自动控制系统实验
自动控制实训实验报告

一、实验目的1. 熟悉并掌握自动控制系统的基本原理和实验方法;2. 理解典型环节的阶跃响应、频率响应等性能指标;3. 培养动手能力和分析问题、解决问题的能力。
二、实验原理自动控制系统是指利用各种自动控制装置,按照预定的规律自动地完成对生产过程或设备运行状态的调节和控制。
本实验主要研究典型环节的阶跃响应和频率响应。
1. 阶跃响应:当系统受到一个阶跃输入信号时,系统输出信号的变化过程称为阶跃响应。
阶跃响应可以反映系统的稳定性、快速性和准确性。
2. 频率响应:频率响应是指系统在正弦输入信号作用下的输出响应。
频率响应可以反映系统的动态性能和抗干扰能力。
三、实验仪器与设备1. 自动控制实验箱;2. 双踪示波器;3. 函数信号发生器;4. 计算器;5. 实验指导书。
四、实验内容与步骤1. 阶跃响应实验(1)搭建实验电路,连接好实验箱和示波器。
(2)输入阶跃信号,观察并记录阶跃响应曲线。
(3)分析阶跃响应曲线,计算系统的超调量、上升时间、调节时间等性能指标。
2. 频率响应实验(1)搭建实验电路,连接好实验箱和示波器。
(2)输入正弦信号,改变频率,观察并记录频率响应曲线。
(3)分析频率响应曲线,计算系统的幅频特性、相频特性等性能指标。
3. 系统校正实验(1)搭建实验电路,连接好实验箱和示波器。
(2)输入阶跃信号,观察并记录未校正系统的阶跃响应曲线。
(3)根据期望的性能指标,设计校正环节,并搭建校正电路。
(4)输入阶跃信号,观察并记录校正后的阶跃响应曲线。
(5)分析校正后的阶跃响应曲线,验证校正效果。
五、实验结果与分析1. 阶跃响应实验(1)实验结果:根据示波器显示的阶跃响应曲线,计算得到系统的超调量为10%,上升时间为0.5s,调节时间为2s。
(2)分析:该系统的稳定性较好,但响应速度较慢,超调量适中。
2. 频率响应实验(1)实验结果:根据示波器显示的频率响应曲线,计算得到系统的幅频特性在0.1Hz到10Hz范围内基本稳定,相频特性在0.1Hz到10Hz范围内变化不大。
自动控制系统实验教案

一、实验目的1. 理解自动控制系统的原理和组成;2. 熟悉自动控制系统的实验方法和步骤;3. 掌握自动控制系统的分析和设计方法;4. 培养实验操作能力和团队协作精神。
二、实验原理1. 自动控制系统的基本原理:根据输入信号和系统状态,通过控制器对系统进行调节,使系统输出满足期望值。
2. 自动控制系统的组成:控制器、被控对象、反馈环节、输入输出环节等。
3. 自动控制系统的分类:线性控制系统、非线性控制系统、离散控制系统、连续控制系统等。
4. 自动控制系统的性能指标:稳态性能、动态性能、鲁棒性能等。
三、实验设备与器材1. 实验台:自动控制系统实验台;2. 控制器:模拟控制器、数字控制器;3. 被控对象:电机、Servo 电机、液体阻尼器等;4. 传感器:位置传感器、速度传感器、压力传感器等;5. 信号发生器:正弦信号发生器、方波信号发生器;6. 示波器、数字万用表、频率分析仪等实验仪器。
四、实验内容与步骤1. 实验一:模拟控制系统基本原理验证(1)搭建模拟控制系统实验台;(2)给定输入信号,观察系统输出;(3)调整控制器参数,观察系统性能变化。
2. 实验二:数字控制系统基本原理验证(1)搭建数字控制系统实验台;(2)给定输入信号,观察系统输出;(3)调整控制器参数,观察系统性能变化。
3. 实验三:PID 控制器参数调整与优化(1)搭建PID 控制器实验台;(2)给定输入信号,观察系统输出;(3)调整PID 控制器参数,使系统性能达到最佳。
4. 实验四:自动控制系统鲁棒性分析(1)搭建鲁棒性分析实验台;(2)给定输入信号,观察系统输出;(3)改变系统参数,观察系统性能变化。
5. 实验五:自动控制系统建模与仿真(1)利用数学软件建立系统模型;(2)进行系统仿真,观察系统性能;(3)对比实验结果,分析建模与仿真的准确性。
五、实验要求与评价1. 实验要求:(1)按时完成实验任务;(2)认真观察实验现象,记录实验数据;2. 实验评价:(1)实验操作规范性;(2)实验数据准确性;(3)实验报告完整性;(4)实验分析深入程度。
自动控制原理实验报告 (1)

实验1 控制系统典型环节的模拟实验(一)实验目的:1.掌握控制系统中各典型环节的电路模拟及其参数的测定方法。
2.测量典型环节的阶跃响应曲线,了解参数变化对环节输出性能的影响。
实验原理:控制系统模拟实验采用复合网络法来模拟各种典型环节,即利用运算放大器不同的输入网络和反馈网络模拟各种典型环节,然后按照给定系统的结构图将这些模拟环节连接起来,便得到了相应的模拟系统。
再将输入信号加到模拟系统的输入端,并利用计算机等测量仪器,测量系统的输出,便可得到系统的动态响应曲线及性能指标。
实验内容及步骤实验内容:观测比例、惯性和积分环节的阶跃响应曲线。
实验步骤:分别按比例,惯性和积分实验电路原理图连线,完成相关参数设置,运行。
①按各典型环节的模拟电路图将线接好(先接比例)。
(PID先不接)②将模拟电路输入端(U i)与阶跃信号的输出端Y相连接;模拟电路的输出端(Uo)接至示波器。
③按下按钮(或松开按钮)SP时,用示波器观测输出端的实际响应曲线Uo(t),且将结果记下。
改变比例参数,重新观测结果。
④同理得积分和惯性环节的实际响应曲线,它们的理想曲线和实际响应曲线。
实验数据实验二控制系统典型环节的模拟实验(二)实验目的1.掌握控制系统中各典型环节的电路模拟及其参数的测定方法。
2.测量典型环节的阶跃响应曲线,了解参数变化对环节输出性能的影响。
实验仪器1.自动控制系统实验箱一台2.计算机一台实验原理控制系统模拟实验采用复合网络法来模拟各种典型环节,即利用运算放大器不同的输入网络和反馈网络模拟各种典型环节,然后按照给定系统的结构图将这些模拟环节连接起来,便得到了相应的模拟系统。
再将输入信号加到模拟系统的输入端,并利用计算机等测量仪器,测量系统的输出,便可得到系统的动态响应曲线及性能指标。
实验内容及步骤内容:观测PI,PD和PID环节的阶跃响应曲线。
步骤:分别按PI,PD和PID实验电路原理图连线,完成相关参数设置,运行①按各典型环节的模拟电路图将线接好。
自动控制系统实验教案

自动控制系统实验教案一、实验目的1. 理解自动控制系统的原理和组成;2. 掌握自动控制系统的分析和设计方法;3. 熟悉自动控制系统的实验操作和调试技巧;4. 培养学生动手能力和团队协作精神。
二、实验原理1. 自动控制系统的基本概念:系统、输入、输出、反馈、控制目标等;2. 自动控制系统的分类:线性系统、非线性系统、时间不变系统、时变系统等;3. 自动控制系统的数学模型:差分方程、微分方程、传递函数、状态空间表示等;4. 自动控制器的设计方法:PID控制、模糊控制、自适应控制等。
三、实验设备与器材1. 实验台:自动控制系统实验台;2. 控制器:可编程逻辑控制器(PLC)、微控制器(MCU)等;3. 传感器:温度传感器、压力传感器、流量传感器等;4. 执行器:电动机、电磁阀、伺服阀等;5. 信号发生器:函数发生器、任意波形发生器等;6. 示波器、频率分析仪等测试仪器。
四、实验内容与步骤1. 实验一:自动控制系统的基本原理与组成(1)了解自动控制系统实验台的基本结构;(2)学习自动控制系统的原理和组成;(3)分析实验台上的控制系统。
2. 实验二:线性系统的时域分析(1)根据实验要求,搭建线性系统实验电路;(2)利用信号发生器和示波器进行实验数据的采集;(3)分析实验数据,得出系统特性。
3. 实验三:线性系统的频域分析(1)搭建线性系统实验电路,并连接频率分析仪;(2)进行频域实验,采集频率响应数据;(3)分析频率响应数据,得出系统特性。
4. 实验四:PID控制器的设计与调试(1)学习PID控制原理;(2)根据系统特性,设计PID控制器参数;(3)搭建PID控制实验电路,并进行调试。
5. 实验五:模糊控制器的设计与调试(1)学习模糊控制原理;(2)根据系统特性,设计模糊控制器参数;(3)搭建模糊控制实验电路,并进行调试。
五、实验要求与评价2. 实验操作:熟悉实验设备的操作,正确进行实验;3. 数据处理:能够正确采集、处理实验数据;4. 分析与总结:对实验结果进行分析,得出合理结论;5. 课堂讨论:积极参与课堂讨论,分享实验心得。
自动控制系统实验报告

自动控制系统实验报告
《自动控制系统实验报告》
摘要:本实验旨在通过对自动控制系统的实验研究,探讨系统的稳定性、性能和鲁棒性等方面的特性。
通过实验结果的分析和总结,得出了对于自动控制系统设计和优化的一些有益的结论。
1. 引言
自动控制系统是现代工程中的重要组成部分,它能够实现对系统的自动调节和控制,提高系统的稳定性、性能和鲁棒性。
因此,对自动控制系统的研究和实验具有重要意义。
2. 实验目的
本实验旨在通过对自动控制系统的实验研究,探讨系统的稳定性、性能和鲁棒性等方面的特性,为系统设计和优化提供参考依据。
3. 实验内容
本实验采用了XXX控制系统作为研究对象,通过对系统的参数调节和实验数据的采集,分析系统的稳定性、性能和鲁棒性等方面的特性。
4. 实验结果分析
通过实验数据的分析和处理,得出了系统的稳定性较好,在一定范围内能够实现对系统的有效控制;系统的性能表现良好,能够满足实际工程的需求;系统的鲁棒性较强,对外部扰动具有一定的抵抗能力。
5. 结论
通过本实验的研究,得出了对于自动控制系统设计和优化的一些有益的结论,为相关工程应用提供了一定的参考价值。
6. 展望
未来可以进一步深入研究自动控制系统的优化设计和应用,为工程实践提供更为有效的控制方案。
综上所述,通过对自动控制系统的实验研究,得出了一些有益的结论,为相关工程应用提供了一定的参考价值。
希望本实验的研究成果能够为自动控制系统的设计和优化提供一定的指导和帮助。
自动控制系统实验教案

自动控制系统实验教案一、实验目的1. 理解自动控制系统的原理和组成;2. 熟悉常见自动控制器的结构和功能;3. 掌握自动控制系统的设计和调试方法;4. 培养动手能力和实验技能。
二、实验原理1. 自动控制系统的基本概念:系统、输入、输出、反馈、闭环、开环等;2. 自动控制器的分类:比例控制器、积分控制器、微分控制器、PID控制器等;3. 自动控制系统的设计方法:频率域设计、时域设计、状态空间设计等;4. 自动控制系统的稳定性分析:闭环系统、开环系统、李雅普诺夫稳定性定理等。
三、实验设备与器材1. 实验台:自动控制系统实验台;2. 控制器:比例控制器、积分控制器、微分控制器、PID控制器等;3. 传感器:温度传感器、压力传感器、流量传感器等;4. 执行器:电动机、电磁阀、调节阀等;5. 仪器仪表:示波器、信号发生器、万用表等。
四、实验内容与步骤1. 实验一:比例控制器实验a. 了解比例控制器的工作原理;b. 搭建比例控制器实验电路;c. 调试比例控制器,观察控制效果;2. 实验二:积分控制器实验a. 了解积分控制器的工作原理;b. 搭建积分控制器实验电路;c. 调试积分控制器,观察控制效果;3. 实验三:微分控制器实验a. 了解微分控制器的工作原理;b. 搭建微分控制器实验电路;c. 调试微分控制器,观察控制效果;4. 实验四:PID控制器实验a. 了解PID控制器的工作原理;b. 搭建PID控制器实验电路;c. 调试PID控制器,观察控制效果;5. 实验五:自动控制系统稳定性分析a. 了解闭环系统稳定性分析方法;b. 搭建实验电路,进行稳定性分析;c. 改变系统参数,观察稳定性变化;五、实验要求与评价1. 实验要求:a. 按时完成实验任务;b. 正确操作实验设备,注意安全;c. 认真观察实验现象,记录实验数据;2. 实验评价:a. 实验操作的正确性;b. 实验数据的准确性;c. 实验分析的深入程度;六、实验六:模拟工业过程控制1. 目的:学习工业过程控制的基本原理。
自动控制实验报告

自动控制实验报告自动控制实验报告引言:自动控制是现代科技的重要领域之一,它在各个行业中都起到了至关重要的作用。
通过对系统进行监测、判断和调整,自动控制系统能够实现对设备、机器和过程的自主控制,提高生产效率、降低成本、提升安全性。
本文将介绍一次关于自动控制的实验,通过实验过程和结果,探讨自动控制的原理和应用。
实验目的:本次实验的目的是通过搭建一个简单的自动控制系统,探究自动控制的基本原理,并了解其在现实生活中的应用。
我们将以温度控制为例,通过调节加热器的功率,使温度保持在设定的范围内。
实验装置:实验装置包括一个温度传感器、一个加热器、一个控制器和一个显示屏。
温度传感器负责实时监测环境温度,将数据传输给控制器。
控制器根据设定的温度范围,判断是否需要调节加热器的功率。
加热器根据控制器的指令,调节加热功率,以达到温度控制的目标。
显示屏用于显示当前温度和设定温度。
实验步骤:1. 将温度传感器安装在实验环境中,并将其与控制器连接。
2. 设置控制器的温度范围,例如设定为20-25摄氏度。
3. 打开加热器,将其与控制器连接。
4. 开始实验,观察温度的变化,并记录数据。
5. 根据实验数据,分析控制器的判断和调节过程,以及加热器的功率调节情况。
实验结果:通过实验,我们观察到温度在设定范围内波动,并且控制器能够根据实时数据进行判断和调节。
当温度低于设定范围时,控制器会发送指令给加热器,增加加热功率;当温度超过设定范围时,控制器会减小加热功率。
在实验过程中,我们还发现控制器的响应速度很快,能够及时做出调整,使温度保持在设定范围内。
讨论和分析:自动控制系统的核心是控制器,它通过不断监测和判断系统的状态,根据预设的目标进行调节。
在本次实验中,控制器通过与温度传感器的连接,获取实时温度数据,并根据设定的范围进行判断和调节。
这种反馈控制的方式使得系统能够自主运行,并且具备一定的稳定性。
自动控制在现实生活中有着广泛的应用。
例如,工业生产中的自动化生产线,通过自动控制系统可以实现对产品质量和生产效率的精确控制。
自动控制系统实验教案

自动控制系统实验教案一、实验目的1. 理解自动控制系统的原理和组成;2. 熟悉常见自动控制器的结构和功能;3. 掌握自动控制系统的设计方法和调试技巧;4. 培养动手能力和团队协作精神。
二、实验原理1. 自动控制系统的基本原理:根据给定的目标和条件,自动调节系统的输入和输出,使输出量达到期望值。
2. 自动控制系统的组成:控制器、被控对象、传感器、执行器等。
3. 常见自动控制器:PID控制器、模糊控制器、自适应控制器等。
4. 自动控制系统的设计方法:系统建模、系统分析、控制器设计、系统仿真等。
三、实验设备与材料1. 实验台:自动控制系统实验台;2. 控制器:PID控制器、模糊控制器等;3. 被控对象:电机、温度控制器等;4. 传感器:温度传感器、速度传感器等;5. 执行器:电机、电磁阀等;6. 实验软件:MATLAB/Simulink。
四、实验内容与步骤1. 实验一:PID控制器原理及应用(1)了解PID控制器的结构和工作原理;(2)通过实验台调试PID控制器,使被控对象达到期望输出;(3)分析PID控制器参数对系统性能的影响。
2. 实验二:模糊控制器原理及应用(1)了解模糊控制器的结构和工作原理;(2)通过实验台调试模糊控制器,使被控对象达到期望输出;(3)分析模糊控制器参数对系统性能的影响。
3. 实验三:自适应控制器原理及应用(1)了解自适应控制器的结构和工作原理;(2)通过实验台调试自适应控制器,使被控对象达到期望输出;(3)分析自适应控制器参数对系统性能的影响。
4. 实验四:自动控制系统设计及仿真(1)根据实际应用场景,选择合适的自动控制器;(2)利用MATLAB/Simulink进行系统建模和仿真;(3)调试系统,使输出量达到期望值。
5. 实验五:自动控制系统调试与优化(1)针对已设计的自动控制系统,进行实际运行调试;(2)分析系统运行过程中的问题和不足;(3)优化控制器参数,提高系统性能。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验五 典型环节的MA TLAB 仿真
一、实验目的
1.熟悉MATLAB 桌面和命令窗口,初步了解SIMULINK 功能模块的使用方法。
2.通过观察典型环节在单位阶跃信号作用下的动态特性,加深对各典型环节响应曲线的理解。
3.定性了解各参数变化对典型环节动态特性的影响。
二、SIMULINK 的使用
MATLAB 中SIMULINK 是一个用来对动态系统进行建模、仿真和分析的软件包。
利用SIMULINK 功能模块可以快速的建立控制系统的模型,进行仿真和调试。
1.运行MA TLAB 软件,在命令窗口栏“>>”提示符下键入simulink 命令,按Enter 键或在工具栏单击按钮,即可进入如图1-1所示的SIMULINK 仿真环境下。
2.选择File 菜单下New 下的Model 命令,新建一个simulink 仿真环境常规模板。
3.在simulink 仿真环境下,创建所需要的系统。
以图1-2所示的系统为例,说明基本设计步骤如下:
1)进入线性系统模块库,构建传递函数。
点击simulink 下的“Continuous ”,再将右边窗口中“Transfer Fen ”的图标用左键拖至新建的“untitled ”窗口。
2)改变模块参数。
在simulink 仿真环境“untitled ”窗口中双击该图标,即可改变传递函数。
其中方括号内的数字分别为传递函数的分子、分母各次幂由高到低的系数,数字之间用空格隔开;设置完成后,选择OK ,即完成该模块的设置。
3)建立其它传递函数模块。
按照上述方法,在不同的simulink 的模块库中,建立系统所需的传递函数模块。
例:比例环节用“Math ”右边窗口“Gain ”的图标。
4)选取阶跃信号输入函数。
用鼠标点击simulink 下的“Source ”,将右边窗口中“Step ”图标用左键拖至新建的“untitled ”窗口,形成一个阶跃函数输入模块。
5)选择输出方式。
用鼠标点击simulink 下的“Sinks ”,就进入输出方式模块库,通常选用“Scope ”的示波器图标,将其用左键拖至新建的“untitled ”窗口。
6)选择反馈形式。
为了形成闭环反馈系统,需选择“Math ” 模块库右边窗口“Sum ”图标,并用鼠标双击,将其设置为需要的反馈形式(改变正负号)。
7)连接各元件,用鼠标划线,构成闭环传递函数。
8)运行并观察响应曲线。
用鼠标单击工具栏中的“
”按钮,便能自动运行仿真环境下的系统
图1-1 SIMULINK 仿真界面
图1-2 系统方框图
框图模型。
运行完之后用鼠标双击“Scope ”元件,即可看到响应曲线。
三、实验原理
1.比例环节的传递函数为
221211
(
)2100,200Z R
G
s R
K R K Z R =-
=
-=-==
其对应的模拟电路及SIMULINK 图形如图1-3所示。
2.惯性环节的传递函数为
2
211211212()100,200,110.21
R Z R G s R K R K C uf Z R C s =-
=-=-===++
其对应的模拟电路及SIMULINK 图形如图1-4所示。
3.积分环节(I)的传递函数为
uf C K R s
s C R Z Z s G 1,1001.011)(111112==-=-=-
=
其对应的模拟电路及SIMULINK 图形如图1-5所示。
图1-5 积分环节的模拟电路及及SIMULINK 图形
图1-3 比例环节的模拟电路及SIMULINK 图形
图1-4 惯性环节的模拟电路及SIMULINK 图形
4.微分环节(D)的传递函数为
uf C K R s s C R Z Z s G 10,100
)(1111
1
2
==-=-=-
=
uf C C 01.012=<<
其对应的模拟电路及SIMULINK 图形如图1-6所示。
5.比例+微分环节(PD )的传递函数为
)11.0()1()(111
212+-=+-=-
=s s C R R R
Z Z s G uf C C uf
C K R R 01.010,10012121=<<===
其对应的模拟电路及SIMULINK 图形如图1-7所示。
6.比例+积分环节(PI )的传递函数为
)1
1(1)(11212s
R s C R Z Z s G +-=+-=-= uf C K R R 10,100121===
其对应的模拟电路及SIMULINK 图形如图1-8所示。
图1-6 微分环节的模拟电路及及SIMULINK 图形
图1-7 比例+微分环节的模拟电路及SIMULINK 图形
图1-8 比例+积分环节的模拟电路及SIMULINK 图形
四、实验内容
按下列各典型环节的传递函数,建立相应的SIMULINK 仿真模型,观察并记录其单位阶跃响应波形。
① 比例环节1)(1=s G 和2)(1=s G ; ② 惯性环节11)(1+=
s s G 和15.01)(2+=s s G ③ 积分环节s
s G 1)(1= ④ 微分环节s s G =)(1
⑤ 比例+微分环节(PD )2)(1+=s s G 和1)(2+=s s G ⑥ 比例+积分环节(PI )s s G 11)(1+=和s
s G 21
1)(2+=
五、实验报告
1.画出各典型环节的SIMULINK 仿真模型。
①
②
③
④
⑤
⑥
实验心得:上一次学习simulink已经是在第一次上课的时候了,好多东西都已经遗忘,还好这次老师设置了这次实验,使我用重新回忆起simulink的强大作用让我感受到MATLAB强大的计算能力和作图能力。
- 11 -。