农业有害生物预警系统

合集下载

农业病虫害预测与防控智能化系统

农业病虫害预测与防控智能化系统

农业病虫害预测与防控智能化系统第1章绪论 (3)1.1 农业病虫害预测与防控的意义 (3)1.1.1 保证粮食安全 (4)1.1.2 提高农产品质量 (4)1.1.3 促进农业可持续发展 (4)1.2 智能化系统在农业病虫害预测与防控中的应用 (4)1.2.1 数据采集与分析 (4)1.2.2 病虫害预测模型构建 (4)1.2.3 防控策略优化 (4)1.2.4 农业生产管理决策支持 (4)第2章农业病虫害基本知识 (5)2.1 病虫害分类与发生规律 (5)2.1.1 真菌性病害 (5)2.1.2 细菌性病害 (5)2.1.3 病毒性疾病 (5)2.1.4 害虫侵害 (5)2.1.5 线虫病害 (5)2.1.6 非生物因素引起的病虫害 (5)2.2 病虫害影响因素分析 (5)2.2.1 气候因素 (6)2.2.2 土壤因素 (6)2.2.3 农业生产措施 (6)2.2.4 生态环境 (6)2.3 病虫害监测与预警技术 (6)2.3.1 病虫害调查与监测 (6)2.3.2 遥感技术 (6)2.3.3 气象预报技术 (6)2.3.4 模型预测技术 (6)2.3.5 预警系统 (6)第3章数据采集与处理技术 (7)3.1 农业病虫害数据采集方法 (7)3.1.1 传统数据采集方法 (7)3.1.2 现代遥感技术 (7)3.1.3 传感器技术 (7)3.2 数据预处理技术 (7)3.2.1 数据清洗 (7)3.2.2 数据标准化与归一化 (7)3.2.3 数据整合与融合 (7)3.3 数据分析与挖掘方法 (7)3.3.1 描述性统计分析 (7)3.3.2 机器学习与模式识别 (8)3.3.4 深度学习技术 (8)第4章病虫害预测模型构建 (8)4.1 统计预测模型 (8)4.1.1 时间序列分析模型 (8)4.1.2 线性回归模型 (8)4.1.3 逻辑回归模型 (8)4.2 机器学习预测模型 (8)4.2.1 决策树模型 (8)4.2.2 随机森林模型 (9)4.2.3 支持向量机模型 (9)4.3 深度学习预测模型 (9)4.3.1 卷积神经网络模型 (9)4.3.2 循环神经网络模型 (9)4.3.3 深度信念网络模型 (9)4.3.4 对抗网络模型 (9)4.3.5 融合模型 (9)第5章病虫害防控策略制定 (9)5.1 防控策略概述 (9)5.2 防控措施优化方法 (10)5.2.1 预防措施 (10)5.2.2 治理措施 (10)5.2.3 监测措施 (10)5.3 防控效果评估 (10)第6章智能化系统设计与实现 (11)6.1 系统架构设计 (11)6.1.1 整体架构 (11)6.1.2 数据层 (11)6.1.3 服务层 (11)6.1.4 应用层 (11)6.2 系统功能模块设计 (11)6.2.1 数据处理模块 (11)6.2.2 模型预测模块 (11)6.2.3 防控策略模块 (11)6.3 系统开发与实现 (12)6.3.1 开发环境 (12)6.3.2 系统实现 (12)6.3.3 系统部署 (12)第7章智能识别与诊断技术 (12)7.1 图像处理与特征提取 (12)7.1.1 图像预处理 (12)7.1.2 特征提取 (12)7.2 深度学习在病虫害识别中的应用 (13)7.2.1 卷积神经网络(CNN) (13)7.3 病虫害诊断方法研究 (13)7.3.1 支持向量机(SVM) (13)7.3.2 集成学习 (13)7.3.3 深度学习方法 (13)第8章预测与防控系统应用案例 (14)8.1 案例一:水稻病虫害预测与防控 (14)8.1.1 案例背景 (14)8.1.2 系统应用 (14)8.1.3 应用效果 (14)8.2 案例二:小麦病虫害预测与防控 (14)8.2.1 案例背景 (14)8.2.2 系统应用 (14)8.2.3 应用效果 (14)8.3 案例三:果树病虫害预测与防控 (14)8.3.1 案例背景 (14)8.3.2 系统应用 (15)8.3.3 应用效果 (15)第9章农业病虫害防控政策与措施 (15)9.1 我国病虫害防控政策概述 (15)9.1.1 政策背景 (15)9.1.2 政策目标 (15)9.1.3 政策措施 (15)9.2 农业病虫害防控措施实践 (15)9.2.1 监测预警体系构建 (15)9.2.2 绿色防控技术应用 (16)9.2.3 农药、化肥减量使用 (16)9.3 防控政策与措施优化建议 (16)9.3.1 政策优化 (16)9.3.2 措施优化 (16)9.3.3 社会共治 (16)第10章智能化系统在农业病虫害防控中的前景与挑战 (16)10.1 农业病虫害防控智能化发展趋势 (16)10.2 面临的挑战与问题 (17)10.3 未来研究方向与展望 (17)第1章绪论1.1 农业病虫害预测与防控的意义农业病虫害预测与防控是保障粮食安全和农产品质量的重要环节。

农作物重大病虫害数字化监测预警系统解决方案

农作物重大病虫害数字化监测预警系统解决方案

农作物重大病虫害数字化监测预警系统解决方案一、农作物重大病虫害数字化监测预警系统简介概述:在我们的农业种植过程中,病虫害无疑是农业工作者以及相关研究部门最为头疼的一个部分。

同时,若程度较小的病虫害未经良好处理,极有可能会演变成重大病虫灾害。

其中,农作物重大病虫害数字化监测预警系统的出现,无疑为重大病虫灾害的预防做好技术方面的支持。

农作物重大病虫害数字化监测预警系统,在病虫灾害处理领域,可有效进行病虫防控组织化程度和科学化水平等方面的提升。

其中农作物重大病虫害数字化监测预警系统是无疑是实现病虫综合治理、农药减量控害的重要措施,同时也是深入开展“到2020年农药使用量零增长行动”的重要抓手,其中最为值得一提的是,该系统还是转变农业发展方式、实现提质增效的重大举措。

其中,相关部门为确保融合示范工作有力有序开展、取得实效,特此制定该方案。

由托普云农自主研发生产的农作物重大病虫害数字化监测预警系统在进行使用过程中,用户可随时进行园区数据查看。

其中,系统可通过提前的设定,将检测的参数进行远程传输。

用户可通过对设备自动传输回来的数据进行分析,并且进行后续计划的制定。

那么什么是农作物重大病虫害数字化监测预警系统呢?托普云农农作物重大病虫害数字化监测预警系统的功能很强大,所以它的构建也并非只是一件简单的仪器,而是由孢子信息自动捕捉培养系统、病虫害远程监控设备、虫情信息自动采集分析系统、远程小气候信息采集系统、害虫性诱智能测报系统等设备组成,不仅可以做到病害状况的监测,还可以采集虫情信息、农林气象信息,并可以将数据上传至云服务器,用户通过网页、手机即可联合作物管理知识、作物图库、灾害指标等模块,对作物实时远程监测与诊断,提供智能化、自动化管理决策,帮助农业工作者智能管理农田。

我们都知道,像气候变化等现象都会对农作物病害的发生有影响,特别是在秋冬季节,秋冬季气温较常年略高、降水偏少,则有利于蚜虫、红蜘蛛、地下害虫越冬。

农业有害生物预警与控制区域站建设参考配置表

农业有害生物预警与控制区域站建设参考配置表
农业有害生物预警与控制区域站建设参考配置表
以下清单仅供参考,可根据实际情况配置。
产品名称
推荐型号
单位
数量
土建
检验检测室(病害室50m2、昆虫室50m2、无菌操作室20m2、养虫室30m2、农药残留检测室50m2、标本室40m2、资料档案室40m2、预测会商室120m2、其他100m2)
平方米
500
试验配套用房(药品室40m2、更衣室15m2、卫生间15m2、车库80m2、设备库80m2、配电室10m2等、其他60m2)

1
移液器
大龙

1
冰箱
可自购

1
实验室控温设备
可自购

3
实验台、药品柜、标本柜
自选规格

1
应急防治大型施药设备
3WZ-1000

1
机动喷雾喷粉机
3WF-18AC

300
防护服
TOMTX

300
防控指挥专用车(山区:越野车,平原:面包车)
可自购

1
病虫系统调查专
不可预见费用
注:本标配为通用设备,不包括特殊专用设备
平方米
300
信息网络、培训和技术展示用房(网络机房40m2、培训室60m2、展示室80m2、文印室20m2等)
平方米
200
应急防治药品及施药器械库
平方米
500
标准病虫观测场建设(通透围栏、温室(800m2*2)、养虫网室、工具房、田间排灌系统及配套设施)

10
建设征地(检验检测室及应急药械仓库)

1
设备
自动虫情测报灯
TPCB-IIII-A

面向物联网的智能农业病虫害监测与预警系统设计

面向物联网的智能农业病虫害监测与预警系统设计

面向物联网的智能农业病虫害监测与预警系统设计随着物联网技术的快速发展和普及,智能农业正逐渐成为现代农业发展的热点领域。

在传统农业中,农民往往依靠经验和人工观察判断农作物的健康状况和病虫害情况,这既费时费力,也容易出现误判的情况。

因此,开发一套面向物联网的智能农业病虫害监测与预警系统,可以大大提高农作物的管理效率和农业生产的稳定性。

一、系统概述智能农业病虫害监测与预警系统是一套基于物联网技术的系统,主要用于实时监测农作物的健康状况和病虫害情况,并及时发出预警,帮助农民采取有效的防治措施。

该系统由传感器网络、数据传输和处理系统、预警系统等三部分构成。

1. 传感器网络:通过在农田中布置传感器节点,实时监测农作物的温度、湿度、土壤湿度、光照强度等关键参数。

传感器节点将采集到的数据通过物联网网络传输给数据传输和处理系统。

2. 数据传输和处理系统:接收传感器节点上传的数据,并进行实时处理和分析。

该系统通过建立与云平台的通信,可以将农田数据和分析结果实时上传到云平台。

同时,系统中的算法可以根据农田数据对农作物健康状况和病虫害情况进行预测和分析。

3. 预警系统:根据数据传输和处理系统分析的结果,系统可以通过短信、邮件、电话等方式向农民发出预警信息。

农民收到预警信息后,可以迅速采取相应的防治措施,以减少农作物病虫害带来的损失。

二、系统功能1. 实时监测农作物状况:通过传感器网络,系统可以实时监测农作物的温度、湿度、土壤湿度、光照强度等关键参数,并将监测数据上传至云平台,供农民随时查看。

2. 病虫害预测和分析:数据传输和处理系统利用农田数据进行算法分析,基于历史数据和模型,预测和识别农作物病虫害的发生和扩散情况,帮助农民提前做好预防和控制措施。

3. 异常预警和报警:一旦发现农作物出现异常,如温度过高、湿度过低、土壤湿度异常等,系统将立即发出预警信息给农民,提醒其及时采取措施。

4. 数据分析和决策支持:系统通过对农田数据的分析,生成相关报表和图表,帮助农民了解农作物的健康状况和病虫害情况,以及采取相应的防治措施。

病虫害监测与预警系统的建立

病虫害监测与预警系统的建立

病虫害监测与预警系统的建立病虫害对农作物的产量和品质造成了严重影响,因此建立一套高效的病虫害监测与预警系统非常重要。

本文将介绍该系统的建立和运行方式,以提供有效的病虫害防控方案。

一、系统概述病虫害监测与预警系统是一套集信息采集、数据分析和预警发布为一体的综合管理工具。

通过传感器设备、数据分析算法和预警平台,实现对农田病虫害的实时监测、诊断和预测,为农民提供精准的防控建议,最大限度地减少病虫害对农作物的破坏。

二、系统建立1. 传感器设备的选择与布置传感器设备是病虫害监测系统的核心,可以通过无线网络将采集到的数据传输到后台服务器进行处理。

该系统需要选择适合不同病虫害监测的传感器设备,并根据农田环境特点合理布置。

例如,可以选择温度传感器、湿度传感器和光照传感器等对环境参数进行实时监测。

2. 数据采集与分析采集到的数据将被传输到后台服务器,进行数据统计和分析。

通过对病虫害相关参数的长期监测和分析,可以建立病虫害的监测模型,准确预测病虫害的发生规律和趋势。

同时,针对不同农作物和不同区域的病虫害差异,建立针对性的分析模型,提高预测的准确性。

3. 预警发布预警信息需要及时准确地传达给农民,帮助他们采取相应的防控措施。

预警信息可以通过手机APP、短信、邮件等多种方式传达给农民。

预警内容应包括病虫害的种类、发生程度、防控建议等,以便农民及时采取应对措施,减少经济损失。

三、系统优势1. 实时监测传感器设备可以实时采集环境数据,反映农田病虫害的变化情况,农民可以及时掌握农田状况并采取相应防治措施。

2. 精确预测基于长期数据的分析和模型建立,系统可以精确预测病虫害的发生规律和趋势,提前做好防控准备,降低农作物损失。

3. 智能化管理病虫害监测与预警系统采用先进的数据分析算法,能够自动识别病虫害类型,并给出相应的防控建议,实现农作物的智能化管理。

四、系统应用该系统不仅可以应用于农田的病虫害监测与预警,还可以应用于园艺、林业等领域的病虫害防治。

林业有害生物监测预报及防治工作的开展对策

林业有害生物监测预报及防治工作的开展对策

林业有害生物监测预报及防治工作的开展对策张发明(聊城市东昌府区林业发展中心,山东聊城252000)摘要:林业的生态建设,对于整个生态系统及其社会经济的可持续发展都有着十分关键的意义。

在林业生态建设的过程中会有一些因素使得林业的自然环境受到了损害,其中最大的威胁之一便是林业有害生物。

为此,本文对林业生态建设中有害生物防治进行研究,提出林业有害生物监测预报及防治工作的开展对策,以供参考。

关键词:林业;生物监测预报;林业有害生物;防治中图分类号:S763文献标识码:A文章编号:1005-7897(2022)08-0175-030引言随着世界气候逐步回暖,影响林业生态环境的原因也变得更多。

林业有害生物对树木产生的影响很大,对林业能效标签的破坏力也不可小觑。

想要有效改善林业生态,就一定要重视开展对林业有害生物的防控工作。

在林业管理工作的过程中,必须把林业有害生物的防控管理工作贯穿始终,唯有如此方可更好地发挥林业经济效益,进而达到对生态环境治理的可持续性。

1在林业生态建设中开展林业有害生物防治的作用1.1维护生态稳定相较于其他的生态系统而言,由于林木中有着十分丰富的生态基因,因此有着和较大的区别,林业生态系统在养分结构、食物链方面都相对复杂,同时在整个生态系统中效率和产量都相对较高。

在林业能效标签中进行对林业有害生物发生的预防工作,目的便是使林业有害生物防治的影响区域大大减少。

而假如能够在林业有害生物预防工作发生的前期遏制住肆虐的势头,非但没有使其更大面积地暴发,反而还可以更有效保持整个林业生态系统的稳定性。

此外,进行林业有害生物预防工作还有助于增加林木的存活率,对林业经济的进一步发展也是十分有益的。

1.2提高经济效益加强对林业资源利用的科学合理利用力度,才能更有效地推动区域经济发展。

因为,林业系统本来就具备了一定的功能性和效益,而唯有科学合理地运用已有的林业资源,才能使林木的经济价值更好地充分发挥出来。

经过科学研究表明,目前各地均已出现因环境不适造成生物消亡的迹象,其中灭绝的生物中有不少都是有益的生物[1]。

病虫害监测预警系统-北创科技智慧农业

病虫害监测预警系统-北创科技智慧农业

病虫害防治系统-银川北创科技有限公司一、建设背景近年来,农业部启动了一系列全国主要农作物有害生物种类与发生危害情况调查研究项目。

包括对农作物有害生物系统的普查与对农作物病虫害的预警和防治。

主要农作物的病、虫、草、鼠害为重点,采取系统调查与普查相结合、定点观测与定位调查相结合、一般调查与重点调查相结合的方法,对主要农作物上的有害生物种类进行全面调查和鉴定,查明危害农作物有害生物的所有种类,获取我国主要农作物上有害生物种类的全部数据,建立《中国主要农作物有害生物数据库》,出版《中国主要农作物有害生物名录》系列丛书;对国内新发生和境外入侵有害生物种类鉴定到种或属,对历史记载进行核实、澄清和更新;对主要有害生物的发生分布区域进行系统调查,结合寄主作物的分布,对农作物有害生物的发生进行区划,绘制主要有害生物种类的发生分布区划图;采用系统监测、抽样调查和统计学方法对重要有害生物的发生程度进行调查研究,明确重要有害生物造成的产量损失;系统分析全球气候变暖、耕作制度变化、农产品贸易全球化、农作物品种抗性变化和有害生物抗药性上升等多种因素对重大农作物有害生物发生发展的影响,阐明重大有害生物长期发生趋势,编写《中国重大农作物有害生物发生趋势分析和控制策略报告》,为制定重大病虫害防控策略,提高防控能力提供依据;通过对小型种、微小种,以及疑难种和近缘种等开展采样调查、分类与鉴定,研究提出上述小型种类有害生物快速鉴定技术;探索分子生物学技术和“3S”技术(遥感、地理信息系统和全球定位系统)在有害生物调查、鉴定和分析中的应用,形成一系列有害生物调查方法与技术规范。

我国农业生态条件复杂,耕作制度多样,也是世界上农业有害生物灾害多发、频发和重发的国家之一,据不完全统计,我国农作物有害生物1600多种,其中,害虫830多种、病害720多种、杂草60多种、鼠害20多种。

开展主要农作物有害生物种类与发生危害特点研究,对于摸清我国主要农作物有害生物发生危害家底,提高植保防灾减灾水平意义十分重大。

林业有害生物防控远程实时监测及远程诊断系统

林业有害生物防控远程实时监测及远程诊断系统

林业有害⽣物防控远程实时监测及远程诊断系统本⽂由重庆宇创GIS原创,转载请注明来源!
林业有害⽣物防控远程实时监测及远程诊断系统,利⽤远程视频监控设备、远程⾃动⾍情监
测设备,实现对森林病⾍害的实时远程监测,实现了在监控中⼼与就可掌握森林监测区域的病⾍
动态,系统包括以下⼏个⼦系统:
1、林业有害⽣物远程监控系统
病⾍害远程监控系统由摄像、传输、控制、显⽰、存储5⼤部分组成,在监测现场安装360°
全⽅位红外⾼清摄像机,⽤户可清晰直观的实时查看区域病⾍灾害情况,对突发性灾害事件可
实时指挥和调度。

2、远程⾃动⾍情测报系统
系统通过智能⾍情监测设备,可以⽆公害诱捕杀⾍,绿⾊环保,同时利⽤移动⽆线⽹路,定
时采集现场图像,⾃动上传到远端的物联⽹监控服务平台,⼯作⼈员可随时远程了解⾍情情况
与变化,制定防治措施。

通过系统设置或远程设置后⾃动拍照将现场拍摄的图⽚⽆线发送⾄监
测平台,平台⾃动记录每天采集数据,形成⾍害数据库,以各种图表、列表形式展现给农业专
家进⾏远程诊断。

3、林业有害监测预警预报系统
系统通过GIS地图、图表、报表等多种形式综合展⾍情,当前端设备监测到异常,⾃动发送
报警到后台,在地图上可直观显⽰报警设备的位置,及时通知各级监测管理⼈员采取防治措
施。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

农业有害生物预警系统
一、系统简介
农业有害生物预警系统综合运用GIS技术、数据库技术,采用B/S和C/S混合结构,完成数据上报、数据查询、统计分析、等值线制作、等值面制作、病虫害预警、信息发布等功能,提高省级植报站的工作效率,满足内部工作人员的工作需要和社会公众对相关信息的需求
二、系统特点
·分层体系结构设计
系统采用分层设计,各个层次之间相互衔接,同时,层次之间耦合性弱,系统更加健壮,并且具有很强的灵活性。

·采用自主开发的国产数据库产品
系统数据库管理系统软件使用自主产权的数据库产品-KingbaseES,系统稳定、简便易用,具有较高的性价比。

·基于GIS开发,提供多种表现方式
系统充分利用地理信息系统软件提供的多种表现方式,使数据表现方式多样化,提高了系统的美观和直观性。

·和国家系统保持高度一致
系统的数据库设计和系统功能开发充分采用国家系统已有的成果,在数据和功能两方面保持和国家系统的一致性。

三、系统结构
四、系统功能
·数据录入与审核
·数据查询统计
·数据上报
·信息发布与实时通知
·等值线、面制作
·病虫害动态演进
·编码维护
·系统维护。

相关文档
最新文档