人教版初一数学上册列一元一次方程解应用题——配套问题

合集下载

人教版七年级上册数学3.4 实际问题与一元一次方程--配套问题(word、含答案)

人教版七年级上册数学3.4 实际问题与一元一次方程--配套问题(word、含答案)

人教版七年级上册数学第三章一元一次方程应用题--配套问题1.某车间每天能制作甲种零件400只,或者制作乙种零件200只,1只甲种零件需要和3只乙种零件配成一套.现要在49天内制作最多的成套产品,则甲乙两种零件各应制作多少天.2.某车间28名工人生产螺栓和螺母,每人每天平均生产螺栓12个或螺母18个,一个螺栓需要两个螺母与之配套,如何安排生产才能让螺栓和螺母正好配套?设若x名工人生产螺栓,其余工人生产螺母,根据题意所列方程为__.3.某车间有技术工人56人,平均每天每人可加工甲种部件18个或乙种部件15个,2个甲种部件和3个乙种部件配成一套,问加工甲、乙两种部件各安排多少人才能使每天加工的两种部件刚好配套?并求出加工了多少套?4.制作一张桌子要用一个桌面和4条桌腿,31m木材可制作20个桌面,或者制作400条桌腿,现有312m木材,应怎样计划用料才能制作尽可能多的桌子?5.某车间有150名工人,每人每天加工螺栓15个或螺母20个,要使每天加工的螺栓和螺母刚好配套(一个螺栓套两个螺母),应如何分配加工螺栓.螺母的工人?6.某工地派48人去挖土和运土,如果每人每天平均挖土5方或运土3方,那么应怎样安排人员,正好能使挖出的土及时运走?7.某车间有27个工人,生产甲、乙两种零件,已知每人每天平均能生产甲种零件22个或乙种零件16个,应分配多少人生产甲种零件,多少人生产乙种零件,才能使每天生产的甲种零件和乙种零件刚好配套?(每2个甲种零件和1个乙种零件配成一套)8.用白铁皮做罐头盒,每张铁片可制盒身16 个或制盒底43 个,一个盒身与两个盒底配成一套罐头盒,现有150 张白铁皮,用多少张制盒身,多少张制盒底,可以正好制成整套罐头盒?9.一家眼镜厂,有28个工人加工镜架和镜片,每人每天可加工镜架68副或镜片102副.为了使每天加工的镜架和镜片成套,应如何分配工种人数?10.有一个专项加工茶杯车间,一个工人每小时平均可以加工杯身12个,或者加工杯盖15个,车间共有90人,应怎样分配人力,才能使生产的杯身和杯盖正好配套?11.某车间28名工人生产螺栓和螺母,每人每天平均生产螺栓12个或螺母18个,恰好每天生产的螺栓和螺母按1:2配套,求多少人生产螺栓,多少生产螺母?12.在军运会期间,七年级1班志愿者小组准备利用午休时间把校门口的自行车摆放整齐,小组长进行分工时(小组长也参与摆放)发现:如果每人摆放10辆自行车,则还剩6辆自行车需要最后再摆;如果每人摆放12辆自行车,则有一名同学少摆放6辆自行车。

【2024秋】最新人教版七年级上册数学《一元一次方程的实际应用》解决问题专项练习(含答案)

【2024秋】最新人教版七年级上册数学《一元一次方程的实际应用》解决问题专项练习(含答案)

【2024秋】最新人教版七年级上册数学《一元一次方程的实际应用》解决问题专项练习(含答案)1. 某两市之间,可乘坐普通列车或高铁(路线不同),已知高铁的行驶路程与普通列车的行驶路程之和是920千米,而普通列车的行驶路程是高铁的行驶路程的1.3倍.求普通列车的行驶路程.2.一名极限运动员在静水中划船的速度为每小时12千米,今往返于某河,逆流时用了10小时,顺流时用了6小时,求水流速度.3. 某服装商店出售一种优惠购物卡,花200元买这种卡后,凭卡可在这家商店按8折购物(有效期为一年),问在一年内累计消费多少元时,买卡与不买卡花费一样多的钱?什么情况下买卡合算?4.某校115名团员积极参与募捐活动,有一部分团员每人捐30元,其余团员每人捐10元.如果捐款总数为2750元,那么捐30元的团员有多少人?5. 为有效开展阳光体育活动,某中学利用课外活动时间进行班级篮球比赛,每场比赛都要决出胜负,每队胜一场得2分,负一场得1分.已知九年级一班在8场比赛中得到13分,问九年级一班胜、负场数分别是多少?6.某下水管道工程由甲、乙两个工程队单独铺设分别需要10天、15天完成.如果两队从两端同时施工2天,然后由乙队单独施工,还需多少天完成剩下的部分?7. 学校在植树活动中种了杨树和杉树两类树种,已知种植杨树的棵数比总数的一半多56棵,少14棵.问:两类树各种了多少棵?杉树的棵数比总数的138.现有190张铁皮做盒子,每张铁皮可以做8个盒身或22个盒底,而一个盒身与两个盒底配成一个盒子.如果用完全部的铁皮,那么用多少张铁皮做盒身,多少张铁皮做盒底才能使加工出的盒身与盒底配套?9.《孙子算经》是我国古代重要的数学著作.书中记载这样一个问题:今有三人共车,二车空;二人共车,九人步,问人与车各几何?这个问题的意思是:今有若干人乘车,若每3人共乘一车,则最终剩余2辆车;若每2人共乘一车,则最终剩余9个人无车可乘.问有多少个人,多少辆车?10.某市多所学校入围“全国青少年校园足球特色学校”,为了积极开展足球活动,某校计划为校足球队购买一批A、B两种品牌的足球.已知购买4个A品牌足球和2个B品牌足球共需360元;A品牌足球的单价比B品牌足球的单价少60元.(1)求A,B两种品牌足球的单价;(2)求该校购买20个A品牌足球和2个B品牌足球的总费用.参考答案1.解:设高铁的行驶路程为x千米,则普通列车的行驶路程为1.3x千米.依题意得x+1.3x=920,解得x=400.所以1.3x=520(千米).答:普通列车的行驶路程是520千米.2. 解:设水流的速度为每小时x千米,依题意有6(x+12)=10(12﹣x),解得x=3.答:水流速度是每小时3千米.3. 解:设购物x元时,买卡与不买卡花费一样,由题意得200+0.8x=x,解得x=1000.当x>1000时,买卡购物合算.答:购物1000元时,买卡与不买卡花费一样;当购物金额超过1000元时,买卡购物合算.4. 解:设捐30元的团员有x人,则捐10元的有(115-x)人.根据题意得30x+10(115-x)=2750.解得x=80.答:捐30元的团员有80人.5. 解:设该班胜了x场,那么负了(8﹣x)场,根据题意得2x+1•(8﹣x)=13,解得x=5.8﹣5=3.答:该班胜、负场数分别是5和3.6.解:设还需x天完成剩下的部分,根据题意得+=1,解得x=10.答:还需10天完成剩下的部分.7.解:设一共植了x棵树,则杨树为(x+56)棵,杉树为(x﹣14)棵.则有x+56+x﹣14=x,解得x=252.故杨树有×252+56=182(棵),杉树有×252﹣14=70(棵).答:种了182棵杨树,70棵杉树.8.解:设用x张铁皮做盒身,则用(190﹣x)张铁皮做盒底,根据题意得2×8x=22×(190﹣x),解得x=110.190﹣110=80(张).答:用110张铁皮做盒身,80张铁皮做盒底才能使加工出的盒身与盒底配套.9. 解:设有x辆车,则有(2x+9)人,依题意得3(x-2)=2x+9.解得x=15.∴2x+9=2×15+9=39.答:有39个人,15辆车.10.解:(1)设A品牌足球的单价为x元,则B品牌足球的单价为(x+60)元.根据题意得4x+2(x+60)=360,解得x=40.∴x+60=100.答:A品牌足球的单价为40元,B品牌足球的单价为100元.(2)20×40+2×100=1000(元).答:该校购买20个A品牌的足球和2个B品牌的足球的总费用为1000元.。

人教版七年级数学上册一元一次方程实际问题---配套、工程问题课件

人教版七年级数学上册一元一次方程实际问题---配套、工程问题课件

变式
解:设用 x 立方米的木材做桌面,则用 (10-x) 立方米的木材做桌腿 根据题意,得 4×50x = 300(10-x), 解得 x =6, 所以 10-x = 4, 可做方桌为50×6=300(张).
答:用6立方米的木材做桌面,4立方米的木材做桌腿,可做300张方桌。
变式
4、服装厂计划生产一批某种型号的学生服装,已知每3米长的某种布 料可做2件上衣或3条裤子,一件上衣和一条裤子为一套,现仓库内存 有这样的布料600米,应分别用多少布料做上衣和裤子,才能恰好配套?
2、用白铁皮做罐头盒,每张白铁皮可制盒身25个,或制盒底40 个,一个盒身与两个盒底配成一套罐头盒现有36张白铁皮,用多 少张制盒身,多少张制盒底可以使盒身与盒底正好配套?
变式
3、某家具厂生产一种方桌,1立方米的木材可做50个桌面或300条桌 腿,现有10立方米的木材,怎样分配生产桌面和桌腿使用的木材,才 能使桌面、桌腿刚好配套,共可生产多少张方桌?(一张方桌有1个桌 面,4条桌腿)
4x+8x+16=40 12x=24 x=2 答:应先安排 2人做4 h。
变式
1、一个道路工程,甲队单独施工9天完成,乙队单独做24天完 成.现在甲乙两队共同施工3天,因甲另有任务,剩下的工程由 乙队完成,问乙队还需几天才能完成?
2、甲计划用若干个工作日完成某项工作,从第二个工作日起, 乙加人此项工作,且甲、乙两人的工作效率相同,结果提前3 天完成任务,求甲计划完成此项工作的天数?
工程问题
例:整理一批图书,由一个人做要40 h 完成.现计划由一部分人先 做4 h,然后增加 2人与他们一起做8 h,完成这项工作. 假设这些 人的工作效率相同,具体应先安排多少人工作?
工程问题
解:设安排 x 人先做4 h

数学人教版七年级上册一元一次方程---配套问题

数学人教版七年级上册一元一次方程---配套问题
创设情景
引入新课 一套茶具由1把茶壶和6只茶杯组成, 请你在表格中填上合适的数据,使茶壶和 茶杯刚好配套. (大家填一填,看谁填的又快又好)
茶壶的 数目(把)
茶杯的 数目(只)
茶壶与茶杯之间配套的 数目关系 茶壶数目︰茶杯数目= 1︰6 茶壶数目︰茶杯数目= 1︰6 茶壶数目︰茶杯数目= 1︰6
1
产品类型
灯罩 栅板
单位产量
铝合金板 ( m2 )
总产量
4 12
x
4x
(11-x)
12(11-x)
3×栅板数目=2×灯罩数目
灯罩数目﹕ 栅板数目=3﹕2
基础训练
巩固应用
2.一套格栅灯具由3个圆弧灯罩和2块栅板间隔组成, 均可用铝合金板 冲压制成.已知1 m2铝合金板可以冲压4个圆弧灯罩或12块栅板. 现用11 m2 铝合金板制作这种格栅灯具,应分配多少平方米铝合金板制作圆弧灯罩, 多少平方米铝合金板制作栅板,恰好配成这种格栅灯具多少套?
15(30-x)=6×5 x
实际问题
一元一次方程
解 方 程
实际问题 的答案
应该安排10名工 艺师生产茶壶,20名 工艺师生产茶杯.
检验
一元一次方程 的解(x=a) x=10 30-x=20
解 一 元 一 次 方 程
代入方程成立 符合实际意义
例题示范
巩固新知
例1变式:生产这套茶具的主要材料是紫砂泥,用1千克紫 砂泥可做4把茶壶或12只茶杯.现要用6千克紫砂泥制作这些茶 具,应用多少千克紫砂泥做茶壶,多少千克紫砂泥做茶杯,恰 好配成这种茶具多少套?(1套茶具中1把茶壶配6只茶杯) 分析:
即 1 5 ( 3 0 x ) 65 x
两边约去15,得

5.3实际问题与一元一次方程(配套问题)课件++2024-2025学年人教版数学七年级上册

5.3实际问题与一元一次方程(配套问题)课件++2024-2025学年人教版数学七年级上册
解法二:设应安排 x 名工人生产螺母,(22-x)名工人生产螺柱. 根据螺母数量是螺柱数量的 2倍,列出方程 2 000x=2×1 200(22-x), 解得 x=12, 则: 22-x=22-12=10. 答:应安排 12 名工人生产螺母,10 名工人生产螺柱.
新 课探 究 例2 一张方桌由 1 个桌面、4 条桌腿组成,如果 1 m3 木料可以做方桌的桌面
解:设用 x 立方米的木材做桌面,则用 (10-x) 立 方米的木材做桌腿. 根据题意,得 4×50x = 300(10-x),
解得 x =6,所以 10-x = 4,
可做方桌为50×6=300(张).
答:用6立方米的木材做桌面,4立方米的木材
做桌腿,可做300张方桌.
3.一套仪器由一个 A 部件和三个 B 部件构成. 用 1 立方米钢材可做 40 个 A 部件或 240 个 B 部件. 现要用 6 立方米钢材制作这种仪器,应用多少钢 材做 A 部件,多少钢材做B部件,才能恰好配成 这种仪器?共配成多少套?
布置作业 必做: 服装厂要生产一批某种型号的学生运动服,已知每 3 m 长的布料可做上衣 2 件或裤
子 3 条,一件上衣和一条裤子为一套. 计划用 600 m 长的这种布料生产运动服,应分 别用多少布料生产上衣和裤子,才能配套?共能生产多少套运动服?
布置作业
选做:某车间有 85 名工人加工齿轮,平均每人每天加工大齿轮 16 个或小齿轮 10 个.2 个大齿轮和 3大、小齿轮, 才能使每天加工的齿轮刚好配套?
2. 某家具厂生产一种方桌,1立方米的木材可做50个 桌面或300条桌腿,现有10立方米的木材,怎样分 配生产桌面和桌腿使用的木材,才能使桌面、桌
腿刚好配套,共可生产多少张方桌?(一张方桌有 1个桌面,4条桌腿)

人教版七年级数学上册实际问题与一元一次方程-配套问题课件

人教版七年级数学上册实际问题与一元一次方程-配套问题课件

.
1200x 2 000(22 - x)
=
1 2
视察:第三个方 程与前两个方程 有什么不同?
小结:
列方程解决应用问题,其大致步骤有哪些? 1.审:审题,分析题目中的数量关系; 2.设:设未知数,并表示相关的数量关系;
3.列:根据题目中的等量关系列方程; 4.解:解这个方程;
5.答:检验方程的解是否符合题意并作答.
提出问题
玩 过 拉 力 器 吗
?提出问题AB此拉力器由两个拉手A和五个弹簧B
构成.
生产拉力器的厂家,会根据这里的 配比关系安排工人生产拉手A和弹簧B的。 同时厂家也会根据市场的需要调整弹簧 的个数来满足更多群体的需要,这就会 涉及比较多的配套问题。
小组讨论
内容拓展
1、2个A和1个B配成一套,则A:B= 2:1 ,
七年级上册
3.4实际问题与一元一次方程 ——配套问题
从前面学习解方程的过程中可以看 出,方程是分析和解决问题的一种很有用 的数学工具。本节课我们就重点讨论如何 用一元一次方程解决实际问题。
典型探究
问题:尝试解决下面问题. 例 某车间有24名工人,每人每天可以生
产1 200个螺钉,或2 000个螺母. 1个螺钉需
3.用一元一次方程解决实际问题的基本过 程是什么?
实际问题 设未知数,列方程 一元一次方 程
实际问题的 答案
一元一次方程的解 (x = a)
(只设未知数,列出方程)
练习: 《课本》106页复习巩固第2题。
2、制作一张桌子要用一个桌面和4条桌 腿,1m³木材可制作20个桌面,或者制作 400条桌腿,现有12m³木材,应怎样计划用 料才能制作尽可能多的桌子?
(只设未知数,列出方程)

七年级-人教版-数学-上册-[能力提升]第1课时-一元一次方程的应用——配套问题

七年级-人教版-数学-上册-[能力提升]第1课时-一元一次方程的应用——配套问题

第1课时一元一次方程的应用——配套问题1.在加固某段河坝时,需动用15台挖土、运土机械.每台机械每小时能挖土3 m3或运土2 m3,为了使挖土和运土工作同时结束,安排了x台机械挖土,则可列方程为().A.3x-2x=15B.3x=2(15-x)C.2x=3(15-x)D.3x+2x=152.用白铁皮做罐头盒,每张铁皮可制盒身15个或制盒底42个,一个盒身与两个盒底配成一套罐头盒,现有108张白铁皮,要使这些材料可以正好制成整套罐头盒,则做盒身的铁皮应用().A.61张B.62张C.63张D.64张3.某工艺品车间有20名工人,平均每人每天可制作12个大花瓶或10个小饰品,已知2个大花瓶与5个小饰品配成一套,则要安排_______名工人制作大花瓶,才能使每天制作的大花瓶和小饰品刚好配套.4.一套仪器由一个A部件和三个B部件构成,用1m3钢材可做40个A部件或240个B 部件,现要用6m3钢材制作这种仪器,为使所做的A部件和B部件刚好配套,则做A 部件和B部件的钢材各需多少立方米?5.用一批卡纸做包装盒,每张卡纸可做2个盒身或5个底盖,一个盒身与两个底盖配成一个完整的包装盒.(1)如果用25张卡纸做盒身,20张卡纸做底盖,做成的盒身和底盖是否正好配套?请通过计算结果加以说明.(2)如果有63张卡纸,请问用多少张卡纸做盒身,多少张卡纸做底盖,才能使做成的盒身和底盖正好配套?参考答案1.【答案】B【解析】因为安排了x台机械挖土,所以安排(15-x)台机械运土.因为每台机械每小时能挖土3 m3或运土2 m3,所以x台机械挖土3x m3,(15-x)台机械运土2(15-x) m3.因为要使挖土和运土工作同时结束,所以3x=2(15-x).2.【答案】C【解析】设做盒身的铁皮应用x张,则做盒底的铁皮应用(108-x)张.由题意,得2×15x=42(108-x).解得x=63.所以做盒身的铁皮应用63张.3.【答案】5【解析】设制作大花瓶的有x人,则制作小饰品的有(20-x)人,由题意,得5×12x=10(20-x)×2.解得x=5.4.【答案】解:设应用x m3钢材做A部件,则应用(6-x)m3钢材做B部件,由题意,得3×40x=240(6-x).解方程,得x=4.则6-x=2.答:为使所做的A部件和B部件刚好配套,应用4 m3钢材做A部件,2 m3钢材做B部件.5.【答案】解:(1)做成的盒身和底盖正好配套,理由如下:做成盒身的总数为25×2=50(个),做成底盖的总数为20×5=100(个),因为一个盒身与两个底盖配成一个完整的包装盒,且100÷2=50,所以用25张卡纸做盒身,20张卡纸做底盖,做成的盒身和底盖正好配套.(2)设用x张卡纸做盒身,则用(63-x)张卡纸做底盖,由题意,得2×2x=5(63-x).解方程,得x=35.所以63-x=63-35=28.答:用35张卡纸做盒身,28张卡纸做底盖,做成的盒身和底盖正好配套.。

人教版七年级上册数学一元一次方程的应用--配套问题

人教版七年级上册数学一元一次方程的应用--配套问题

人教版七年级上册数学3.4一元一次方程的应用--配套问题一、选择题1.某眼镜厂车间有28名工人,每个工人每天生产镜架60个或者镜片90片,为使每天生产的镜架和镜片刚好配套.设安排x名工人生产镜片,则可列方程( )A.60(28−x)=90x B.60x=90(28−x)C.2×60(28−x)=90x D.60(28−x)=2×90x2.现用90立方米木料制作桌子和椅子,已知一张桌子配4张椅子,1立方米木料可做5张椅子或1张桌子,要使桌子和椅子刚好配套.设用x立方米的木料做桌子,则依题意可列方程为( )A.4x=5(90−x)B.5x=4(90−x)C.x=4(90−x)×5D.4x×5=90−x3.某车间有27名工人,生产某种由一个螺栓套两个螺母的产品,每人每天生产螺母16个或螺栓22个,若分配x名工人生产螺栓,其他工人生产螺母,恰好使每天生产的螺栓和螺母配套,则下面所列方程中正确的是( )A.22x=16(27−x)B.16x=22(27−x)C.2×16x=22(27−x)D.2×22x=16(27−x)4.某车间有34名工人,平均每人每天加工大齿轮16个或小齿轮10个,已知2个大齿轮和3个小齿轮配成一套,问分别安排多少名工人加工大小齿轮,才能刚好配套?若设加工大齿轮的工人有x名,则可列方程为( )A.3×10x=2×16(34−x)B.3×16x=2×10(34−x)C.2×16x=3×10(34−x)D.2×10x=3×16(34−x)5.如图,学校实验室需要向某工厂定制一批三条腿的桌子,已知该工厂有24名工人,每人每天可以生产20块桌面或300条桌腿,1块桌面需要配3条桌腿,为使每天生产的桌面和桌腿刚好配套,设安排x名工人生产桌面,则下面所列方程正确的是( )A.20x=3×300(24−x)B.300x=3×20(24−x)C.3×20x=300(24−x)D.20x=300(24−x)6.新型冠状肺炎疫情正在全球蔓延肆虐,口罩成了人们生活中必不可少的物品,某口罩厂有26名工人,每人每天可以生产800个口罩面或1000个口罩耳绳,一个口罩面需要配两个耳绳,为使每天生产的口罩刚好配套,设安排x名工人生产口罩面,则下面所列方程正确的是( )A.2×1000(26−x)=800x B.1000(13−x)=800xC.1000(26−x)=2×800x D.1000(26−x)=800x7.现用90立方米木料制作桌子和椅子,已知一张桌子配4张椅子,1立方米木料可做5张椅子或1张桌子,要使桌子和椅子刚好配套.设用x立方米的木料做桌子,则依题意可列方程为( )A.4x=5(90−x)B.5x=4(90−x)C.x=4(90−x)×5D.4x×5=90−x二、填空题(共4题)8.某车间有26名工人,每人每天可以生产800个螺钉或1000个螺母,一个螺钉需要配两个螺母,为使每天生产的螺钉和螺母刚好配套.设安排x名工人生产螺钉,根据题意可列方程得.9.某车间有34名工人,每人每天可以生产1200个螺钉或2000个螺母.1个螺钉需配4个螺母,为使每天生产的螺钉与螺母刚好配套,应安排名工人生产螺钉.10.在某公益活动中,参加活动者手上、脖子上需佩戴丝带和丝巾,某工厂的70名工人承接了制作丝带、丝巾的任务.已知每名工人每天平均生产丝带180条或丝巾120条,并且一条丝巾要配两条丝带.为了使每天生产的丝带丝巾刚好配套,设分配x 名工人生产丝带,则根据题意可列方程为.11.某车间有27名工人,每人每天可以生产22个螺母或16个螺栓,1个螺栓配2个螺母,为使每天生产的螺栓和螺母刚好配套,设分配x名工人生产螺栓,则可列方程为.三、解答题(共7题)12.某车间28名工人生产螺栓和螺母,每人每天平均生产螺栓12个或螺母18个,一个螺栓需要配两个螺母,要想每天生产的螺栓和螺母刚好配套,应安排生产螺栓和螺母的工人各多少名?13.某车间有工人85人,平均每人每天可以加工大齿轮8个或小齿轮10个,又知1个大齿轮和三个小齿轮配为一套,问应如何安排工人使生产的产品刚好成套?14.某工厂车间有22名工人,每人每天可以生产12个甲种零部件或15个乙种零部件,已知2个甲种零部件需要配3个乙种零部件,为使每天生产的甲、乙两种零部件刚好配套,车间应该分配生产甲种零部件和乙种零部件的工人各多少名?15.某车间每天能制作甲种零件300只,或者制作乙种零件200只,1只甲种零件需要配2只乙种零件.(1) 若制作甲种零件2天,则需要制作乙种零件只,才能刚好配成套.(2) 现要在20天内制作最多的成套产品,则甲、乙两种零件各应制作多少天?16.机械厂加工车间有27名工人,平均每人每天加工小齿轮12个或大齿轮10个,2个大齿轮和3个小齿轮配成一套,问需分别安排多少名工人加工大、小齿轮,才能使每天加工的大小齿轮刚好配套?17.某工厂加工螺栓、螺帽,已知每1块金属原料可以加工成3个螺栓或4个螺帽(说明:每块金属原料无法同时既加工螺栓又加工螺帽),已知1个螺栓和2个螺帽组成一个零件,为了加工更多的零件,要求螺栓和螺帽恰好配套.请列方程解决下列问题:(1) 现有20块相同的金属原料,问最多能加工多少个这样的零件?(2) 若把26块相同的金属原料全部加工完,问加工的螺栓和螺帽恰好配套吗?说明理由(3) 若把n块相同的金属原料全部加工完,为了使这样加工出来的螺栓与螺帽恰好配套,请求出n所满足的条件.18.小敏和小强假期到某厂参加社会实践.该厂用白板纸做包装盒,设计每张白板纸做盒身2个或做盒盖3个,且1个盒身和2个盒盖恰好做成一个包装盒.为了充分利用材料,要求做成的盒身和盒盖正好配套.(1) 现有14张白板纸,最多可做多少个包装盒?(2) 现有27张白板纸,最多可做多少个包装盒?为了解决这个问题,小敏和小强各设计了一种解决方案:小敏:把这些白板纸分成两部分,一部分做盒身,一部分做盒盖;小强:先把一张白板纸适当套裁出一个盒身和一个盒盖,余下白板纸分成两部分,一部分做盒身,一部分做盒盖.请探究:小敏和小强设计的方案是否可行?若可行,求出最多可做包装盒的个数;若不行,请说明理由.(3) 通过以上两个同题的探究,为不浪费白板纸,请你对该厂就采购白板纸的张数n提一条合理化的建议.答案一、选择题(共7题)1. 【答案】C2. 【答案】A3. 【答案】D4. 【答案】B5. 【答案】C6. 【答案】C7. 【答案】A二、填空题(共4题)8. 【答案】1000(26−x)=2×800x9. 【答案】1010. 【答案】180x=2×120(70−x)11. 【答案】2×16x=22(27−x)三、解答题(共7题)12. 【答案】设生产螺栓的工人有x名,则生产螺母的工人有(28−x)名,根据题意得:12x×2=18(28−x).解得:x=12.28−12=16.答:生产螺栓的工人有12名,则生产螺母的工人有16名,才能使当天生产的螺栓和螺母与第一天生产的刚好配套.13. 【答案】设安排x人生产大齿轮,则安排(85−x)人生产小齿轮,可使生产的产品刚好成套,根据题意得:3×8x=10(85−x).解得:x=25.则85−x=60.答:应安排25个工人生产大齿轮,安排60个工人生产小齿轮才能使生产的产品刚好成套.14. 【答案】设分配x人生产甲种零部件,根据题意,得3×12x=2×15(22−x).解得:x=10.22−x=12.答:分配10人生产甲种零部件,12人乙种零部件.15. 【答案】(1) 1200(2) 设应制作甲种零件x天,则应制作乙种零件(20−x)天,依题意,得:2×300x=200(20−x),解得:x=5,∴20−x=15.答:应制作甲种零件5天,乙种零件15天.16. 【答案】设需安排x名工人加工大齿轮,则安排(27−x)名工人加工小齿轮.依题意得12×(27−x)3=10x2,解得x=12,则27−x=15.答:安排12名工人加工大齿轮,安排15名工人加工小齿轮.17. 【答案】(1) 设用x块金属原料加工螺栓,则用(20−x)块金属原料加工螺帽.由题意,可得2×3x=4(20−x),解得x=8,则3×8=24.答:最多能加工24个这样的零件;(2) 若把26块相同的金属原料全部加工完,加工的螺栓和螺帽不能恰好配套.理由如下:设用y块金属原料加工螺栓,则用(26−y)块金属原料加工螺帽.由题意,可得2×3y=4(26−y),解得y=10.4.由于10.4不是整数,不合题意舍去,所以若把26块相同的金属原料全部加工完,加工的螺栓和螺帽不能恰好配套;(3) 设用a块金属原料加工螺栓,则用(n−a)块金属原料加工螺帽,可使这样加工出来的螺栓与螺帽恰好配套.由题意,可得2×3a=4(n−a),解得a=25n,则n−a=35n,即n所满足的条件是:n是5的正整数倍的数.18. 【答案】(1) 设x张做盒身,则2x×2=3(14−x),解得x=6.可做盒子6×2=12(个).(2) 小敏方案不行:设x张做盒身,则2x×2=3(27−x),解得x=817,不合题意.小强方案可行:设余下的纸板x张做盒身,则(2x+1)×2=3(26−x)+1,解得x=11,可做盒子11×2+1=23(个).(3) n为7的正整数倍.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第3章一元一次方程(第14课时)
列一元一次方程解应用题——配套问题
一.温故预习
1.列一元一次方程解应用题的一般步骤:
(1)设;(2)找;(3)列;
(4)解;(5)验;(6)答.
2.如果1名车工每天能生产150个零件,那么a名车工每天能生产个零件.
3.某车间每天能制作甲种零件30只,或者制作乙种零件45只,甲、乙两种零件各一只配成一套产品,要在30天内制作最多的成套产品,问怎样安排生产甲、乙两种零件的天数?
分析:(1)设安排x天生产甲种零件,则安排天生产乙种零件.
(2)填表分析:
(3)等量关系:.
(4)得到方程:.
二.探索新知
4.某车间有22名工人,每人每天可以生产1200个螺钉或2000个螺母,1个螺钉需要2个螺母,为使每天生产的螺钉和螺母刚好配套,应安排生产螺钉和螺母的工人各多少名?(课本P100∕例1)
分析:(1)设安排x名工人生产螺钉,则安排名工人生产螺母.
(2)填表分析:
(3)等量关系:.
解:
三.能力提升
5.一套仪器由一个A 部件和三个B 部件构成,用1 3
m 钢材可以做40个A 部件或240个B 部件. 现要用6
3m 钢材制作这种仪器,应用多少钢材做A 部件,多少钢材做B 部件?(课本P101)
分析:(1)设用x 3
m 钢材做A 部件,则用 3
m 钢材做B 部件.
(2)填表分析:
(3)等量关系: . 解:
四.课堂巩固
6.制作一张桌子要用1个桌面和4条桌腿,13
m 木材可制作20个桌面,或者制作400条桌腿,现有123
m 木材,应怎样计划用料才能制作尽可能多的桌子?(课本P106) 解:
7.为庆祝新年,用纸板做彩灯,每张纸板可裁灯底44个或裁灯身11个,一个灯身与两个灯底装配成一盏彩灯,现有150张纸板,怎样裁可配成整套彩灯? 解:
五.拓展提高
包装厂有工人42人,每个工人平均每小时可以生产圆形铁片80片,或长方形铁片120片,将两张圆形铁片与和三张长方形贴片可配套成一个机器,问如何安排工人生产圆形或长方形铁片能合理地将铁片配套?能配成多少套?。

相关文档
最新文档