汽轮机运行中胀差的分析和控制
300MW汽轮机胀差变化的原因分析与控制

300MW汽轮机胀差变化的原因分析与控制作者:王沧海来源:《科技资讯》2019年第03期摘要:胀差是影响汽轮机启动速度以及机组安全行驶的核心参数,对于火电机组较为典型的变工况下胀差的变化具有较强的现实意义。
该文从胀差产生的原因以及计算公式进行分析,阐述了胀差的产生机理,并详细介绍300MW汽轮机在运行中、装置结构与系统初参数等方面影响胀差的因素,探究了减小胀差的方法并变工中胀差的控制要点,避免因为胀差过大带来的安全隐患。
关键词:滑销系统汽轮机冷态启动汽缸胀差中图分类号:TK249.2 文献标识码:A 文章编号:1672-3791(2019)01(c)-0045-02我国的汽轮机参数逐渐增大,研发方向也朝着大容量发展,带来的直接结果就是转子轴系与汽缸外形体积的变大,每当发生启停时,都会有大量的热量产生,造成机器设备的受热膨胀,从而发生胀差。
当转子的膨胀大于汽缸膨胀程度,就会生成正胀差;相反,转子的膨胀程度较小,则产生负胀差。
胀差的程度应有所控制,高于标准胀差,则会引起间级的间隙变小,逐渐消失,进而使汽轮机内部发生静摩擦,甚至出现转子变形弯曲的状况。
所以,对于汽轮机中胀差的控制措施是十分必要的,关系到行驶中的安全。
1 胀差产生原因1.1 产生机理汽轮机的整体都是由金属构成,在运行过程中产生热量,导致发生膨胀,而膨胀的大小与构件比例有直接关系,实际结果需要根据膨胀系数进行计算。
如果汽轮机处于对流换热状态,则受热膨胀的比例与换流热系数、流体流速有关。
高压汽轮在正常使用中,需要经历从静止到运行产生热能的一系列过程,其中温度差较大,进而汽轮机的汽缸相关参数都会受到膨胀的影响。
机组启动的初期,高压缸质量较重,但转子的重量不明显,而处于运转中的转子受热的接触面是汽缸的5倍,受热效果更加明显。
在运行过程中,在同样的时间内,质子因为运转速度较快,温度上升程度也较高,而汽缸的温度相比较下上升不明显,极其容易产生温差,即胀差。
运行中影响汽轮机胀差原因分析与控制

运行中影响汽轮机胀差原因分析与控制作者:王炳峰杨智萍杨利军来源:《中国科技博览》2014年第29期[摘要]根据N200-12.7/535/535型汽轮机,系统地分析了汽轮机在启,停和运行过程中汽缸和转子膨胀的不同。
胀差的产生的原因。
探索分析胀差的变化及变化规律。
总结了胀差变化对汽轮机的影响,提出的防范措施,给运行人员在实际运行操作中有很大的指导意义。
[关键词]汽轮机,汽缸,转子,胀差,控制中图分类号:TK249.2 文献标识码:A 文章编号:1009-914X(2014)29-0073-01前言在汽轮机运行过程中,使转子与汽缸保持在大致相同的轴向热膨胀是极其重要的,胀差数值反映的就是瞬间转子与汽缸膨胀或收缩轴向位置相对的变化,它对于汽轮机组启动加热,停机冷却过程中或在汽轮机变工况过程中,都是很重要的运行参数,胀差值过大或过小都会使机组轴向间隙消失,导致动静部分发生磨擦,设备的损坏。
因此机组运行时对胀有效期的监视有着十分重要的意义。
一、汽轮机胀差的定义及原因分析汽轮机在启动时,转子和汽缸分别以各自的死点为基准膨胀或收缩。
相对来说,汽缸的质量大而接触蒸汽面积小,转子质量小而接触蒸汽面积大,而且由于转子转动时,蒸汽对转子的放热系数比对汽缸的要大,因此转子随蒸汽温度的变化膨胀或收缩的速度要快。
因此在开始加热时,转子膨胀的数值大于汽缸,汽缸与转子间发生的热膨胀差值称为汽轮机相对胀差。
若转子轴向膨胀值大于汽缸,则称为正胀差;反之转子轴向膨胀值小于汽缸称为负胀差。
在稳定工况下汽缸和转子的温度趋于稳定值,相对胀差也趋于一个稳定值。
机组启动时,由于转子和汽缸温度变化的速度不同,就会产生较大的胀差,即汽轮机动静部分相对轴向间隙发生了较大变化。
如果相对胀差超过了规定值,就会使动静间的轴向间隙消失,发生动静磨擦,可能引起机组振动增大,甚至发生叶片损坏、大轴弯曲等严重事故。
因此在汽轮机启、停及变工况的过程中必须严密监视并合理控制汽轮机胀差,确保汽轮机设备的安全运行二、汽轮机胀差增在的危害胀差的大小意味着汽轮机动静间隙相对于静止的变化。
汽轮机运行中胀差的分析和控制

汽轮机运行中胀差的分析和控制当汽轮机在启动加热、停机冷却过程中,或在运行中工况变化时,汽缸和转子会产生热膨胀或冷却收缩,由于转子的受热表面积比汽缸大,且转子的质量比相对应的汽缸小,蒸汽对转子表面的放热系数较大,因此,在相同的条件下,转子的温度变化比汽缸快,使得转子与汽缸之间存在膨胀差,而这差值是指转子相对于汽缸而言的,把转子与汽缸之间热膨胀的差值称为相对膨胀差,简称胀差。
当转子轴向膨胀大于汽缸的轴向膨胀时,称为正膨胀;反之若转子轴向膨胀小于汽缸的轴向膨胀时,称为负膨胀。
一.汽轮机胀差的产生汽缸和转子之间出现胀差的主要原因是它们的结构和工作条件不同。
由于转子与汽缸之间存在温差,各自受热状况不一样,转子质量小但接触蒸汽的面积大,温升和热膨胀较快,而汽缸质量大,温升和热膨胀就比较慢,因此在转子和汽缸热膨胀还没有达到稳定前,他们之间就有较大的胀差。
同理,由于转子比汽缸体积小,转子的冷却收缩也比汽缸的冷却收缩快,这时它们之间也会产生较大胀差。
汽轮机启动加热,从冷态变为热态,汽缸受热发生热膨胀,汽缸向高压侧或低压侧伸长。
同样转子也因受热发生热膨胀。
转子膨胀大于汽缸,其相对膨胀差被称为正胀差。
汽轮机带负荷后,转子和汽缸受热面逐渐于稳定,热膨胀逐渐区于饱和,它们之间的相对膨胀差也逐渐减小,最后达到某一稳定。
二.胀差过大的危害胀差的大小意味着汽轮机动静轴向间隙相对于静止时的变化,正胀差表示自喷嘴至动叶间隙增大;反之,负胀差表示该轴向间隙减小。
汽轮机轴封和动静叶片之间的轴向间隙都很小,若汽轮机启停或运行中胀差变化过大,超过了轴封以及动静叶片间正常的轴向间隙时,就会使轴向间隙消失,导致动静部件之间发生摩擦,引起机组振动,以至造成机组损坏事故。
因此,汽轮机都规定有胀差允许的极限值,它是根据动静叶片或轴封轴向最小间隙来确定的。
当转子与汽缸间隙相对膨胀差值达到极限值时,动静叶片或轴封轴向最小间隙仍留有一定的合理间隙。
不同容量的汽轮机组胀差允许极限值不同。
浅谈汽轮机胀差超标原因分析及处理

浅谈汽轮机胀差超标原因分析及处理摘要:本文首先对汽轮机机组滑销系统结构进行简单介绍,重点分析汽轮机胀差超标原因,在此基础上深入研究某海外机组热态极热态启动中胀差超标的处理措施,希望通过本文的研究能够更加全面的汽轮机胀差的基本情况及超标的根本原因,也为后期更好的保障汽轮机胀差提供参考。
关键词:汽轮机;胀差超标;滑销系统1引言汽轮机是发电机组运行中的一种重要设备,汽轮机的正常运行直接关系到发电机组运行效率和发电功率。
近年来在对发电机组观察研究中发现,许多汽轮机都存在严重的胀差超标现象,严重影响电厂发电效应及系统运行安全,因此在现阶段加强对于汽轮机胀差超标原因分析及处理研究具有重要的现实意义,能够更加全面的掌握机组滑销系统的基本结构,掌握汽轮机胀差超标的主要原因并制定合理的处理措施,从而有效降低汽轮机出现胀差的可能,保证汽轮机的正常运行。
2机组滑销系统结构汽轮机的膨胀主要分为三个方向的,分别是横向、纵向和垂直方向,基本是借助滑销系统完成相应的膨胀,分别由不同的键进行引导。
其中横向膨胀主要是以汽缸前部和后汽缸侧基架下面的两个横键进行引导,纵向的膨胀则是由汽轮机前轴承箱下面的纵向轴进行引导,在垂直方向利用立键进行引导,在前轴承箱和汽缸前面以及后汽缸和后基架之间分别有三个立键。
通过三个方向上三种不同的键的引导,能够有效保证汽轮机在膨胀的时候能够沿着标准方向移动,避免出现异常膨胀。
在汽缸发生膨胀以后,汽缸侧基架下面的横键和纵向键会在凝汽器的中心线处成为交叉死点,汽轮机启动以后会向汽轮机机头的方向发生膨胀。
汽轮机内部转子也会发生膨胀,膨胀方向为电机侧,一般会发生在汽轮机启动的时候。
3汽轮机胀差超标原因分析此文着重分析海外某65MW高温高压机组为东方汽轮机厂生产的机组,机组在热态及极热态状态启动、停运过程中多次出现高压缸膨胀、收缩受阻的现象。
通过查询汽轮机组的历史记录曲线发现:从汽轮机组热态及极热态状态启动0转至3000rpm之间,汽轮机的胀差值会发生较大的变化,当汽轮机转速逐渐递增时,尤其暖机升速后在短时间内胀差值快速增大,800rpm升高到2300rpm时,汽轮机的胀差会由-0.06mm达到-1.2mm ,汽轮机继续升速,当转速达到2800rpm时,胀差增加到-1.4mm,胀差保护动作。
汽轮发电机低压缸胀差大原因分析及处理

汽轮发电机低压缸胀差大原因分析及处理汽轮发电机是一种利用汽轮机转动发电机发电的装置。
汽轮发电机的低压缸胀差是指在使用过程中,低压缸前后缸衬之间的胀差变大,导致压力泄漏增加,功率减弱,工作效率下降的问题。
下面将对汽轮发电机低压缸胀差大的原因进行分析,并提供相应的解决方法。
1.低压缸衬材质问题:低压缸衬材质选择不合适,导致其抗热胀性能不足,容易在工作温度下产生较大胀差。
解决方法是更换高性能的衬套材料,如高温合金。
2.温度控制问题:在汽轮发电机运行中,由于管路、冷却系统等问题,导致低压缸温度控制不良,超过了设计要求,造成衬套过度膨胀,胀差增大。
解决方法是优化冷却系统,确保低压缸温度在可控范围内。
3.衬套密封不良:低压缸衬套与缸体之间的密封不良导致压力泄漏,增加了压力差,使得衬套产生较大胀差。
解决方法是检查并修复衬套密封问题,确保衬套与缸体之间的紧密连接。
4.衬材磨损问题:低压缸衬套长时间使用后,由于磨损、疲劳等原因,失去了原有的密封性能,导致胀差增大。
解决方法是定期检查衬套磨损情况,及时更换磨损严重的衬套,延长发电机使用寿命。
5.运行过程中的振动问题:汽轮发电机在运行过程中受到振动的影响,振动过大会导致低压缸衬套松动,增加了胀差。
解决方法是加强对汽轮发电机的振动监测和控制,有效减小振动对衬套的影响。
综上所述,汽轮发电机低压缸胀差大的原因可能是多方面的,包括材料、温度控制、密封、磨损和振动等问题。
针对这些原因,需要进行相应的处理方法,如更换衬套材料、优化温度控制系统、修复密封问题、定期更换磨损的衬套以及加强振动监测和控制。
通过这些措施,可以有效降低低压缸胀差,提高汽轮发电机的运行效率和使用寿命。
汽轮机差胀过大的原因分析及改进措施

汽轮机差胀过大的原因分析及改进措施摘要: 从相对膨胀产生的理论出发, 针对焦作韩电发电有限公司1 号机的实际情况, 分启动和运行 2 个过程, 对汽轮机相对膨胀值大的原因进行了分析, 并介绍了所采取的相应控制措施或注意事项, 以及在实际生产中起到的作用作出了举例证明。
关键词: 相对膨胀; 滑销; 温升率1前言我公司1 号汽轮机型号是C C50-8.83/4。
22/1。
57, 系哈尔宾汽轮机厂生产的双缸、单轴、双抽汽凝汽式汽轮机, 进汽温度535℃, 额定进汽量为224t, 中压额定抽汽量为30吨, 最大抽汽量为60吨。
低压抽汽量为50吨,最大抽汽量为50吨。
该机组投运后, 相对膨胀值及机组转动产生的噪声明显偏大, 特别是在启动过程中, 相对膨胀值超过规定值, 影响开机升速和升负荷时间, 是制约顺利开机的主要因素。
投运初期, 开机时间在10h以上, 开机时间明显偏长。
2控制相对膨胀的重要性金属物件在受热后, 向各个方向膨胀, 高温高压汽轮机从冷态启动到带额定负荷运行, 金属温度的变化很大400~500℃。
因此, 汽缸及汽轮机各部件的轴向、垂直、水平各个方向的尺寸都会因受热明显增大。
汽轮机各部件膨胀量不同, 使得各部件的相对位置发生变化, 其变化量超过汽轮机动静部分的允许间隙后, 动静部件将会发生磨擦, 导致汽轮机损坏, 甚至报废等严重后果。
为了控制汽轮机的动静部分不摩擦, 汽缸的轴向膨胀和汽缸与转子的相对膨胀就成为开机过程中重要的控制指标。
汽轮机在启动暖机过程, 转子以推力轴承机头,1号瓦处为死点向后膨胀, 汽缸以后轴承座中点2 号瓦处为死点向前膨胀, 二者的膨胀差值即为相对膨胀习惯称为胀差。
当转子膨胀值大于汽缸膨胀值时, 相对膨胀为正值, 该值过大时可造成动叶片出口处与下级喷嘴摩擦。
当转子膨胀值小于汽缸膨胀值时, 相对膨胀为负值, 该值过大时可造成动叶片进口处与喷嘴摩擦。
因此, 汽轮机的相对膨胀值的控制相当重要。
汽轮机产生胀差的原因及控制

汽轮机产生胀差的原因及控制一、汽轮机胀差的定义当汽轮机启动加热或停止运行冷却时以及负荷发生变化时,汽缸和转子都会产生热膨胀或冷却收缩。
由于转子受热表面积比汽缸大,且转子的质量比相对应的汽缸小,蒸汽对转子表面的放热系数较大。
因此,在相同条件下,转子的温度变化比汽缸快,转子与汽缸之间存在膨胀差,而这差值是指转子相对于汽缸而言,故称为相对膨胀差(即胀差)。
习惯上规定转子膨胀大于汽缸膨胀时的胀差值为正胀差。
例如当进入汽轮机的蒸汽温度明显升高或汽轮机暖机时,转子和汽缸同时受热膨胀,转子由于质量相对汽缸要小,受热后膨胀要快,在轴向上膨胀量要大于汽缸的膨胀量,表现为正胀差。
汽缸膨胀大于转子膨胀时的胀差值为负胀差。
当进入汽轮机的蒸汽温度明显降低或汽轮机滑参数停机时,转子和汽缸同时受冷收缩,转子由于质量相对汽缸要小,受冷后收缩要快,在轴向上收缩量要大于汽缸的收缩量,表现为负胀差。
二、差胀保护的意义:汽轮机启动、停机和异常工况下,常因转子加热(或冷却)比汽缸快,产生膨胀差值(简称差胀)。
无论是正差胀还是负差胀,达到某一数值,汽轮机轴向动静部分就要相碰发生摩擦。
为了避免因差胀过大引起动静摩擦,大机组一般都设有差胀保护,当正差胀或负差胀达到某一数值时,立即停机,防止汽轮机损坏。
三、胀差大的危害:当胀差超过规定值时,就会使汽轮机动静间的轴向间隙消失,发生动静摩擦,引起汽轮机组振动增大,甚至掉叶片、大轴弯曲等严重事故。
四、汽轮机在启动、停机及运行过程中,胀差的大小与下列因素有关:1.启动机组时,汽缸与法兰加热装置投用不当,加热汽量过大或过小。
2.暖机过程中,升速率太快或暖机时间过短。
3.正常停机或滑参数停机时,汽温下降太快。
4.增负荷速度太快。
5.甩负荷后,空负荷或低负荷运行时间过长。
6.汽轮机发生水冲击。
7.正常运行过程中,蒸汽参数变化速度过快。
8.轴位移变化。
使胀差向正值增大的主要原因如下:1)启动时暖机时间太短,升速太快或升负荷太快,主、再热蒸汽温度上升太快。
汽轮机冷态启动胀差超标原因分析与应对策略

汽轮机冷态启动胀差超标原因分析与应对策略摘要:汽轮机胀差是汽轮机启停及运行时的重要监视参数,它反映了汽轮机转子和汽缸热膨胀量的相对关系。
在机组冷态启动过程中常出现汽缸与转子胀差超限问题,针对该问题进行深入研究,准确分析出汽轮机胀差超标的原因并且提出应对措施,以达到缩短机组启动时间,保障汽轮机在启动过程中的安全。
关键词汽轮机;胀差超标;原因分析;应对策略汽轮机是火力发电厂的一种重要组成设备,它的正常使用直接关系到发电机组的工作效率和发电功率,很大程度上影响着发电厂的经济效益。
在使用过程中汽轮机有着比较明显的优势,但随之出现的汽轮机胀差超标问题也对发电厂生产有很大的影响,严重影响了发电厂内系统的运行安全,威胁着工作人员的生命。
本文主要对汽轮机胀差超标原因进行分析,并有针对性的做出合理的解决办法,减少此类问题的发生,降低汽轮机出现胀差超标的现象,为发电厂带来高效益。
一、汽轮机胀差的定义及控制胀差的重要性汽轮机在启动时,转子和汽缸分别以各自的死点为基准膨胀或收缩。
相对来说,汽缸的质量大而接触蒸汽面积小,转子质量小而接触蒸汽面积大,而且由于转子转动时,蒸汽对转子的放热系数比对汽缸的要大,因此转子随蒸汽温度的变化膨胀或收缩的速度要快。
因此在开始加热时,转子膨胀的数值大于汽缸,汽缸与转子间发生的热膨胀差值称为汽轮机相对胀差。
若转子轴向膨胀值大于汽缸,则称为正胀差;反之转子轴向膨胀值小于汽缸称为负胀差。
在稳定工况下汽缸和转子的温度趋于稳定值,相对胀差也趋于一个稳定值。
机组启动时,由于转子和汽缸温度变化的速度不同,就会产生较大的胀差,即汽轮机动静部分相对轴向间隙发生了较大变化。
如果相对胀差超过了规定值,就会使动静间的轴向间隙消失,发生动静磨擦,可能引起机组振动增大,甚至发生叶片损坏、大轴弯曲等严重事故,因此在汽轮机启、停及变工况的过程中必须严密监视并合理控制汽轮机胀差,从而确保汽轮机的安全运行。
二、汽轮机胀差超标的原因分析2.1启动阶段胀差值超标的原因分析汽轮机各阶段的胀差都会影响整体胀差,汽轮机在启动和停止过程中,汽轮机的汽缸、转子等材料、结构和受热条件的不同,都会在很大程度上影响蒸汽参数的变化,导致温度不断升高,当达到蒸汽阶段相对压力的饱和温度时,蒸汽就不会出现放热的现象,导致温差较大,从而出现胀差超标的现象。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
汽轮机运行中胀差的分析和控制
当汽轮机在启动加热、停机冷却过程中,或在运行中工况变化时,汽缸和转子会产生热膨胀或冷却收缩,由于转子的受热表面积比汽缸大,且转子的质量比相对应的汽缸小,蒸汽对转子表面的放热系数较大,因此,在相同的条件下,转子的温度变化比汽缸快,使得转子与汽缸之间存在膨胀差,而这差值是指转子相对于汽缸而言的,把转子与汽缸之间热膨胀的差值称为相对膨胀差,简称胀差。
当转子轴向膨胀大于汽缸的轴向膨胀时,称为正膨胀;反之若转子轴向膨胀小于汽缸的轴向膨胀时,称为负膨胀。
一.汽轮机胀差的产生
汽缸和转子之间出现胀差的主要原因是它们的结构和工作条件不同。
由于转子与汽缸之间存在温差,各自受热状况不一样,转子质量小但接触蒸汽的面积大,温升和热膨胀较快,而汽缸质量大,温升和热膨胀就比较慢,因此在转子和汽缸热膨胀还没有达到稳定前,他们之间就有较大的胀差。
同理,由于转子比汽缸体积小,转子的冷却收缩也比汽缸的冷却收缩快,这时它们之间也会产生较大胀差。
汽轮机启动加热,从冷态变为热态,汽缸受热发生热膨胀,汽缸向高压侧或低压侧伸长。
同样转子也因受热发生热膨胀。
转子膨胀大于汽缸,其相对膨胀差被称为正胀差。
汽轮机带负荷后,转子和汽缸受热面逐渐于稳定,热膨胀逐渐区于饱和,它们之间的相对膨胀差也逐渐减小,最后达到某一稳定。
二.胀差过大的危害
胀差的大小意味着汽轮机动静轴向间隙相对于静止时的变化,正胀差表示自喷嘴至动叶间隙增大;反之,负胀差表示该轴向间隙减小。
汽轮机轴封和动静叶片之间的轴向间隙都很小,若汽轮机启停或运行中胀差变化过大,超过了轴封以及动静叶片间正常的轴向间隙时,就会使轴向间隙消失,导致动静部件之间发生摩擦,引起机组振动,以至造成机组损坏事故。
因此,汽轮机都规定有胀差允许的极限值,它是根据动静叶片或轴封轴向最小间隙来确定的。
当转子与汽缸间隙相对膨胀差值达到极限值时,动静叶片或轴封轴向最小间隙仍留有一定的合理间隙。
不同容量的汽轮机组胀差允许极限值不同。
我厂机组对胀差允许的极限值高压缸为-2.0~+7.4mm,中压缸-4.5~+7.0mm,低压缸-3.3~+9.1mm。
一旦胀差达到报警值,立即发出声光报警信号,以便运行人员及时采取措施,保护机组安全。
如果胀差超限,热工保护将汽机打闸,保护机组安全。
为了在汽轮机启动、暖机和升速过程中或在运行、停机过程中保护机组安全,必须设置汽轮机热膨胀测量装置和转子与汽缸相对膨胀测量装置。
三.汽轮机胀差增大的原因
正胀差值增大一般由以下原因所引起:
(1)启动时暖机时间太短,升速或加负荷太快;
(2)滑销系统滑动性能差,容易xx;
(3)轴封供汽温度高,供汽量大,引起轴颈过分伸长;
(4)机组启动时,进汽压力、温度、流量等参数过高;
(5)推力轴承磨损,引起轴向位移增大;
(6)胀差指示器零点不准或触点磨损引起偏差;
(7)真空值、轴承油温过高;
(8)各级抽汽量变化影响;转子摩擦鼓风损失;泊桑效应。
负胀差值增大一般由于以下原因引起:
(1)负荷突然下降或突然机组甩负荷;
(2)主汽温度骤然降低或启动时进汽温度低于金属温度;
(3)水冲击;
(4)轴封供汽温度太低,流量太小;
(5)轴向位移变化;
(6)机组启动时转速突然升高,转子在离心力的作用下轴向尺寸减小,低胀差变化明显;(7)油温太低;
(8)转子停止过程中过早停止轴封供汽;
(9)排汽温度升高。
四.汽轮机各种工况下胀差的变化规律
1.汽轮机冲转时
汽轮机启动从冲动转子到定速阶段,汽缸转子的温度变化很剧烈,转子的热膨胀大于汽缸,表现为正胀差,且数值呈上升趋势。
2.轴封送汽时
汽轮机启动过程中,当轴封供汽时,由于转子汽封段被进一步加热,正胀差随供汽温度增高而增大。
3.升负荷阶段
在汽轮机定速后并网加负荷阶段,由于蒸汽参数提高,通过汽轮机的蒸汽流量增大,蒸汽与汽缸、转子的热交换加剧,正胀差增加的幅度较大,其增张幅度与加负荷速度呈正比关系。
当汽轮机进入稳态区时,正胀差达到极限值。
4.降负荷阶段
汽轮机在稳定工况运行时,转子和汽缸同金属温度接近于同级的蒸汽温度,胀差基本趋于稳定值。
当汽轮机减负荷或停机时,流过汽轮机的蒸汽温度低于金属温度,转子的质量小,但与蒸汽接触的面积大,所以转子比汽缸冷却的快,即转子比汽缸收缩的多,因此出现负胀差。
5.停机惰走时
汽轮机打闸后调速汽门关闭,没有蒸汽进入通流部分,转子鼓风摩擦所产生的热量无法被蒸汽带走,使得转子温度升高;加之转子转速下降,由于泊桑效应,胀差有不同程度的正方向增加。
6.机组运行中
汽轮机运行中应保证主汽温度相对稳定及轴封汽温、汽压正常,转子与汽缸的胀差无论是正还是负都必须在正常范围内,此时胀差值在正常运行时一般变化不大。
五.胀差的控制
1.冷态启动时,应严格控制冲转参数及升速暖机时间,启动中有可能出现胀差过大现象,此时应通知炉侧减缓对蒸汽升温升压,稳定参数,使机组在稳定转速或稳定负荷下停留暖机,严格按照启动曲线控制冲转升速和并网带负荷的速度,一般而言冲并网到负荷200MW,控制不少于100分钟。
同时可采取调整凝汽器真空方法,适当降低真空,减少正胀差的发展,但是要注意不要在真空禁止运行区运行。
热态启动时,新蒸汽温度应高于汽缸最高金属温度50~100℃,并有50℃的过热度,可以保证新蒸汽经调门节流,导汽管散热和调节级喷嘴膨胀后,蒸汽温度仍不低于汽缸金属温度,防止蒸汽温度过低,转子突然受冷却而产生急剧收缩,出现负胀差增大想象。
还应注意轴封汽温度,防止转子受冷却。
所以热态启动时应先向轴封供汽后抽真空,以避免大量冷空气从轴封处漏人而出现局部较大的负胀差。
2.停机过程中的随着负荷、转速的降低,转子冷却比汽缸快,所以胀差一般向负方向发展,特别是滑参数停机时尤为严重,适当调整真空破坏门,及时开启本体疏水及机头疏水,关闭门杆漏汽调整胀差。
转子停止转动后,负胀差可能更加发展,应维持一定温度的轴封蒸汽,真空到零后再停止轴封送汽。
四值三期
xxxx。