常微分方程第三版答案2.2[1]1
常微分方程第三版答案.doc

习题 1.dxdy=2xy,并满足初始条件:x=0,y=1的特解。
解:ydy=2xdx 两边积分有:ln|y|=x 2+c y=e2x +e c =cex 2另外y=0也是原方程的解,c=0时,y=0原方程的通解为y= cex 2,x=0 y=1时 c=1 特解为y= e 2x .2. y 2dx+(x+1)dy=0 并求满足初始条件:x=0,y=1的特解。
解:y 2dx=-(x+1)dy2y dy dy=-11+x dx两边积分: -y1=-ln|x+1|+ln|c| y=|)1(|ln 1+x c另外y=0,x=-1也是原方程的解 x=0,y=1时 c=e 特解:y=|)1(|ln 1+x c3.dx dy =yx xy y 321++解:原方程为:dxdy =y y 21+31x x + y y 21+dy=31xx +dx 两边积分:x(1+x 2)(1+y 2)=cx 24. (1+x)ydx+(1-y)xdy=0 解:原方程为:y y -1dy=-xx 1+dx两边积分:ln|xy|+x-y=c 另外 x=0,y=0也是原方程的解。
5.(y+x )dy+(x-y)dx=0解:原方程为:dx dy =-yx y x +-令xy=u 则dx dy =u+x dx du 代入有:-112++u u du=x 1dxln(u 2+1)x 2=c-2arctgu 即 ln(y 2+x 2)=c-2arctg 2xy. 6. xdxdy -y+22y x -=0 解:原方程为:dx dy =x y +xx ||-2)(1x y -则令xy=u dx dy =u+ x dx du211u - du=sgnxx1dx arcsinxy=sgnx ln|x|+c 7. tgydx-ctgxdy=0 解:原方程为:tgy dy =ctgxdx 两边积分:ln|siny|=-ln|cosx|-ln|c| siny=x c cos 1=xccos 另外y=0也是原方程的解,而c=0时,y=0.所以原方程的通解为sinycosx=c.8 dx dy +ye x y 32+=0 解:原方程为:dx dy =ye y 2e x 32 ex3-3e2y -=c.(lnx-lny)dy-ydx=0解:原方程为:dx dy =x y ln x y 令xy=u ,则dx dy =u+ x dx duu+ xdx du=ulnu ln(lnu-1)=-ln|cx| 1+lnxy=cy. 10.dxdy =e yx - 解:原方程为:dxdy =e x e y- e y=ce x11dxdy =(x+y)2解:令x+y=u,则dx dy =dxdu -1 dx du -1=u 2211u +du=dx arctgu=x+c arctg(x+y)=x+c12.dx dy =2)(1y x + 解:令x+y=u,则dx dy =dxdu -1dx du -1=21uu-arctgu=x+c y-arctg(x+y)=c. 13.dx dy =1212+-+-y x y x 解: 原方程为:(x-2y+1)dy=(2x-y+1)dx xdy+ydx-(2y-1)dy-(2x+1)dx=0 dxy-d(y 2-y)-dx 2+x=cxy-y 2+y-x 2-x=c 14:dx dy =25--+-y x y x 解:原方程为:(x-y-2)dy=(x-y+5)dx xdy+ydx-(y+2)dy-(x+5)dx=0 dxy-d(21y 2+2y)-d(21x 2+5x)=0 y 2+4y+x 2+10x-2xy=c.15: dxdy=(x+1) 2+(4y+1) 2+8xy 1+ 解:原方程为:dxdy=(x+4y )2+3令x+4y=u 则dx dy =41dx du -4141dx du -41=u 2+3 dx du=4 u 2+13 u=23tg(6x+c)-1 tg(6x+c)=32(x+4y+1).16:证明方程y x dxdy=f(xy),经变换xy=u 可化为变量分离方程,并由此求下列方程: 1) y(1+x 2y 2)dx=xdy2) y x dx dy =2222x -2 y x 2y +证明: 令xy=u,则x dx dy +y=dxdu 则dx dy =x 1dx du -2x u,有:u x dxdu=f(u)+1)1)((1+u f u du=x1dx所以原方程可化为变量分离方程。
常微分方程第三版习题答案

常微分方程第三版习题答案常微分方程是数学中的一个重要分支,它研究的是描述自然界中变化规律的方程。
在学习常微分方程的过程中,习题是非常重要的一部分,通过解习题可以加深对理论知识的理解和应用能力的培养。
本文将为大家提供《常微分方程第三版》习题的部分答案,希望能对大家的学习有所帮助。
1. 习题一1.1 解:首先,我们根据题意列出方程:$\frac{dy}{dt} = 2y + t^2$这是一个一阶线性常微分方程,我们可以使用常数变易法来求解。
令$y = u(t)e^{2t}$,则$\frac{dy}{dt} = \frac{du}{dt}e^{2t} + 2ue^{2t}$将上述结果代入原方程,得到:$\frac{du}{dt}e^{2t} + 2ue^{2t} = 2(u(t)e^{2t}) + t^2$化简得到:$\frac{du}{dt}e^{2t} = t^2$两边同时除以$e^{2t}$,得到:$\frac{du}{dt} = t^2e^{-2t}$对上式两边同时积分,得到:$u = -\frac{1}{4}t^2e^{-2t} + C$将$u$代入$y = u(t)e^{2t}$,得到最终的解:$y = (-\frac{1}{4}t^2e^{-2t} + C)e^{2t}$1.2 解:首先,我们根据题意列出方程:$\frac{dy}{dt} = \frac{t}{y}$这是一个一阶可分离变量的常微分方程,我们可以通过分离变量来求解。
将方程变形,得到:$ydy = tdt$对上式两边同时积分,得到:$\frac{1}{2}y^2 = \frac{1}{2}t^2 + C$解得:$y^2 = t^2 + C$由于题目中给出了初始条件$y(0) = 1$,将初始条件代入上式,得到:$1 = 0 + C$解得:$C = 1$将$C$代入$y^2 = t^2 + C$,得到最终的解:$y^2 = t^2 + 1$2. 习题二2.1 解:首先,我们根据题意列出方程:$\frac{dy}{dt} = 2ty + t^2$这是一个一阶线性常微分方程,我们可以使用常数变易法来求解。
常微分方程第三版答案

百度文库•让每个人平等地捉升口我习题1.21・—=2xy,并满足初始条件:x=0, y=l 的特解。
dx解:—=2xdx 两边积分有:ln|y|=x'+cy=e ' +e =cex 2另外y=0也是原方程的解,c=0时,y=0原方程的通解为y= cex 2, x=0 y=l 时c=l特解为尸e r \2. y' dx+(x+l)dy=O 并求满足初始条件:x=0, y=l 的特解。
dy 1 + y 2* — 了dx xy + x^ydy _ 1 + y 2 1 dx y x + A 3 dy= ------ r dx X + X'两边积分:x(l+x 2) (1+y 2 )=cx"4. (1+x)ydx+(l-y)xdy=O解:原方程为:—dy=-—dx y x两边积分:In | xy +x-y=c另外x=0, y=0也是原方程的解。
5・(y+x) dy+(x-y)dx=O解:原方程为:解:y - dx=-(x+l)dy卑 dy=J x + 1 dx 两边积分:-丄=-ln|x+l|+ln|c| y I尸 In 1 c(x + 1)1另外y=0> X-1也是原方程的解x=0, y=l 时 c=e 特解:y=In I c(x + \) I解:原方程为:dy x- ydx x + y八V … t dv du 小、亠令i =u 则——=u+x 代入有: x dx dx---- d u= — dx iC +1 xln(u~ +l)x~ =c-2arctgu即 ln(y ~+x~ )=c-2arctg 厶.6. x — -y+ -Jx 2 — y 1 =0解:原方程为:y^=- + —-Jl-(-)2 dx xxv xA y dv dii 贝U 令—=u — =u+ x — x dx dx,du=sgnx — dx VI-w 2 Xarcsin —=sgnx In I x I +c x7. tgydx-ctgxdy=0解:原方程为:—=—fgy ctgx两边积分:In |siny =-ln |cosx I-In I c I1 c siny= ---------- = ------ 另外y=0也是原方程的解,而c=0时,y=0. ccosx cosx所以原方程的通解为sinycosx=c.dx y解:原方程为:学二 dx y2 e ' -3e~ =c.9・ x (lnx-lny)dy-ydx=0解:原方程为:——=—In — dx x xA v rjl dy du 令—=u ,贝11 — =u+ x —— x dx dxduu+ x — =ulnudxln(lnu-l)=-ln|cx|1+1 n = =cy・xdx解:原方程为:g二11 — =(x+y) 2dx“A十du解:令x+y=u,则〒=〒T dx dxdx------du=dx\ + ir arctgu=x+c arctg (x+y)=x+cdx (x+y)-“ 八dy du解:令x+y=u,则一=——1 dx dxu-arctgu=x+c y-arctg(x+y)=c.cly 2x - y +113.—= ---------- :——dx x-2y+ 1解:原方程为:(x-2y+l) dy=(2x-y+l)dx xdy+ydx-(2y-l)dy-(2x+l)dx=O dxy-d (y' -y) -dx +x=c乍•>xy-y - +y_x - _x二c—dy x-y+ 5dx x _ y _ 2解:原方程为:(x-y-2) dy= (x-y+5) dxxdy+ydx-(y+2)dy-(x+5)dx=O1 . 1 .dxy-d (— y' +2y) -d( —x" +5x) =02 2y - +4y+x - +10x-2xy 二c・15:— =(x+l) 2+(4y+l),+8xy + l dx解:原方程为:—=(x+4y) 2+3 dx八 e ■ 1 d" 1令x+4y=u 贝(J ——= -------dx 4 dx 41du 1 =------ =iT +34 dx 4—=4 U2+13dx3z、u= —t g(6x+c)T22t g(6x+c) = -(x+4y+l).16:证明方程丄学=f(xy),经变换xy=u可化为变量分离方程,并由此求下列方程: y dx1) y(l+x2 y2)dx=xdyX 心二2 + x:y: y dx2)2-x2y2证明:令xy=u,则x— +y= —dx dx…, dy 1 du u亠贝9于=—: ---- •有:dx x dx Q——=f (u) +1 u dx------ ! ------- d u= — dx«(/(«)+ 1) X所以原方程可化为变量分离方程。
常微分方程第三版答案(王高雄)

dx
2 2
y
1 2 = ln x − ln 1 + x + ln c (c ≠ 0), (1 + 2
y )(1 + x ) = c x
1+
y
2
(1 + x ) = c x
2
2
4 (1 + x) ydx + (1 − y ) xdy = 0 y=0 x=0 ln x + x + ln y − y = c, xy ≠ 0 ln xy + x − y = c, 1+ x 1− y dx = dy = 0 x y
按
dy 1 − 2 x y −1 dx 够 x 2 次0 个 dy 1 − 2 x y +1 dx 次- x 2 个
18.
x dy = = f ( xy ) y dx x dy 2 + x 2 y 2 = y dx 2 − x 2 y 2 xy = u, x
xy = u
1 . y (1 + x 2 y 2 )dx = xdy (2).
y+x
dy dy = , dx dx
x
dy du = −y dx dx
1 du du u 1 − 1 = f(u), = (f(u) + 1) = (uf(u) + u) y dx dx = y(f(u) + 1) x x x=0 y=0 du 1 3 = (2u + u ), dx x xy ≠ 0s du 2u + u
在个
次个e 次 ce
− sin t
+ sin t − 1 个个个
个
截
dy x − y = ex xn dx n 个个 个个个n
常微分方程第三版答案doc

常微分方程第三版答案doc习题1.21.dyd某=2某y,并满足初始条件:某=0,y=1的特解。
解:dyy=2某d某两边积分有:ln|y|=某2+cy=e某2+ec=ce某2另外y=0也是原方程的解,c=0时,y=0原方程的通解为y=ce某2,某=0y=1时c=1特解为y=e某2.2.y2d某+(某+1)dy=0并求满足初始条件:某=0,y=1的特解。
解:y2d某=-(某+1)dydy1y2dy=-某1d某两边积分:-1y=-ln|某+1|+ln|c|y=1ln|c(某1)|另外y=0,某=-1也是原方程的解某=0,y=1时c=e特解:y= ln|c(某1)|dy1y23.d某=某y某3y解:原方程为:dyd某=1y21y某某31y21ydy=某某3d某两边积分:某(1+某2)(1+y2)=c某24.(1+某)yd某+(1-y)某dy=0解:原方程为:1y某1ydy=-某d某两边积分:ln|某y|+某-y=c另外某=0,y=0也是原方程的解。
5.(y+某)dy+(某-y)d某=0解:原方程为:dyd某=-某y某y令ydy某=u则d某=u+某dud某代入有:-u11u21du=某d某ln(u2+1)某2=c-2arctgu即ln(y2+某2)=c-2arctgy某2.6.某dy22d某-y+某y=0解:原方程为:dyd某=y某+|某|某-(y2)则令y某=udydud某=u+某d某1du=gn某u2某d某arciny某=gn某ln|某|+c7.tgyd某-ctg某dy=0解:原方程为:dyd某tgy=ctg某两边积分:ln|iny|=-ln|co某|-ln|c|iny=1ccco某=co某另外y=0也是原方程的解,而c=0时,y=0.所以原方程的通解为inyco某=c.y23某8dyed某+ydyey2解:原方程为:d某=3某ye2e3某-3ey2=c.9.某(ln某-lny)dy-yd某=0解:原方程为:dyyyd某=某ln某令y某=u,则dydud某=u+某d某u+某dud某=ulnuln(lnu-1)=-ln|c某|1+lny某=cy.10.dyd某=e某y解:原方程为:dy某d某=eeyey=ce某11dy2d某=(某+y)解:令某+y=u,则dydud某=d某-1du2d某-1=u11u2du=d某arctgu=某+carctg(某+y)=某+c12.dyd某=1(某y)2解:令某+y=u,则dyd某=dud某-1du1d某-1=u2u-arctgu=某+cy-arctg(某+y)=c.13.dy2某y1d某=某2y1解:原方程为:(某-2y+1)dy=(2某-y+1)d某某dy+yd某-(2y-1)dy-(2某+1)d某=0d某y-d(y2-y)-d某2+某=c某y-y2+y-某2-某=c14:dy某d某=y5某y2解:原方程为:(某-y-2)dy=(某-y+5)d某某dy+yd某-(y+2)dy-(某+5)d某=0d某y-d(12y2+2y)-d(122某+5某)=0y2+4y+某2+10某-2某y=c.15:dyd某=(某+1)2+(4y+1)2+8某y1解:原方程为:dyd某=(某+4y)2+3令某+4y=u则dy1dud某=4d某-141du14d某-4=u2+3dud某=4u2+13u=32tg(6某+c)-1tg(6某+c)=23(某+4y+1).16:证明方程某dyyd某=f(某y),经变换某y=u可化为变量分离方程,并由此求下列方程:1)y(1+某2y2)d某=某dy2)某dy2某2y2yd某=2-某2y2证明:令某y=u,则某dydud某+y=d某则dy1duud某=某d某-某2,有:某duud某=f(u)+1u(f(u)1)du=1某d某所以原方程可化为变量分离方程。
最新常微分方程(第三版)答案

常微分方程(第三版)答案常微分方程习题答案2.11.«Skip Record If...»,并求满足初始条件:x=0,y=1的特解.解:对原式进行变量分离得«Skip Record If...»«Skip Record If...»并求满足初始条件:x=0,y=1的特解. 解:对原式进行变量分离得:«Skip Record If...»3 «Skip Record If...»解:原式可化为:«Skip Record If...»«Skip Record If...»«Skip Record If...»«Skip Record If...»12.«Skip Record If...»解«Skip Record If...»«Skip Record If...»«Skip Record If...»15.«Skip Record If...»«Skip Record If...»16.«Skip Record If...»解:«Skip Record If...»«Skip Record If...»,这是齐次方程,令«Skip Record If...»17. «Skip Record If...»解:原方程化为«Skip Record If...»令«Skip Record If...»方程组«Skip Record If...»«Skip Record If...»则有«Skip Record If...»令«Skip Record If...»当«Skip Record If...»当«Skip Record If...»另外«Skip Record If...»«Skip Record If...»19. 已知f(x)«Skip Record If...».解:设f(x)=y, 则原方程化为«Skip Record If...»两边求导得«Skip Record If...»«Skip Record If...»«Skip Record If...»«Skip Record If...»«Skip Record If...»«Skip Record If...»20.求具有性质 x(t+s)=«Skip Record If...»的函数x(t),已知x’(0)存在。
常微分方程第三版答案.doc

1.dxdy=2xy,并满足初始条件:x=0,y=1的特解。
解:ydy=2xdx 两边积分有:ln|y|=x 2+c y=e2x +e c =cex 2另外y=0也是原方程的解,c=0时,y=0原方程的通解为y= cex 2,x=0 y=1时 c=1 特解为y= e 2x .2. y 2dx+(x+1)dy=0 并求满足初始条件:x=0,y=1的特解。
解:y 2dx=-(x+1)dy2y dy dy=-11+x dx 两边积分: -y1=-ln|x+1|+ln|c| y=|)1(|ln 1+x c-另外y=0,x=-1也是原方程的解 x=0,y=1时 c=e 特解:y=|)1(|ln 1+x c3.dx dy =yx xy y 321++解:原方程为:dxdy =y y 21+31x x + y y 21+dy=31xx +dx 两边积分:x(1+x 2)(1+y 2)=cx 24. (1+x)ydx+(1-y)xdy=0 解:原方程为:y y -1dy=-xx 1+dx两边积分:ln|xy|+x-y=c另外 x=0,y=0也是原方程的解。
/5.(y+x )dy+(x-y)dx=0 解:原方程为:dx dy =-yx y x +-令xy=u 则dx dy =u+x dx du 代入有:-112++u u du=x 1dxln(u 2+1)x 2=c-2arctgu 即 ln(y 2+x 2)=c-2arctg 2xy. 6. xdxdy-y+22y x -=0 解:原方程为:dx dy =x y +xx ||-2)(1x y -》则令xy=u dx dy =u+ x dx du211u - du=sgnxx1dx arcsinxy=sgnx ln|x|+c 7. tgydx-ctgxdy=0 解:原方程为:tgy dy =ctgxdx 两边积分:ln|siny|=-ln|cosx|-ln|c| siny=x c cos 1=xccos 另外y=0也是原方程的解,而c=0时,y=0.所以原方程的通解为sinycosx=c.8 dx dy +ye x y 32+=0 解:原方程为:dx dy =ye y 2e x 3》2 ex3-3e2y -=c.(lnx-lny)dy-ydx=0 解:原方程为:dx dy =x y ln xy令xy=u ,则dx dy =u+ x dx duu+ xdx du=ulnu ln(lnu-1)=-ln|cx| 1+lnxy=cy. 10.dxdy =e yx - 解:原方程为:dxdy =e x e y- ,e y=cex11dxdy =(x+y)2解:令x+y=u,则dx dy =dxdu -1 dx du -1=u 2211u +du=dx arctgu=x+carctg(x+y)=x+c12.dx dy =2)(1y x + 解:令x+y=u,则dx dy =dxdu -1dx du -1=21u、u-arctgu=x+cy-arctg(x+y)=c. 13.dx dy =1212+-+-y x y x 解: 原方程为:(x-2y+1)dy=(2x-y+1)dx xdy+ydx-(2y-1)dy-(2x+1)dx=0 dxy-d(y 2-y)-dx 2+x=c xy-y 2+y-x 2-x=c14:dx dy =25--+-y x y x解:原方程为:(x-y-2)dy=(x-y+5)dx xdy+ydx-(y+2)dy-(x+5)dx=0 :dxy-d(21y 2+2y)-d(21x 2+5x)=0 y 2+4y+x 2+10x-2xy=c.15: dxdy=(x+1) 2+(4y+1) 2+8xy 1+ 解:原方程为:dxdy=(x+4y )2+3令x+4y=u 则dx dy =41dx du -4141dx du -41=u 2+3 dx du =4 u 2+13 u=23tg(6x+c)-1 tg(6x+c)=32(x+4y+1).16:证明方程y x dxdy=f(xy),经变换xy=u 可化为变量分离方程,并由此求下列方程: 1) (2)y(1+x 2y 2)dx=xdy3) y x dx dy =2222x -2 y x 2y +证明: 令xy=u,则x dx dy +y=dxdu 则dx dy =x 1dx du -2x u,有:u x dxdu=f(u)+1)1)((1+u f u du=x1dx所以原方程可化为变量分离方程。
《常微分方程》王高雄第三版课后答案

故原方程的解为ln xy = x − y = c; y = 0; x = 0.
5 : ( y + x)dy + ( y − x)dx = 0
解:dy = y − x , 令 y = u, y = ux, dy = u + x du
dx y + x x
dx
dx
则u + x du = u + 1 , 变量分离,得:− u + 1 du = 1 dx
dx dx
dx t 2
变量分离
t
t2 2 +1
dt
=
dx,两边积分t
−
arctgt
=
x
+
c,代回变量
x + y − arctg(x + y) = x + c
13. dy = 2x − y − 1 dx x − 2 y + 1
解:方程组2x − y −1 = 0, x − 2 y + 1 = 0;的解为x = − 1 , y = 1 33
原方程化为:1 − dt = t ,变量分离(t − 7)dt − 7dx dx t − 7
两边积分
1 2
t2
−
7t
=
−7 x
+
c
代回变量 1 (x− y+5)2 − 7(x − y + 5) = −7x + c.
2
15.
dy dx
=
(x
+ 1)2
+
(4 y
+ 1)2
+ 8xy
+1
解:方程化为 dy = x2 + 2x + 1 + 16 y 2 + 8y + 1 + 8xy + 1 = (x + 4 y + 1)2 + 2 dx
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
习题2.2求下列方程的解1.dxdy =x y sin + 解: y=e ⎰dx (⎰x sin e ⎰-dx c dx +)=e x [-21e x -(x x cos sin +)+c] =c e x -21 (x x cos sin +)是原方程的解。
2.dtdx +3x=e t 2 解:原方程可化为:dt dx =-3x+e t 2 所以:x=e ⎰-dt 3 (⎰e t 2 e -⎰-dt 3c dt +) =e t 3- (51e t 5+c) =c e t 3-+51e t 2 是原方程的解。
3.dtds =-s t cos +21t 2sin 解:s=e ⎰-tdt cos (t 2sin 21⎰e dt dt ⎰3c + ) =e t sin -(⎰+c dt te t t sin cos sin )= e t sin -(c e te t t +-sin sin sin )=1sin sin -+-t ce t 是原方程的解。
4.dx dy n x x e y nx =- , n 为常数. 解:原方程可化为:dx dy n x x e y n x += )(c dx e x e e y dx x nn x dx x n+⎰⎰=⎰-)(c e x x n += 是原方程的解.5.dx dy +1212--y xx =0 解:原方程可化为:dx dy =-1212+-y x x ⎰=-dx x x e y 212(c dx e dx x x+⎰-221))21(ln 2+=x e )(1ln 2⎰+--c dx ex x =)1(12x ce x + 是原方程的解. 6. dx dy 234xyx x += 解:dx dy 234xyx x += =23yx +x y 令xy u = 则 ux y = d x d y =u dx du x + 因此:dx du x u +=2ux 21u dx du = dx du u =2c x u +=331 c x x u +=-33 (*)将xy u =带入 (*)中 得:3433cx x y =-是原方程的解.3332()21()227.(1)12(1)12(),()(1)1(1)(())1(1)dx P x dx x P x dx dy y x dx x dy y x dx x P x Q x x x e e x e Q x dx c x +--=++=+++==++⎰⎰==+⎰⎰++⎰⎰P(x)dx 232解:方程的通解为:y=e =(x+1)(*(x+1)dx+c) =(x+1)((x+23221(1)()211,()(())dy y x c dy y dx x y dx x y dy y yQ y y ye y Q y dy c -+++==+=⎰⎰==⎰⎰+⎰⎰2243P(y)dy P(y)dy P(y)dy 1)dx+c)=(x+1) 即:2y=c(x+1)+(x+1)为方程的通解。
8. =x+y 解:则P(y)= e 方程的通解为:x=e e 2331*)22y dy c yy cy y ++⎰ =y( =即 x= +cy是方程的通解 ,且y=0也是方程的解。
()()()19.,1),()(())01adx P x dx a x P x dx P x dx a a dy ay x a dx x xa x P x Q x x x e e x e e Q x dx c a a -+=++==⎰⎰==⎰⎰+==⎰为常数解:(方程的通解为: y=1x+1 =x (dx+c) x x当 时,方程的通解为 y=x+ln/x/+c当 时,方程01a a a≠a 的通解为y=cx+xln/x/-1当 ,时,方程的通解为x 1 y=cx +- 1-3331()()()310.11(),()1(())(*)dx P x dx x P x dx P x dx dy x y x dxdy y x dx xP x Q x x xe e xe e Q x dx c x x dx c c xc x --+==-+=-=⎰⎰==⎰⎰++++⎰⎰33解:方程的通解为: y=1 =xx =4x 方程的通解为: y=4322212111()()222ln 112.(ln 2)424ln 2ln 2ln 22ln 2ln (),()(())ln 1(())(P x dx P x dx dx dx x x c x y x ydx xdy x dy x y y dx x xy dy x y y dx x xdy x y dx x xy zdz x z dx x xx P x Q x x xz e e Q x dx c x z e e dx c x x -------=++=-=-=-==-==-⎰⎰=+⎰⎰=-+=⎰⎰解: 两边除以 令方程的通解为:222ln ())ln 1424ln 1:()1,424x dx c x x c x x c x y x -+=++++=⎰方程的通解为且y=0也是解。
13222(2)2122xydy y x dxdy y x y dx xy x y=--==- 这是n=-1时的伯努利方程。
两边同除以1y, 212dy y y dx x =- 令2y z = 2d z d y y d x d x= 22211dz y z dx x x=-=-P(x)=2xQ(x)=-1 由一阶线性方程的求解公式22()dx dx x x z e e dx c -⎰⎰=-+⎰ =2x x c +22y x x c =+14 23y dy e x dx x+= 两边同乘以y e 22()3y yydy e xe e dx x += 令y e z = y d z d y e d x d x= 222233dz z xz z z dx x x x+==+ 这是n=2时的伯努利方程。
两边同除以2z22131dz z dx xz x=+ 令1T z = 21dT dz dx z dx =- 231dT T dx x x-=+ P (x )=3x - Q(x)=21x - 由一阶线性方程的求解公式3321()dx dx x x T e e dx c x--⎰⎰=+⎰ =321()2x x c --+ =1312x cx ---+ 131()12z x cx ---+= 131()12y e x cx ---+= 2312y y x e ce x -+= 2312y x x e c -+=15 331dy dx xy x y =+33dx yx y x dy =+ 这是n=3时的伯努利方程。
两边3x 3321dx y y x dy x=+ 令2x z -= 32d z d x x d y d y-=- 3222d z y y d y x=--=322yz y -- P(y)=-2y Q(y)=32y - 由一阶线性方程的求解公式223(2)ydy ydy z e y e dy c ---⎰⎰=-+⎰=223(2)y y e y e dy c --+⎰=221y y ce --++ 222(1)1y x y ce --++=22222(1)y y y x e y ce e --++=22222(1)y e x x y cx -+=16 y=x e +0()x y t dt ⎰ ()x dy e y x dx=+ x dy y e dx=+ P(x)=1 Q(x)=x e 由一阶线性方程的求解公式11()dx dx x y e e e dx c -⎰⎰=+⎰=()x x x e e e dx c -+⎰=()x e x c +0()()xx x x e x c e e x c dx +=++⎰ c=1y=()x e x c +17 设函数ϕ(t)于-∞<t<+∞上连续,'ϕ(0)存在且满足关系式ϕ(t+s)=ϕ(t)ϕ(s)试求此函数。
令t=s=0 得ϕ(0+0)=ϕ(0)ϕ(0) 即ϕ(0)=2(0)ϕ 故(0)0ϕ=或(0)1ϕ=(1) 当(0)0ϕ=时 ()(0)()(0t t t ϕϕϕϕ=+= 即()0t ϕ=(t ∀∈-∞,+∞)(2) 当(0)1ϕ=时 '0()()()lim t t t t t t ϕϕϕ∆→+∆-=∆=0()()()lim t t t t tϕϕϕ∆→∆-∆ =0()(()1)lim t t t t ϕϕ∆→∆-∆=0(0)(0)()lim t t t t ϕϕϕ∆→∆+-∆='(0)()t ϕϕ 于是'(0)()d t dt ϕϕϕ= 变量分离得'(0)d dt ϕϕϕ= 积分 '(0)t ce ϕϕ= 由于(0)1ϕ=,即t=0时1ϕ= 1=0ce ⇒c=1故'(0)()t t e ϕϕ=20.试证:(1)一阶非齐线性方程(2 .28)的任两解之差必为相应的齐线性方程(2.3)之解;(2)若()y y x =是(2.3)的非零解,而()y y x = 是(2.28)的解,则方程(2.28)的通解可表为()()y cy x y x =+ ,其中c 为任意常数.(3)方程(2.3)任一解的常数倍或任两解之和(或差)仍是方程(2.3)的解. 证明:()()dy P x y Q x dx=+ (2.28) ()dy P x y dx = (2.3)(1) 设1y ,2y 是(2.28)的任意两个解则 11()()dy P x y Q x dx=+ (1) 22()()dy P x y Q x dx=+ (2) (1)-(2)得()1212()()d y y P x y y dx-=- 即12y y y =-是满足方程(2.3)所以,命题成立。
(2) 由题意得:()()dy x P x y dx= (3) ()()()()d y x P x y x Q x dx =+(4) 1)先证y cy y =+是(2.28)的一个解。
于是 ()()34c ⨯+ 得()()()cdy d y cP x y P x y Q x dx dx+=++ ()()()()d cy y P x cy y Q x dx +=++故y cy y =+是(2.28)的一个解。
2)现证方程(4)的任一解都可写成cy y + 的形式设1y 是(2.28)的一个解则 11()()dy P x y Q x dx =+ (4’) 于是 (4’)-(4)得11()()()d y y P x y y dx -=-从而 ()1P x dx y y ce cy ⎰-== 即 1y y c y=+ 所以,命题成立。