A ,()1H A ,()2f A ,()2H A 的值;1A 2A (Ⅱ)若()1r ,()2r ,…,()r m 中恰有s 个正数,()1c ,()2c ,…,()c m 中恰有t 个正数.求证:()2H A mt ms ts ≥+-;(Ⅲ)当5m =时,求()()H A f A 的最小值.海淀区2023—2024学年第一学期期末练习高三数学参考答案一、选择题(共10小题,每小题4分,共40分)1.A 2.D 3.B 4.D 5.C 6.A7.D8.B9.B10.D二、填空题(共5小题,每小题5分,共25分)11.5-12.213.1-514.11(答案不唯一)15.②④三、解答题(共6小题,共85分)16.(共13分)解:(Ⅰ)连接1AD .在四棱柱1111ABCD A B C D -中,侧面11CDD C 为平行四边形,所以11C D CD ∥,11C D CD =.因为AB CD ∥,12CD AB =,M 为AB 中点,所以CD AM ∥,CD AM =.所以11C D AM ∥,11C D AM =.所以四边形11MAD C 为平行四边形.所以11MC AD ∥.因为1C M ⊄平面11ADD A ,所以1C M ∥平面11ADD A .(Ⅱ)在正方形11ABB A 中,1AA AB ⊥.因为平面11ABB A ⊥平面ABCD ,所以1AA ⊥平面ABCD .所以1AA AD ⊥.因为1AD B M ⊥,1B M ⊂平面11ABB A ,1B M 与1AA 相交,所以AD ⊥平面11ABB A .所以AD AB ⊥.如图建立空间直角坐标系A xyz -.不妨设1AD =,则()0,0,0A ,()11,2,1C ,()10,2,2B ,()0,0,1M .所以()11,2,1AC = ,()111,0,1C B =- ,()11,2,0MC =.设平面11MB C 的法向量为(),,n x y z = ,则1110,0,n C B n MC ⎧⋅=⎪⎨⋅=⎪⎩ 即0,20.x z x y -+=⎧⎨+=⎩令2x =,则1y =-,2z =.于是()2,1,2n =-.因为1116cos ,9AC n AC n AC n⋅==⋅,所以直线1AC 与平面11MB C 所成角的正弦值为69.17.(共14分)解:(Ⅰ)由正弦定理sin sin sin a b cA B C==及2cos 2c A b a =-,得2sin cos 2sin sin C A B A =-.①因为πA B C ++=,所以()sin sin sin cos cos sin B A C A C A C =+=+.②由①②得2sin sin sin 0A C A -=.因为()0,πA ∈,所以sin 0A ≠.所以1cos 2C =.因为()0,πC ∈,所以π3C =.(Ⅱ)选条件②:1sin sin 2B A -=.由(Ⅰ)知,π2ππ33B A A ∠=--∠=-∠.所以2πsin sin sin sin 3B A A A -=--⎛⎫⎪⎝⎭31cos sin sin 22A A A =+-31cos sin 22A A =-πsin 3A ⎛⎫=- ⎪⎝⎭.所以π1sin 32A ⎛⎫-=⎪⎝⎭.因为2π0,3A ⎛⎫∈ ⎪⎝⎭,所以πππ,333A ⎛⎫-∈- ⎪⎝⎭.所以ππ36A -=,即π6A =.所以ABC △是以AC 为斜边的直角三角形.因为c =2πsin sin 3AB AC C ===.所以AC 边上的中线的长为1.选条件③:2222b a -=.由余弦定理得223a b ab +-=.设AC 边上的中线长为d ,由余弦定理得2222cos 42b ab d a C =+-⋅2242b ab a =+-2222342b a b a +-=+-1=.所以AC 边上的中线的长为1.18.(共13分)解:(Ⅰ)根据三人投篮得分统计数据,在10场比赛中,甲共获胜3场,分别是第3场,第8场,第10场.设A 表示“从10场比赛中随机选择一场,甲获胜”,则()310P A =.(Ⅱ)根据三人投篮得分统计数据,在10场比赛中,甲得分不低于10分的场次有6场,分别是第2场,第3场,第5场,第8场,第9场,第10场,其中乙得分大于丙得分的场次有4场,分别是第2场、第5场、第8场、第9场.所以X 的所有可能取值为0,1,2.()202426C C 10C 15P X ===,()112426C C 81C 15P X ⋅===,()022426C C 22C 5P X ===.所以X 的分布列为X 012P11581525所以()1824012151553E X =⨯+⨯+⨯=.(Ⅲ)()()()213D Y DY D Y >>.19.(共15分)解:(Ⅰ)由题意知3a =,2c =.所以c =,2224b a c =-=.所以椭圆E 的方程为22194x y +=,其短轴长为4.(Ⅱ)设直线CD 的方程为1x my =+,()11,C x y ,()22,D x y ,则()11,M x y --.由221941x y x my ⎧+=⎪⎨⎪=+⎩,得()22498320m y my ++-=.所以122849m y y m -+=+.由()3,0A 得直线AM 的方程为()1133y y x x =-+.由()11331y y x x x my ⎧=-⎪+⎨⎪=+⎩,得11123y y x my -=+-.因为111x my =+,所以12y y =-,112122y my x m ⎛⎫⎭-=⎪⎝- =+.所以112,22my y N --⎛⎫ ⎪⎝⎭.因为Q 为OD 的中点,所以221x my =+,所以221,22my y Q +⎛⎫⎪⎝⎭.所以直线NQ 的斜率()212212221212884922128112912249m y y y y m m k my my m m y y m m -+++====+--+-+--+.当0m ≤时,0k ≤.当0m >时,因为912m m+≥=,当且仅当2m =时,等号成立.所以281299m k m =≤+.所以当2m =时,k取得最大值9.20.(共15分)解:(Ⅰ)①当1a =时,()()2sin sin f x x x x b x x x b =-+=-+.记()sin g x x x =-(0x ≥),则()1cos 0g x x '=-≥.所以()g x 在[)0,+∞上是增函数.所以当0x >时,()()00g x g >=.所以当0x >时,()()sin f x x x x b b =-+>.②由()2sin f x x x x b =-+得()2sin cos f x x x x x '=--,且()00f '=.当0x >时,()()1cos sin f x x x x x '=-+-.因为1cos 0x -≥,sin 0x x ->,所以()0f x '>.因为()()f x f x ''-=-对任意x ∈R 恒成立,所以当0x <时,()0f x '<.所以0是()f x 的唯一极值点.(Ⅱ)设曲线()y f x =与曲线cos y x =-的两条互相垂直的“优切线”的切点的横坐标分别为1x ,2x ,其斜率分别为1k ,2k ,则121k k =-.因为()cos sin x x '-=,所以1212sin sin 1x x k k ⋅==-.所以{}{}12sin ,sin 1,1x x =-.不妨设1sin 1x =,则1π2π2x k =+,k ∈Z .因为()1111112sin cos k f x ax x x x '==--,由“优切线”的定义可知111112sin cos sin ax x x x x --=.所以1124ππa x k ==+,k ∈Z .由“优切线”的定义可知2111111sin cos x x x b x x ⋅-+=-,所以0b =.当24ππa k =+,k ∈Z ,0b =时,取1π2π2x k =+,2π2π2x k =--,则()11cos 0f x x =-=,()22cos 0f x x =-=,()11sin 1f x x ='=,()22sin 1f x x ='=-,符合题意.所以24ππa k =+,k ∈Z ,0b =.21.(共15分)解:(Ⅰ)()110f A =,()112H A =;()212f A ,()215H A =.由定义可知:将数表A 中的每个数变为其相反数,或交换两行(列),()H A ,()f A 的值不变.因为m 为奇数,{}1,1ij a ∈-,所以()1r ,()2r ,…,()r m ,()1c ,()2c ,…,()c m 均不为0.(Ⅱ)当{}0,s m ∈或{}0,t m ∈时,不妨设0s =,即()0r i <,1,2,,i m =⋅⋅⋅.若0t =,结论显然成立;若0t ≠,不妨设()0c j >,1,2,,j t =⋅⋅⋅,则(),i j H ∈,1,2,,i m =⋅⋅⋅,1,2,,j t =⋅⋅⋅.所以()H A mt ≥,结论成立.当{}0,s m ∉且{}0,t m ∉时,不妨设()0r i >,1,2,,i s =⋅⋅⋅,()0c j >,1,2,,j t =⋅⋅⋅,则当1s i m +≤≤时,()0r i <;当1t j m +≤≤时,()0c j <.因为当1,2,,i s =⋅⋅⋅,1,2,,j t t m =++⋅⋅⋅时,()0r i >,()0c j <,所以()()()()()()20ij ij ij a r i a c j a r i c j ⋅=⋅⋅⋅<⋅.所以(),i j H ∈.同理可得:(),i j H ∈,1,2,,m i s s =++⋅⋅⋅,1,2,,j t =⋅⋅⋅.所以()()()2H A s m t m s t mt ms st ≥-+-=+-.(Ⅲ)当5m =时,()()H A f A 的最小值为89.对于如下的数表A ,()()89H A f A =.下面证明:()()89H A f A ≥.设()1r ,()2r ,…,()r m 中恰有s 个正数,()1c ,()2c ,…,()c m 中恰有t 个正数,{},0,1,2,3,4,5s t ∈.①若{}0,5s ∈或{}0,5t ∈,不妨设0s =,即()0r i <,1,2,,5i =⋅⋅⋅.所以当1ij a =时,(),i j H ∈.由A 中所有数不全相同,记数表A 中1的个数为a ,则1a ≥,且()()()()251252r r r f A +++⋅⋅⋅+=()252252a a a +--==,()H A a ≥.所以()()819H A f A ≥>.②由①设{}0,5s ∉且{}0,5t ∉.若{}2,3s ∈或{}2,3t ∈,不妨设2s =,则由(Ⅱ)中结论知:()51041011H A t t t ≥+-=+≥.因为()()()()251250122r r r f A -++⋅⋅⋅+<=≤,所以()()118129H A f A ≥>.③由①②设{}0,2,3,5s ∉且{}0,2,3,5t ∉.若{}{},1,4s t =,则由(Ⅱ)中结论知:()25817H A ≥-=.因为()012f A <≤,所以()()178129H A f A ≥>.若s t =,{}1,4s ∈,不妨设1s t ==,()10r >,()10c >,且()()1H A f A<,由(Ⅱ)中结论知:()8H A ≥.所以()()8f A H A >≥.若数表A 中存在ij a ({},2,3,4,5i j ∈)为1,将其替换为1-后得到数表A '.因为()()1H A H A '=-,()()1f A f A '≥-,所以()()()()()()11H A H A H A f A f A f A '-≤<'-.所以将数表A 中第i 行第j 列(,2,3,4,5i j =)为1的数替换为1-后()()H A f A 值变小.所以不妨设1ij a =-(,2,3,4,5i j =).因为()5528H A ≥+-=,()9f A ≤,。

数学高三试卷(带答案)

数学高三试卷(带答案)

数学高三试卷(带答案)数学高三试卷(带答案)第一部分:选择题1. 设集合A = {1, 2, 3, 4},集合B = {3, 4, 5, 6},则A ∩ B =A) {1, 2, 3, 4} B) {3, 4} C) {5, 6} D) 空集2. 已知函数f(x) = x^2 + 1,g(x) = 2x - 1,则f(g(2)) =A) 3 B) 5 C) 7 D) 93. 解方程组:2x - y = -13x + y = 7得到的解为A) (x, y) = (1, 2) B) (x, y) = (2, 1) C) (x, y) = (-1, -2) D) (x, y) = (-2, -1)4. 设函数f(x) = 2x + 3,g(x) = x^2 - 1,则f(g(x)) = 0的解为A) x = -1, x = 2 B) x = -2, x = 1 C) x = 1, x = 2 D) x = -1, x = 15. 计算正弦函数si n(π/6)的值,结果等于A) 1/2 B) √3/2 C) √2/2 D) 1第二部分:填空题6. 二次函数y = ax^2 + bx + c的图像经过点(1, 3),则a + b + c =______.7. 已知复数z = 3 + 4i,其中i是虚数单位,则z的共轭复数为______.8. 若a + b = 3,a^2 + b^2 = 7,则ab的值为 ______.9. 在等差数列-2, 1, 4, 7, ...中,求第10项的值 ______.10. 已知二次函数y = ax^2 + bx + c的顶点坐标为(2, -1),则a + b + c 的值为 ______.第三部分:解答题11. 一个等差数列的首项为2,公差为3,前n项和为S。

当n = 5时,S = 35。

求此等差数列的第7项。

12. 设函数f(x)为一次函数,满足f(2) = 5,f(3) = 7。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

QOF 2F 1P yx高三数学质量检测试卷一、填空题(本大题共14小题:每小题5分:共70分)1. 已知集合{}},12,3,1{,,32--==m B m A 若B A ⊆:则实数m 的值为 .2. 若复数i i a i z (),)(2(--=为虚数单位)为纯虚数:则实数a 的值为 .3. 长方形ABCD 中::AB =2:BC =1:O 为AB 的中点:在长方形ABCD 内随机取一点:取到的点到O 的距离大于1 的概率为___________.4.执行右边的程序框图:若15p =:则输出的n = .5.设,a b 为不重合的两条直线:,αβ为不重合的两个平面:给出下列命题: (1)若a ∥α且b ∥α:则a ∥b :(2)若a α⊥且b α⊥:则a ∥b : (3)若a ∥α且a ∥β:则α∥β:(4)若a α⊥且a β⊥:则α∥β. 上面命题中:所有真命题...的序号是 . 6.如图是某学校学生体重的频率分布直方图:已知图中从左到右的前3个小组的频率之比为1:2:3:第2小组 的频数为10:则抽取的学生人数是 .7.若函数y=cos ωx (ω>0)在(0:2π)上是单调函数:则实数ω的取值范围是____________.8.已知扇形的圆心角为2α(定值):半径为R (定值):分别按图一、二作扇形的内接矩形:若按图一作出的矩形面积的最大值为21tan 2R α:则按图二作出的矩形面积的最大值为 .9.已知点P 在直线x+2y-1=0上:点Q 在直线x+2y+3=0上:PQ 的中点为M (x 0:y 0):且y 0>x 0+2:则y x 的取值范围为 。

10.如图:已知12,F F 是椭圆2222:1x y C a b+= (0)a b >>的左、右焦点:点P 在椭圆C 上:线段2PF 与圆222x y b +=相切于点Q :且点Q 为线段2PF 的中点:则椭圆C 的离心率为 .11.等腰三角形ABC 的腰AC 上的中线BD 的长为3:则△ABC 的面积的最大值为 .2α2α图一第8题图图二12.给定正整数)2(≥n n 按右图方式构成三角形数表:第一行依次写上数1:2:3:……n :在下面一行的每相邻两个数 的正中间上方写上这两个数之和:得到上面一行的数(比 下一行少一个数):依次类推:最后一行(第n 行)只有一 一个数. 例如n =6时数表如图所示:则当n =2010时最后一 行的数是 .13.已知函数是定义在(0,)+∞上的单调增函数:当n *∈N 时:()f n *∈N :若[()]3f f n n =:则f (5)的值等于 .14.已知f(x)=ax 2+bx+c(a ≠0):g(x)=f[f(x)]①若f(x)无零点:则g(x)>0对∀x ∈R 成立: ②若f(x)有且只有一个零点:则g(x)必有两个零点:③若方程f(x)=0有两个不等实根:则方程g(x)=0不可能无解。

其中真命题的个数是_________个。

二、解答题15.(本题14分)已知O 为坐标原点:2(2sin ,1),(1,23sin cos 1)OA x OB x x ==-+:()f x OA OB m =⋅+.(Ⅰ)求)(x f y =的单调递增区间:(Ⅱ)若)(x f 的定义域为[,]2ππ:值域为[2,5]:求m 的值.16.(14分)在四棱锥P -ABCD 中:∠ABC =∠ACD =90°:∠BAC =∠CAD =60°:P A ⊥平面ABCD :E 为PD 的中点:P A =2AB =2. (Ⅰ)求四棱锥P -ABCD 的体积V :(Ⅱ)若F 为PC 的中点:求证PC ⊥平面AEF : (Ⅲ)求证CE ∥平面P AB .17. 如图:灌溉渠的横截面是等腰梯形:底宽2米:边坡的长为x 米、倾角为锐角α.PABCDEF(1)当3πα=且灌溉渠的横截面面积大于8平方米时:求x 的最小正整数值:(2)当x=2时:试求灌溉渠的横截面面积的最大值.18. (本题满分16分)已知圆22:9C x y +=:点(5,0)A -:直线:20l x y -=. ⑴求与圆C 相切:且与直线l 垂直的直线方程:⑵在直线OA 上(O 为坐标原点):存在定点B (不同于点A ):满足:对于圆C 上任一点P :都有PBPA为一常数:试求所有满足条件的点B 的坐标.xα19.已知无穷数列{a n }中:a 1:a 2:…:a m 是首项为10:公差为-2的等差数列:a m +1:a m +2:…:a 2m 是首项为12:公比为12的等比数列(其中 m ≥3:m ∈N *):并对任意的n ∈N *:均有a n +2m =a n 成立. (1)当m =12时:求a 2010: (2)若a 52=1128:试求m 的值: (3)判断是否存在m (m ≥3:m ∈N *):使得S 128m +3≥2010成立?若存在:试求出m的值:若不存在:请说明理由.20.(本小题满分16分)已知12()|31|,()|39|(0),x xf x f x a a x R =-=⋅->∈:且112212(),()()()(),()()f x f x f x f x f x f x f x ≤⎧=⎨>⎩.(Ⅰ)当1a =时:求()f x 在1x =处的切线方程:(Ⅱ)当29a ≤<时:设2()()f x f x =所对应的自变量取值区间的长度为l (闭区间[,]m n 的长度定义为n m -):试求l 的最大值:(Ⅲ)是否存在这样的a :使得当[)2,x ∈+∞时:2()()f x f x =?若存在:求出a 的取值范围:若不存在:请说明理由.高三数学质量检测答题纸一、填空题(本大题共14小题:每小题5分:共70分) 1. __________________ 8. __________________ 2. __________________ 9. __________________ 3. __________________ 10. __________________ 4. __________________ 11. __________________ 5. __________________ 12. __________________ 6. __________________ 13. __________________ 7. __________________ 14. __________________ 二、解答题 15. 16.班级_______________ 姓名_______________ 学号________________ 考试号_______________ 座位号_______________ ……………………………………………………………装…………………订……………线…………………………………………………………………18.高三数学质量检测答案一、填空题(本大题共14小题:每小题5分:共70分)1. 已知集合{}},12,3,1{,,32--==m B m A 若B A ⊆:则实数m 的值为 .1.12. 若复数i i a i z (),)(2(--=为虚数单位)为纯虚数:则实数a 的值为 .2.213. 长方形ABCD 中::AB =2:BC =1:O 为AB 的中点:在长方形ABCD 内随机取一点:取到的点到O 的距离大于1 的概率为 . 14π-4.执行右边的程序框图:若15p =:则输出的n = . 55.设,a b 为不重合的两条直线:,αβ为不重合的两个平面:给出下列命题:(1)若a ∥α且b ∥α:则a ∥b :(2)若a α⊥且b α⊥:则a ∥b : (3)若a ∥α且a ∥β:则α∥β:(4)若a α⊥且a β⊥:则α∥β. 上面命题中:所有真命题...的序号是 . 5.(2):(4) 6.如图是某学校学生体重的频率分布直方图:已知图中 从左到右的前3个小组的频率之比为1:2:3:第2小组 的频数为10:则抽取的学生人数是 .407.若函数y=cos ωx (ω>0)在(0:2π)上是单调函数:则实数ω的取值范围是____________. (0:2]8.已知扇形的圆心角为2α(定值):半径为R (定值):分别按图一、二作扇形的内接矩形:若按图一作出的矩形面积的最大值为21tan 2R α:则按图二作出的矩形面积的最大值为 .2tan2R α2α2α图一第8题图图二QOF 2F 1P yx9. 已知点P 在直线x+2y-1=0上:点Q 在直线x+2y+3=0上:PQ 的中点为M (x 0:y 0): 且y 0>x 0+2:则00y x 的取值范围为 。

(12-:15-) 10.如图:已知12,F F 是椭圆2222:1x y C a b+= (0)a b >>的左、右焦点:点P 在椭圆C 上:线段2PF 与圆222x y b += 相切于点Q :且点Q 为线段2PF 的中点:则椭圆C 的离心率为 .5311.等腰三角形ABC 的腰AC 上的中线BD 的长为3:则△ABC 的面积的最大值为 。

612.给定正整数)2(≥n n 按右图方式构成三角形数表:第一行 依次写上数1:2:3:……n :在下面一行的每相邻两个数 的正中间上方写上这两个数之和:得到上面一行的数(比 下一行少一个数):依次类推:最后一行(第n 行)只有一 一个数. 例如n =6时数表如图所示:则当n =2010时最后一 行的数是 . 2011×2200813.已知函数是定义在(0,)+∞上的单调增函数:当n *∈N 时:()f n *∈N :若[()]3f f n n =:则f (5)的值等于 .814.已知f(x)=ax 2+bx+c(a ≠0):g(x)=f[f(x)]①若f(x)无零点:则g(x)>0对∀x ∈R 成立:②若f(x)有且只有一个零点:则g(x)必有两个零点:③若方程f(x)=0有两个不等实根:则方程g(x)=0不可能无解。

其中真命题的个数是_________个。

0个 二、解答题15.(本题14分)已知O 为坐标原点:2(2sin ,1),(1,23sin cos 1)OA x OB x x ==-+:()f x OA OB m =⋅+.(Ⅰ)求)(x f y =的单调递增区间:(Ⅱ)若)(x f 的定义域为[,]2ππ:值域为[2,5]:求m 的值.15.(本题14分)解:(Ⅰ)m x x x x f ++-=1cos sin 32sin 2)(2……2分=m x x ++--1sin 32cos 1=m x +++-2)62sin(2π……4分由πππππk x k 2236222+≤+≤+ )(Z k ∈ 得)(x f y =的单调递增区间为]32,6[ππππ++k k )(Z k ∈……7分 (Ⅱ)当ππ≤≤x 2时:6136267πππ≤+≤x ……9分 ∴21)62sin(1≤+≤-πx ……11分∴m x f m +≤≤+4)(1:∴15421=⇒⎩⎨⎧=+=+m m m ……14分16.(14分)在四棱锥P -ABCD 中:∠ABC =∠ACD =90°:∠BAC =∠CAD =60°:P A ⊥平面ABCD :E 为PD 的中点:P A =2AB =2.(Ⅰ)求四棱锥P -ABCD 的体积V :(Ⅱ)若F 为PC 的中点:求证PC ⊥平面AEF : (Ⅲ)求证CE ∥平面P AB .16.解:(Ⅰ)在Rt △ABC 中:AB =1:∠BAC =60°:∴BCAC =2.在Rt △ACD 中:AC =2:∠CAD =60°:∴CD =AD =4. ∴S ABCD =1122AB BC AC CD ⋅+⋅111222=⨯⨯⨯ 3分 则V=123= ……………… 5分(Ⅱ)∵P A =CA :F 为PC 的中点:∴AF ⊥PC . ……………… 7分 ∵P A ⊥平面ABCD :∴P A ⊥CD . ∵AC ⊥CD :P A ∩AC =A :∴CD ⊥平面P AC .∴CD ⊥PC . ∵E 为PD 中点:F 为PC 中点:∴EF ∥CD .则EF ⊥PC . ……… 9分 ∵AF ∩EF =F :∴PC ⊥平面AEF .…… 10分 (Ⅲ)证法一:取AD 中点M :连EM :CM .则EM ∥P A . ∵EM ⊄平面P AB :P A ⊂平面P AB : ∴EM ∥平面P AB . ……… 12分 在Rt △ACD 中:∠CAD =60°:AC =AM =2: ∴∠ACM =60°.而∠BAC =60°:∴MC ∥AB .PABCDE F NF EDCBA PMF EDCBA P∵MC ⊄平面P AB :AB ⊂平面P AB : ∴MC ∥平面P AB . ……… 14分 ∵EM ∩MC =M :∴平面EMC ∥平面P AB . ∵EC ⊂平面EMC :∴EC ∥平面P AB . ……… 15分 证法二:延长DC 、AB :设它们交于点N :连PN . ∵∠NAC =∠DAC =60°:AC ⊥CD : ∴C 为ND 的中点. ……12分 ∵E 为PD 中点:∴EC ∥PN .……14分 ∵EC ⊄平面P AB :PN ⊂平面P AB : ∴EC ∥平面P AB . ……… 15分17.如图:灌溉渠的横截面是等腰梯形:底宽2米:边坡的长为x 米、倾角为锐角α.(1)当3πα=且灌溉渠的横截面面积大于8平方米时:求x 的最小正整数值:(2)当x=2时:试求灌溉渠的横截面面积的最大值.解:由已知得等腰梯形的高为xsin α:上底长为2+2xcos α:从而横截面面积S=12(2+2+2xcos α)·xsin α=x 2sin αcos α+2xsin α. (1)当3πα=时:面积2S =x +4是(0:+∞)上的增函数:当x=2时::当x=3时:8+>. 所以:灌溉渠的横截面面积大于8平方米时:x 的最小正整数值是3.(2)当x=2时:S=4sin αcos α+4sin α:S '=4cos 2α-4sin 2α+4cos α =4(2cos 2α+cos α-1)=4(2cos α-1)·(cos α+1):由S '=0及α是锐角:得3πα=. 当0<α<3π时:S '>0:S 是增函数:当3π<α<2π时:S '<0:S 是减函数。

相关文档
最新文档