北师大版数学八年级上册全册复习PPT课件
合集下载
北师大版数学八年级上册全册复习优质ppt

线性回归分析
在统计学中,一次函数用于线性回归分析,以探 索变量之间的关系。
05
第五章:整式的乘除与 因式分解
整式的乘法与除法
整式乘法
掌握单项式与单项式、单项式与多项Байду номын сангаас、多项式与多项式的乘法法则,能够熟 练进行整式的乘法运算。
整式除法
理解整式除法的意义,掌握单项式除以单项式、多项式除以单项式的除法法则 ,能够熟练进行整式的除法运算。
否相等或相似。
综合应用
03
在实际问题中,等腰三角形和轴对称常常一起出现,需要综合
运用两者的性质和判定来解决实际问题。
03
第三章:实数
平方根和算术平方根
平方根的定义
一个非负数x的平方根是一个数y,满足y^2=x。正数的 平方根有两个,一正一负,互为相反数。0的平方根是0 。
平方根的性质
一个正数的算术平方根是正的,0的算术平方根是0,负 数没有实数平方根。
的图像。
图像性质
一次函数的图像是一条直线,其 斜率为$k$,与y轴的交点为 $(0,b)$。
增减性
当$k>0$时,函数为增函数;当 $k<0$时,函数为减函数。
一次函数的应用
实际问题建模
利用一次函数可以建立实际问题的数学模型,如 速度、时间、距离等问题。
最优化问题
通过一次函数可以解决最优化问题,如最大值、 最小值等。
北师大版数学八年级上册全册复习 优质
汇报人:可编辑 2023-12-24
目录
• 第一章:全等三角形 • 第二章:轴对称与等腰三角形 • 第三章:实数 • 第四章:一次函数 • 第五章:整式的乘除与因式分解
01
第一章:全等三角形
在统计学中,一次函数用于线性回归分析,以探 索变量之间的关系。
05
第五章:整式的乘除与 因式分解
整式的乘法与除法
整式乘法
掌握单项式与单项式、单项式与多项Байду номын сангаас、多项式与多项式的乘法法则,能够熟 练进行整式的乘法运算。
整式除法
理解整式除法的意义,掌握单项式除以单项式、多项式除以单项式的除法法则 ,能够熟练进行整式的除法运算。
否相等或相似。
综合应用
03
在实际问题中,等腰三角形和轴对称常常一起出现,需要综合
运用两者的性质和判定来解决实际问题。
03
第三章:实数
平方根和算术平方根
平方根的定义
一个非负数x的平方根是一个数y,满足y^2=x。正数的 平方根有两个,一正一负,互为相反数。0的平方根是0 。
平方根的性质
一个正数的算术平方根是正的,0的算术平方根是0,负 数没有实数平方根。
的图像。
图像性质
一次函数的图像是一条直线,其 斜率为$k$,与y轴的交点为 $(0,b)$。
增减性
当$k>0$时,函数为增函数;当 $k<0$时,函数为减函数。
一次函数的应用
实际问题建模
利用一次函数可以建立实际问题的数学模型,如 速度、时间、距离等问题。
最优化问题
通过一次函数可以解决最优化问题,如最大值、 最小值等。
北师大版数学八年级上册全册复习 优质
汇报人:可编辑 2023-12-24
目录
• 第一章:全等三角形 • 第二章:轴对称与等腰三角形 • 第三章:实数 • 第四章:一次函数 • 第五章:整式的乘除与因式分解
01
第一章:全等三角形
北师大版八年级数学上册第一章勾股定理复习与小结课件

P
M
教学过程——典例精析
第一章 勾股定理
听一听
典例3 如图,长方形 ABCD 中,AB=3,AD=9,将此长方形折叠,使点 D与点B
重合,折痕为 EF,求△ABE 的面积。
A
B
E
D
F
C
教学过程——典例精析
第一章 勾股定理
听一听
A
解析:折叠问题中,要找到折叠前
后相等的线段或角,注意这些线段
与其他线段的关系,再利用勾股定
D. 若、、是的△ABC的三边,且 − = ,则∠A=90°
第一章 勾股定理
基础训练
第一章 勾股定理
2. 如图是商场的台阶的示意图,已知每级台阶的宽度都是20cm,每级台
阶的高度都是15cm,则连接AB的线段长为( B )
A. 100cm
B. 150cm
C. 200cm
D. 250cm
解:(1)供水站P的位置如图所示.
(2)过B作BM⊥,过A’作A’M⊥BM于M.
B
A
由已知可得A’M=8,BM=2+4=6.
在Rt△AMB中,
A’B2=AM2+BM2=82+62=100
解得A’B=10
5000×10+50000=100000.
故供水站修建完成后共计要花100000元.
∙∙
A’
∙
是直角三角形.
知识梳理
第一章 勾股定理
内容:直角三角形两
直角边的平方和等于
斜边的平方.
探索勾
股定理
表达式:用
和分别表示直角三
角形的两直角边和斜
边,那么
验证方法:面积法
新北师大版八年级数学上册总复习课件

a2+b2=c2,那么这个三角形是直角三角形
B 符号语言: 在Rt△ABC中 a2+b2=c2 A C (4) 如果一个三角形一边上的中线等于这条边 的一半,那么这个三角形是直角三角形。
有四个三角形,分别满足下列条件: ①一个内角等于另两个内角之和; ②三个角之比为3:4:5; ③三边长分别为7、24、25 ④三边之比为5:12:13 其中直角三角形有( C ) A 、 1个 B 、 2个 C 、 3个 D 、 4 个
P M
B
60
E 60
D
N
80 100
30° 100
160
A
Q
有一棵树(如图中的CD)的10m高处B有两只猴子 ,其中一只猴子爬下树走到离树20m处的池塘A 处,另一只猴子爬到树顶D后直接跃向池塘的A处 ,如果两只猴子所经过的距离相等,试问这棵树 多高。 D x 解:设BD=xm 30-x B 由题意可知, BC+CA=BD+DA 10
a2+b2=c2 c a C
面积 两种计算面积的方法。 A
b
如何判定一个三角形是直角三角形呢? (1) 有一个内角为直角的三角形是直角三角形 (2) 两个内角互余的三角形是直角三角形 (3) 如果三角形的三边长为a、b、c满足
a2+b2=c2,那么这个三角形是直角三角形
符号语言:∵a2+b2=c2
2 2 2
a
C
b
2ab (a b) (a b ) 225 81 144
1 1 S ABC ab 144 36 2 4
已知Rt△ABC中,∠C=90°,若a+b=14cm, c=10cm,则Rt△ABC的面积是( A ) A.24cm2 B.36cm2 C.48cm2 D.60cm2
B 符号语言: 在Rt△ABC中 a2+b2=c2 A C (4) 如果一个三角形一边上的中线等于这条边 的一半,那么这个三角形是直角三角形。
有四个三角形,分别满足下列条件: ①一个内角等于另两个内角之和; ②三个角之比为3:4:5; ③三边长分别为7、24、25 ④三边之比为5:12:13 其中直角三角形有( C ) A 、 1个 B 、 2个 C 、 3个 D 、 4 个
P M
B
60
E 60
D
N
80 100
30° 100
160
A
Q
有一棵树(如图中的CD)的10m高处B有两只猴子 ,其中一只猴子爬下树走到离树20m处的池塘A 处,另一只猴子爬到树顶D后直接跃向池塘的A处 ,如果两只猴子所经过的距离相等,试问这棵树 多高。 D x 解:设BD=xm 30-x B 由题意可知, BC+CA=BD+DA 10
a2+b2=c2 c a C
面积 两种计算面积的方法。 A
b
如何判定一个三角形是直角三角形呢? (1) 有一个内角为直角的三角形是直角三角形 (2) 两个内角互余的三角形是直角三角形 (3) 如果三角形的三边长为a、b、c满足
a2+b2=c2,那么这个三角形是直角三角形
符号语言:∵a2+b2=c2
2 2 2
a
C
b
2ab (a b) (a b ) 225 81 144
1 1 S ABC ab 144 36 2 4
已知Rt△ABC中,∠C=90°,若a+b=14cm, c=10cm,则Rt△ABC的面积是( A ) A.24cm2 B.36cm2 C.48cm2 D.60cm2
北师大版数学八年级上册全册复习ppt课件

北师大版八年级上册 期末总复习典型题
CONTEN
目T录
第一章 勾股定理 第二章 实数
第三章 位置与坐标 第四章 一次函数
第五章 二元一次方程组
第六章 数据分析 第七章 平行线的证明
第一章 勾股定理
知识归纳
1.勾股定理
定义:如果直角三角形两直角边分别为 a、b,斜边为 c,那么a2+b2=c2
各种表达形式:在 RБайду номын сангаас△ABC 中,∠C=90°,∠A、∠B、∠C 的对边分
找出格点C,使△ABC是面积为1个平方单位的直角三角形,这样
的点有____6____个.
图1-8 图1-9
[解析] 如图1-9,当∠A为直角时,满足面积为1的点是A1、 A2;当∠B为直角时,满足面积为1的点是B1、B2;当∠C为直角 时,满足面积为1的点是C、C1,所以满足条件的点共有6个.
3.已知三角形的三边为 a=34,b=54,c=1,这个三角形是 直角三角形吗?
6.B、C 是河岸边两点,A 为对岸岸上一点,测得∠ABC=45°, ∠ACB=45°,BC=50 m,则河宽 AD 为( )
B
A.25 2 m B.25 m
50 C. 3 3 m
D.25 3 m
图 1-10
7.如图1-11,已知△ABC中,∠C=90°,BA=15,AC=12,
以直角边BC为直径作半圆,则这个半圆的面积是__8_81_π____.
图1-19
15.一个棱长为6的木箱(如图1-20),一只苍蝇位于左面的壁 上,且到该面上两侧棱距离相等的A处.一只蜘蛛位于右面壁上 ,且到该面与上、下底面两交线的距离相等的B处.已知A到下 底面的距离AA′=4,B到一个侧面的距离BB′=4,则蜘蛛沿这 个立方体木箱的内壁爬向苍蝇的最短路程为多少?
CONTEN
目T录
第一章 勾股定理 第二章 实数
第三章 位置与坐标 第四章 一次函数
第五章 二元一次方程组
第六章 数据分析 第七章 平行线的证明
第一章 勾股定理
知识归纳
1.勾股定理
定义:如果直角三角形两直角边分别为 a、b,斜边为 c,那么a2+b2=c2
各种表达形式:在 RБайду номын сангаас△ABC 中,∠C=90°,∠A、∠B、∠C 的对边分
找出格点C,使△ABC是面积为1个平方单位的直角三角形,这样
的点有____6____个.
图1-8 图1-9
[解析] 如图1-9,当∠A为直角时,满足面积为1的点是A1、 A2;当∠B为直角时,满足面积为1的点是B1、B2;当∠C为直角 时,满足面积为1的点是C、C1,所以满足条件的点共有6个.
3.已知三角形的三边为 a=34,b=54,c=1,这个三角形是 直角三角形吗?
6.B、C 是河岸边两点,A 为对岸岸上一点,测得∠ABC=45°, ∠ACB=45°,BC=50 m,则河宽 AD 为( )
B
A.25 2 m B.25 m
50 C. 3 3 m
D.25 3 m
图 1-10
7.如图1-11,已知△ABC中,∠C=90°,BA=15,AC=12,
以直角边BC为直径作半圆,则这个半圆的面积是__8_81_π____.
图1-19
15.一个棱长为6的木箱(如图1-20),一只苍蝇位于左面的壁 上,且到该面上两侧棱距离相等的A处.一只蜘蛛位于右面壁上 ,且到该面与上、下底面两交线的距离相等的B处.已知A到下 底面的距离AA′=4,B到一个侧面的距离BB′=4,则蜘蛛沿这 个立方体木箱的内壁爬向苍蝇的最短路程为多少?
北师大版八年级数学上册第一章全部课件

总结
勾股定理的验证主要是通过拼图法利用面积的 关系完成的,拼图又常以补拼法和叠合法两种方式拼 图,补拼是要无重叠,叠合是要无空隙;而用面积法 验证的关键是要找到一些特殊图形(如直角三角形、 正方形、梯形)的面积之和等于整个图形的面积,从 而达到验证的目的.
(来自《点拨》)
知1-练
1 用四个边长均为a,b,c的直角三角板,拼成如
(来自《典中点》)
知2-导
知识点 2 勾股定理的应用
例2 我方侦察员小王在距离东西向公路400m处侦察,发现一 辆敌方汽车在公路上疾驰.他赶紧拿出红外测距仪,测得 汽车与他相距400m,10s后,汽车与他相距500m,你能 帮小王计算敌方汽车的速度吗?
分析:根据题意,可以画出右图, 其中点A表示小王所在位置, 点C、点B表示两个时刻敌方 汽车的位置.
弦 勾
股 图1
北师大版八年级数学上册
C A
B C
图2-1
A
B
图2-2
(图中每个小方格代表一个单位面积)
知1-导
(1)观察图2-1 正方形A中含有 9 个 小方格,即A的面积 是 9 个单位面积. 正方形B的面积是 9 个单位面积.
正方形C的面积是 18 个单位面积.
北师大版八年级数学上册
C A
B C
(来自《点拨》)
知1-讲
总结
勾股定理的验证主要是通过拼图法利用面积的 关系完成的,拼图又常以补拼法和叠合法两种方式拼 图,补拼是要无重叠,叠合是要无空隙;而用面积法 验证的关键是要找到一些特殊图形(如直角三角形、 正方形、梯形)的面积之和等于整个图形的面积,从 而达到验证的目的.
(来自《点拨》)
知1-讲
1 课堂讲解 2 课时流程
勾股定理的验证主要是通过拼图法利用面积的 关系完成的,拼图又常以补拼法和叠合法两种方式拼 图,补拼是要无重叠,叠合是要无空隙;而用面积法 验证的关键是要找到一些特殊图形(如直角三角形、 正方形、梯形)的面积之和等于整个图形的面积,从 而达到验证的目的.
(来自《点拨》)
知1-练
1 用四个边长均为a,b,c的直角三角板,拼成如
(来自《典中点》)
知2-导
知识点 2 勾股定理的应用
例2 我方侦察员小王在距离东西向公路400m处侦察,发现一 辆敌方汽车在公路上疾驰.他赶紧拿出红外测距仪,测得 汽车与他相距400m,10s后,汽车与他相距500m,你能 帮小王计算敌方汽车的速度吗?
分析:根据题意,可以画出右图, 其中点A表示小王所在位置, 点C、点B表示两个时刻敌方 汽车的位置.
弦 勾
股 图1
北师大版八年级数学上册
C A
B C
图2-1
A
B
图2-2
(图中每个小方格代表一个单位面积)
知1-导
(1)观察图2-1 正方形A中含有 9 个 小方格,即A的面积 是 9 个单位面积. 正方形B的面积是 9 个单位面积.
正方形C的面积是 18 个单位面积.
北师大版八年级数学上册
C A
B C
(来自《点拨》)
知1-讲
总结
勾股定理的验证主要是通过拼图法利用面积的 关系完成的,拼图又常以补拼法和叠合法两种方式拼 图,补拼是要无重叠,叠合是要无空隙;而用面积法 验证的关键是要找到一些特殊图形(如直角三角形、 正方形、梯形)的面积之和等于整个图形的面积,从 而达到验证的目的.
(来自《点拨》)
知1-讲
1 课堂讲解 2 课时流程
北师大版数学八年级上册全册复习优质ppt

二次函数
二次函数是函数中的高级形式,需要掌握二次函 数的性质、图像、应用以及与实际问题的联系。
04
难点突破与提升
Chapter
代数难点突破与提升
整式与分式的运算
掌握整式与分式的加减乘除运算,理解其运算规则和技巧。
根式与根式的化简
理解根式的概念,掌握根式的化简方法,如合并同类项、提取公 因式等。
方程与不等式的解法
代数基础知识
代数式
代数式是由数字、字母通 过有限次的加、减、乘、 除、乘方和开方等代数运 算所得的式子。
方程与不等式
方程是含有未知数的等式 ,不等式是含有未知数的 不等关系。
函数
函数是两个变量之间的依 赖关系,一个变量随着另 一个变量的变化而变化。
几何基础知识
直线与角
直线是无限长的,角是两条射线 之间的夹角。
对北师大版数学八年级上册全册 的知识点进行了系例题,通过 解析和讨论,帮助学生掌握解题 方法和技巧。
展望未来
继续深化学习
建议学生在复习的基础上,继续 深化对数学知识的理解和掌握, 为后续的学习打下坚实的基础。
培养数学思维
通过数学学习,培养学生的逻辑 思维能力、抽象思维能力和创新 思维能力,为未来的学习和生活 打下良好的基础。
二元一次方程组
二元一次方程组是代数方程中的 重要形式,需要掌握方程组的解 法、应用以及与实际问题的联系
。
几何重点知识
三角形
三角形是几何中最基本的多边形,需要掌握三角形的性质、分类 、全等判定以及与实际问题的联系。
四边形
四边形是几何中常见的多边形,需要掌握四边形的性质、分类、全 等判定以及与实际问题的联系。
。
05
典型例题解析与练习
二次函数是函数中的高级形式,需要掌握二次函 数的性质、图像、应用以及与实际问题的联系。
04
难点突破与提升
Chapter
代数难点突破与提升
整式与分式的运算
掌握整式与分式的加减乘除运算,理解其运算规则和技巧。
根式与根式的化简
理解根式的概念,掌握根式的化简方法,如合并同类项、提取公 因式等。
方程与不等式的解法
代数基础知识
代数式
代数式是由数字、字母通 过有限次的加、减、乘、 除、乘方和开方等代数运 算所得的式子。
方程与不等式
方程是含有未知数的等式 ,不等式是含有未知数的 不等关系。
函数
函数是两个变量之间的依 赖关系,一个变量随着另 一个变量的变化而变化。
几何基础知识
直线与角
直线是无限长的,角是两条射线 之间的夹角。
对北师大版数学八年级上册全册 的知识点进行了系例题,通过 解析和讨论,帮助学生掌握解题 方法和技巧。
展望未来
继续深化学习
建议学生在复习的基础上,继续 深化对数学知识的理解和掌握, 为后续的学习打下坚实的基础。
培养数学思维
通过数学学习,培养学生的逻辑 思维能力、抽象思维能力和创新 思维能力,为未来的学习和生活 打下良好的基础。
二元一次方程组
二元一次方程组是代数方程中的 重要形式,需要掌握方程组的解 法、应用以及与实际问题的联系
。
几何重点知识
三角形
三角形是几何中最基本的多边形,需要掌握三角形的性质、分类 、全等判定以及与实际问题的联系。
四边形
四边形是几何中常见的多边形,需要掌握四边形的性质、分类、全 等判定以及与实际问题的联系。
。
05
典型例题解析与练习
新版北师大版八年级数学上册全册课件共570张PPT

二、新课讲解
二、新课讲解
例 一个零件的形状如图1所示,按规定这个零件中
∠A和∠DBC都应为直角.工人师傅量得这个零件各边尺
寸如图2所示,这个零件符合要求吗?
图1
图2
解:∵在Rt△ABD中,AB2+AD2=9+16=25=BD2, ∴△ABD是直角三角形,∠A是直角. ∵在△BCD中,BD2+BC2=25+144=169=CD2, ∴△BCD是直角三角形,∠DBC是直角. 因此,这个零件符合要求.
一、新课引入
观察右边两图并填写下表(每个小正方形的面积为 单位1)
A 的面积 B 的面积 C 的面积
左图
9
9
右图
4
4
怎样计算正
方形C 的面积
呢?
一、新课引入
分析表中数据,你发现了什么? A的面积 B的面积 C的面积
9
9
18
4
4
8
SA SB SC
16
9
25
1
9
10
以直角三角形两直角边为边长的 小正方形的面积的和,等于以斜边为 边长的正方形的面积.
9,12,15
12,16,20
30,40,50
5,12,13
10,24,26
15,36,39
20,48,52
50,120,130
8,15,17 7,24,25
16,30,34 14,48,50
24,45,51 21,72,75
32,60,68 28,96,100
80,150,170 70,240,250
四、强化训练 5、已知:△ABC,AB=AC=17, BC=16,则高AD=15,S△ABC=120
北师大版数学八年级上册全套ppt课件及复习

自学指导
• 1.动手画画、动手算算、动脑想想 • 在纸上任意作出两个直角三角形,分别测量它们的三边长,且动笔算一下,三 条边长的平方有什么样的关系,你能猜想一下吗? • 2.借图说明 • (1)观察课本第三页图1—2,思考在两个直角三角形ABC中,三边的平方分别 是多少?你是怎样得到的?它们满足上面的结论吗? • (2)在图1—3中的两个直角三角形中,是否仍满足这样的关系?若能,试说明 你是如何求出正方形的面积? • 3.想想办法 • 如果直角三角形的两直角边分别为5个单位长度和12个单位长度,上面所猜想 的数量关系还成立吗?请说明你的理由
AB 12 (3 3) AB 15
2 2 2
A 12
’
3
O
B
侧面展开图
A’
12
3π
B
你学会了吗? A A
李叔叔想要检测雕塑底座正 面的AD边和BC边是否分别垂直于 底边AB,但他随身只带了卷尺, (1)你能替他想办法完成任务 吗? (2)李叔叔量得AD长是30厘米, AB长是40厘米,BD长是50厘米, AD边垂直于AB边吗?为什么?
点A处有一只蚂蚁,现要向顶点B处爬行,已知蚂 蚁爬行的速度是1厘米/秒,且速度保持不变,问 蚂蚁能否在20秒内从A爬到B? B
五、布置作业
1.习题1.1. 2.阅读《读一读》——勾股世界. 3.观察下图,探究图中三角形的三边长是否满足 a 2 b 2 c 2?
a
c b
a c
b
能得到直角三角形吗?
1、回顾旧知: 三角形的内角和为: 勾股定理的内容是: 2、探索新知认真阅读教材P17-18页内容,并动手实践,归 纳总结已知下列每组数为三角形的三边长a、b、c,用尺规 作出三角形(图作在背面) (1)3cm、4 cm、5 cm (2)6 cm 、8 cm 、10 cm (3)5 cm 、12 cm 、13 cm 3、用量角器量出最大角的度数,它们是直角三角形吗? 分析三边长有何关系: 从而得出结论:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解:按丙生的办法:将长方形ABCD与长方形BEFC展开成长方 形AEFD,如图1-4所示:
则AE=AB+BE=4(cm),EF=3 cm,连接AF,在Rt△AEF中, AF2=AE2+EF2=42+32=25,∴AF=5(cm).连接BF,
∵AF<AB+BF,
∴丙的方法比甲的好.
2021
14
第一按章丁生|过的关办测法试,将长方形ABCD与正方形CFGD展开成长方形 ABFG,如图1-5所示:
如果三角形的三边长 a、b、c 满足:a2+b2=c2 ,那么这个三角形是
直角三角形.
3.勾股数
满足 a2+b2=c2 的三个 正整数 ,称为勾股数.
2021
4
考点攻略
考点一 应用勾股定理计算 例1 已知直角三角形的两边长分别为3,4,求第三边长的平方.
[解析] 因习惯了“勾三股四弦五”的说法,即意味着两直角 边为3和4时,斜边长为5.但这一理解的前提是3,4为直角边. 而本题中并未加以任何说明,因而所求的第三边可能为斜边 ,也可能为直角边.
则BF=BC+CF=3+2=5(cm),AB=2 cm,连接AF,在 Rt△ABF中,AF2=BF2+AB2=52+22=29≈5.392,
∴AF=5.39 cm.连接AC, ∵AF<AC+CF,
∴丁的方法比乙的好. 比较丙生与丁生的计算结果,知丙生的说法正确.
图1-4
2021
图1-5
15
方法技巧
北师大版八年级上册 期末总复习典型题
2021
1
CONTEN
目T录
第一章 勾股定理 第二章 实数
第三章 位置与坐标 第四章 一次函数
第五章 二元一次方程组
第六章 数据分析 第七章 平行线的证明
2021
2
第一章 勾股定理
2021
3
知识归纳
1.勾股定理
定义:如果直角三角形两直角边分别为 a、b,斜边为 c,那么a2+b2=c2
解:连接 AE,设正方形边长为 a,则 DF=FC=a2,EC=a4.
在 Rt△ECF 中,有 EF2=a22+a42=156a2. 在 Rt△FDA 中,有 AF2=a22+a2=54a2.
在 Rt△ABE 中,有 BE=a-14a=34a,
∵AE2=a2+34a2=1265a2,
∴AF2+EF2=AE2.
危险而需要暂时封锁?
图1-2
2021
10
[解析] 要判断公路 AB 段是否需要封锁,则需要比较点 C 到 AB 的距离与 250 m 的大小关系,可以借助勾股定理和三角形的面 积计算点 C 到 AB 的距离.
解:作 CD⊥AB 于 D,因为 BC=400 m,AC=300 m,∠ACB =90°,根据勾股定理,得 AC2+BC2=AB2,即 3002+4002=AB2, 所以 AB=500 m.
解:(1)当两直角边长分别为 3 和 4 时,第三边长的平方为 32+42=25; (2)当斜边为 4,一直角边为 3 时,第三边长的平方为 42-32=7.
2021
易错警示 应用勾股定理计算时,易出现下列两种错误: (1)忽视勾股定理成立的条件,在非直角三角形中使用 a2+ b2=c2; (2)当题目给出两条边长而没有给出图形时,可能考虑不周 而漏解.
最短路径问题是勾股定理在立体几何中的应用,一般做法 是把长方体(或其他几何体)侧面展开,将立体图形问题转化为 平面图形问题,再根据两点之间线段最短,用勾股定理求解.
各种表达形式:在 Rt△ABC 中,∠C=90°,∠A、∠B、∠C 的对边分
别为 a、b、c,则 c2= a2+b2 ,a2= c2-b2 ,b2= c2-a2 .
作用:(1)已知直角三角形的两边求第三边;(2)已知直角三角形的一边求 另两边的关系;(3)用于证明平方关系的问题.
2.勾股定理的逆定理
2021
12
例4 李老师让同学们讨论这样一个问题,如图1-3所示,有 一个长方体盒子,底面正方形的边长为2 cm,高为3 cm,在长
方体盒子下底面的A点处有一只蚂蚁,它想吃到上底面的F点处
的食物,则怎样爬行路程最短?最短路程是多少?
过了一会,李老师问同学们答案,甲生说:先由A点到B点, 再走对角线BF;乙生说:我认为应由A先走对角线AC,再走C到F 点;丙生说:将长方形ABCD与长方形BEFC展开成长方形AEFD, 利用勾股定理求AF的长;丁生说:将长方形ABCD与正方形CFGD 展开成长方形ABFG,利用勾股定理求AF的长.你认为哪位同学
由三角形的面积可知:12AB·CD=12BC·AC,所以 500CD= 400×300,所以 CD=240 m.
因为 240<250,即点 C 到 AB 的距离小于 250 m,所以有危险, 公路 AB 段需要暂时封锁.
2021
11
方法技巧
转化思想是一种重要的数学思想,它的应用十分广泛 ,如通过作高可以将非直角三角形的问题转化为直角 三角形的问题来解决,通过建模可以将实际问题转化 为数学问题来解决等.
2021
6
考点二 直角三角形的判别
例 2 如图 1-1,在正方形 ABCD 中,F 为 DC 的中点,E 为 BC 上一点,且 EC=14BC,请说明:AF⊥EF.
图 1-1
2021
7
[解析] 要说明 AF⊥EF,可说明△AEF 是直角三角形,只要根 据勾股定理的逆定理说明 AF2+EF2=AE2 就可以了.
的说法正确?并说明理由.(参考数据:29≈5.392)
图1-3
2021
13
第[解一析章] |过要关使测蚂试蚁爬行的路程最短,可直接连接AF,再求出AF ,但AF在盒子里面,不符合题目要求.甲生和乙生的方案类似
,只是顺序不同,丙生和丁生的方法类似,只是长方形的长、 宽不同,若在丙、丁的长方形中分别画出甲、乙的路线,则发 现丙生和丁生的办法都符合要求,但究竟哪个路程最短,就需 要计算了.
根据勾股定理的逆定理,得∠AFE=90°,
∴AF⊥EF.
2021
8
易错警示 根据 a2+b2=c2,判别直角三角形时,容易出现计算一条 短边及最长边的平方和,导致错误.
2021
9
考点三 勾股定理的实际应用
例3 如图1-2,在公路AB旁有一座山,现有一C处需要爆破 ,已知点C与公路上的停靠站A的距离为300 m,与公路上另一停 靠站B的距离为400 m,且CA⊥CB,为了安全起见,爆破点C周围 半径250 m范围内不得进入.在进行爆破时,公路AB段是否因有
则AE=AB+BE=4(cm),EF=3 cm,连接AF,在Rt△AEF中, AF2=AE2+EF2=42+32=25,∴AF=5(cm).连接BF,
∵AF<AB+BF,
∴丙的方法比甲的好.
2021
14
第一按章丁生|过的关办测法试,将长方形ABCD与正方形CFGD展开成长方形 ABFG,如图1-5所示:
如果三角形的三边长 a、b、c 满足:a2+b2=c2 ,那么这个三角形是
直角三角形.
3.勾股数
满足 a2+b2=c2 的三个 正整数 ,称为勾股数.
2021
4
考点攻略
考点一 应用勾股定理计算 例1 已知直角三角形的两边长分别为3,4,求第三边长的平方.
[解析] 因习惯了“勾三股四弦五”的说法,即意味着两直角 边为3和4时,斜边长为5.但这一理解的前提是3,4为直角边. 而本题中并未加以任何说明,因而所求的第三边可能为斜边 ,也可能为直角边.
则BF=BC+CF=3+2=5(cm),AB=2 cm,连接AF,在 Rt△ABF中,AF2=BF2+AB2=52+22=29≈5.392,
∴AF=5.39 cm.连接AC, ∵AF<AC+CF,
∴丁的方法比乙的好. 比较丙生与丁生的计算结果,知丙生的说法正确.
图1-4
2021
图1-5
15
方法技巧
北师大版八年级上册 期末总复习典型题
2021
1
CONTEN
目T录
第一章 勾股定理 第二章 实数
第三章 位置与坐标 第四章 一次函数
第五章 二元一次方程组
第六章 数据分析 第七章 平行线的证明
2021
2
第一章 勾股定理
2021
3
知识归纳
1.勾股定理
定义:如果直角三角形两直角边分别为 a、b,斜边为 c,那么a2+b2=c2
解:连接 AE,设正方形边长为 a,则 DF=FC=a2,EC=a4.
在 Rt△ECF 中,有 EF2=a22+a42=156a2. 在 Rt△FDA 中,有 AF2=a22+a2=54a2.
在 Rt△ABE 中,有 BE=a-14a=34a,
∵AE2=a2+34a2=1265a2,
∴AF2+EF2=AE2.
危险而需要暂时封锁?
图1-2
2021
10
[解析] 要判断公路 AB 段是否需要封锁,则需要比较点 C 到 AB 的距离与 250 m 的大小关系,可以借助勾股定理和三角形的面 积计算点 C 到 AB 的距离.
解:作 CD⊥AB 于 D,因为 BC=400 m,AC=300 m,∠ACB =90°,根据勾股定理,得 AC2+BC2=AB2,即 3002+4002=AB2, 所以 AB=500 m.
解:(1)当两直角边长分别为 3 和 4 时,第三边长的平方为 32+42=25; (2)当斜边为 4,一直角边为 3 时,第三边长的平方为 42-32=7.
2021
易错警示 应用勾股定理计算时,易出现下列两种错误: (1)忽视勾股定理成立的条件,在非直角三角形中使用 a2+ b2=c2; (2)当题目给出两条边长而没有给出图形时,可能考虑不周 而漏解.
最短路径问题是勾股定理在立体几何中的应用,一般做法 是把长方体(或其他几何体)侧面展开,将立体图形问题转化为 平面图形问题,再根据两点之间线段最短,用勾股定理求解.
各种表达形式:在 Rt△ABC 中,∠C=90°,∠A、∠B、∠C 的对边分
别为 a、b、c,则 c2= a2+b2 ,a2= c2-b2 ,b2= c2-a2 .
作用:(1)已知直角三角形的两边求第三边;(2)已知直角三角形的一边求 另两边的关系;(3)用于证明平方关系的问题.
2.勾股定理的逆定理
2021
12
例4 李老师让同学们讨论这样一个问题,如图1-3所示,有 一个长方体盒子,底面正方形的边长为2 cm,高为3 cm,在长
方体盒子下底面的A点处有一只蚂蚁,它想吃到上底面的F点处
的食物,则怎样爬行路程最短?最短路程是多少?
过了一会,李老师问同学们答案,甲生说:先由A点到B点, 再走对角线BF;乙生说:我认为应由A先走对角线AC,再走C到F 点;丙生说:将长方形ABCD与长方形BEFC展开成长方形AEFD, 利用勾股定理求AF的长;丁生说:将长方形ABCD与正方形CFGD 展开成长方形ABFG,利用勾股定理求AF的长.你认为哪位同学
由三角形的面积可知:12AB·CD=12BC·AC,所以 500CD= 400×300,所以 CD=240 m.
因为 240<250,即点 C 到 AB 的距离小于 250 m,所以有危险, 公路 AB 段需要暂时封锁.
2021
11
方法技巧
转化思想是一种重要的数学思想,它的应用十分广泛 ,如通过作高可以将非直角三角形的问题转化为直角 三角形的问题来解决,通过建模可以将实际问题转化 为数学问题来解决等.
2021
6
考点二 直角三角形的判别
例 2 如图 1-1,在正方形 ABCD 中,F 为 DC 的中点,E 为 BC 上一点,且 EC=14BC,请说明:AF⊥EF.
图 1-1
2021
7
[解析] 要说明 AF⊥EF,可说明△AEF 是直角三角形,只要根 据勾股定理的逆定理说明 AF2+EF2=AE2 就可以了.
的说法正确?并说明理由.(参考数据:29≈5.392)
图1-3
2021
13
第[解一析章] |过要关使测蚂试蚁爬行的路程最短,可直接连接AF,再求出AF ,但AF在盒子里面,不符合题目要求.甲生和乙生的方案类似
,只是顺序不同,丙生和丁生的方法类似,只是长方形的长、 宽不同,若在丙、丁的长方形中分别画出甲、乙的路线,则发 现丙生和丁生的办法都符合要求,但究竟哪个路程最短,就需 要计算了.
根据勾股定理的逆定理,得∠AFE=90°,
∴AF⊥EF.
2021
8
易错警示 根据 a2+b2=c2,判别直角三角形时,容易出现计算一条 短边及最长边的平方和,导致错误.
2021
9
考点三 勾股定理的实际应用
例3 如图1-2,在公路AB旁有一座山,现有一C处需要爆破 ,已知点C与公路上的停靠站A的距离为300 m,与公路上另一停 靠站B的距离为400 m,且CA⊥CB,为了安全起见,爆破点C周围 半径250 m范围内不得进入.在进行爆破时,公路AB段是否因有