自动控制完整系统综合实验综合实验报告
自动控制原理的实训报告

一、实训目的本次实训旨在通过实际操作和实验,加深对自动控制原理的理解,掌握控制系统分析和设计的基本方法,提高动手能力和分析问题、解决问题的能力。
通过实训,使学生能够:1. 理解自动控制系统的基本组成和原理;2. 掌握典型控制系统的时域响应和频域响应分析方法;3. 学会使用实验设备进行控制系统实验,并能够分析实验结果;4. 培养团队协作和沟通能力。
二、实训仪器与设备1. 自动控制原理实验台;2. 信号发生器;3. 数据采集器;4. 计算机;5. 控制系统模拟软件。
三、实训内容1. 控制系统结构分析通过实验台搭建一个典型的控制系统,分析其结构,包括各个环节的功能和相互关系。
2. 时域响应实验对搭建的控制系统进行阶跃响应实验,记录并分析系统的输出波形,计算超调量、上升时间、调节时间等性能指标。
3. 频域响应实验对搭建的控制系统进行频率特性实验,记录并分析系统的幅频特性、相频特性,绘制Bode图。
4. 控制系统设计根据实验结果,对控制系统进行设计,包括PID参数整定、控制器设计等。
四、实验过程1. 搭建控制系统根据实验要求,搭建一个典型的控制系统,包括控制器、执行器、被控对象等环节。
2. 进行阶跃响应实验使用信号发生器产生阶跃信号,输入到控制系统中,记录输出波形,并计算超调量、上升时间、调节时间等性能指标。
3. 进行频率特性实验使用信号发生器产生不同频率的正弦信号,输入到控制系统中,记录输出波形,并绘制Bode图。
4. 控制系统设计根据实验结果,对控制系统进行设计,包括PID参数整定、控制器设计等。
五、实验结果与分析1. 阶跃响应实验通过阶跃响应实验,可以分析系统的稳定性和动态性能。
例如,超调量反映了系统的振荡程度,上升时间反映了系统的响应速度,调节时间反映了系统达到稳态所需的时间。
2. 频率特性实验通过频率特性实验,可以分析系统的频率响应特性。
例如,幅频特性反映了系统对不同频率信号的放大倍数,相频特性反映了系统对不同频率信号的相位延迟。
自动控制实训实验报告

一、实验目的1. 熟悉并掌握自动控制系统的基本原理和实验方法;2. 理解典型环节的阶跃响应、频率响应等性能指标;3. 培养动手能力和分析问题、解决问题的能力。
二、实验原理自动控制系统是指利用各种自动控制装置,按照预定的规律自动地完成对生产过程或设备运行状态的调节和控制。
本实验主要研究典型环节的阶跃响应和频率响应。
1. 阶跃响应:当系统受到一个阶跃输入信号时,系统输出信号的变化过程称为阶跃响应。
阶跃响应可以反映系统的稳定性、快速性和准确性。
2. 频率响应:频率响应是指系统在正弦输入信号作用下的输出响应。
频率响应可以反映系统的动态性能和抗干扰能力。
三、实验仪器与设备1. 自动控制实验箱;2. 双踪示波器;3. 函数信号发生器;4. 计算器;5. 实验指导书。
四、实验内容与步骤1. 阶跃响应实验(1)搭建实验电路,连接好实验箱和示波器。
(2)输入阶跃信号,观察并记录阶跃响应曲线。
(3)分析阶跃响应曲线,计算系统的超调量、上升时间、调节时间等性能指标。
2. 频率响应实验(1)搭建实验电路,连接好实验箱和示波器。
(2)输入正弦信号,改变频率,观察并记录频率响应曲线。
(3)分析频率响应曲线,计算系统的幅频特性、相频特性等性能指标。
3. 系统校正实验(1)搭建实验电路,连接好实验箱和示波器。
(2)输入阶跃信号,观察并记录未校正系统的阶跃响应曲线。
(3)根据期望的性能指标,设计校正环节,并搭建校正电路。
(4)输入阶跃信号,观察并记录校正后的阶跃响应曲线。
(5)分析校正后的阶跃响应曲线,验证校正效果。
五、实验结果与分析1. 阶跃响应实验(1)实验结果:根据示波器显示的阶跃响应曲线,计算得到系统的超调量为10%,上升时间为0.5s,调节时间为2s。
(2)分析:该系统的稳定性较好,但响应速度较慢,超调量适中。
2. 频率响应实验(1)实验结果:根据示波器显示的频率响应曲线,计算得到系统的幅频特性在0.1Hz到10Hz范围内基本稳定,相频特性在0.1Hz到10Hz范围内变化不大。
自控综合实验报告

一、实验目的1. 理解自动控制系统的基本原理,掌握控制系统设计的基本方法。
2. 学习使用Matlab/Simulink进行控制系统仿真,验证理论分析结果。
3. 掌握PID控制原理及其参数整定方法,实现系统的稳定控制。
4. 了解采样控制系统的特性,掌握采样控制系统的设计方法。
二、实验仪器与设备1. 计算机:一台2. Matlab/Simulink软件:一套3. 控制系统实验平台:一套(含传感器、执行器、控制器等)三、实验内容1. 连续控制系统设计(1)根据给定的系统传递函数,设计一个稳定的连续控制系统。
(2)使用Matlab/Simulink进行仿真,验证理论分析结果。
(3)调整系统参数,观察系统性能的变化。
2. PID控制(1)根据给定的系统传递函数,设计一个PID控制器。
(2)使用Matlab/Simulink进行仿真,验证PID控制器的效果。
(3)调整PID参数,观察系统性能的变化。
3. 采样控制系统(1)根据给定的系统传递函数,设计一个采样控制系统。
(2)使用Matlab/Simulink进行仿真,验证采样控制系统的效果。
(3)调整采样频率和控制器参数,观察系统性能的变化。
四、实验步骤1. 连续控制系统设计(1)建立系统传递函数模型。
(2)根据系统要求,选择合适的控制器类型(如PID控制器)。
(3)设计控制器参数,使系统满足稳定性、稳态误差和动态性能等要求。
(4)使用Matlab/Simulink进行仿真,验证系统性能。
2. PID控制(1)根据系统传递函数,设计PID控制器。
(2)设置PID控制器参数,使系统满足性能要求。
(3)使用Matlab/Simulink进行仿真,验证PID控制器的效果。
(4)调整PID参数,观察系统性能的变化。
3. 采样控制系统(1)建立系统传递函数模型。
(2)根据系统要求,设计采样控制系统。
(3)设置采样频率和控制器参数,使系统满足性能要求。
(4)使用Matlab/Simulink进行仿真,验证采样控制系统的效果。
自动控制原理实训报告

自动控制原理实训报告引言:自动控制原理是现代工程领域中的重要学科,它研究如何利用控制系统来实现对各种物理过程的自动化调节和控制。
本篇报告旨在总结和分析我在自动控制原理实训中所学到的知识和经验,并对实训过程中遇到的问题进行探讨和解决。
一、实训目的和背景自动控制原理实训的主要目的是通过实际操作和实验验证,加深对自动控制原理的理解和掌握。
通过实际操控控制系统,我们可以更好地理解控制系统的工作原理、参数调节和性能评估等方面的知识。
二、实训内容和步骤本次实训主要包括以下内容和步骤:1. 实验仪器和设备的介绍:我们首先了解了实验室中常用的控制系统实验仪器和设备,包括传感器、执行器、控制器等,并学习了它们的基本原理和使用方法。
2. 控制系统的建模与仿真:我们学习了如何将实际的物理过程建立数学模型,并利用仿真软件进行系统性能分析和优化设计。
3. PID控制器的调节:PID控制器是最常用的控制器之一,我们学习了PID控制器的原理和调节方法,并通过实验验证了不同参数对系统响应的影响。
4. 系统性能评估与优化:我们学习了如何评估控制系统的性能指标,如稳定性、快速性和抗干扰能力,并通过调节控制器参数来优化系统性能。
三、实训中遇到的问题及解决方法在实训过程中,我们遇到了一些问题,下面列举了其中的几个,并给出了解决方法:1. 问题一:系统响应不稳定。
解决方法:通过调节PID控制器的参数,如比例系数、积分时间和微分时间,来使系统响应稳定。
2. 问题二:系统响应过慢。
解决方法:增大比例系数和减小积分时间可以提高系统的响应速度。
3. 问题三:系统受到干扰时响应不稳定。
解决方法:通过增加微分时间和加入滤波器等方法,可以提高系统的抗干扰能力。
四、实训心得和体会通过这次自动控制原理实训,我深刻体会到了理论与实践的结合的重要性。
在实际操作中,我们不仅需要理解控制原理,还需要灵活运用所学知识解决实际问题。
此外,实训过程中的团队合作也是非常重要的,通过与同学们的合作,我们共同解决了许多实际问题,加深了对自动控制原理的理解。
自动控制系统综合实验综 合 实 验 报 告

综合实验报告实验名称自动控制系统综合实验题目指导教师设计起止日期2013年1月7日~1月18日系别自动化学院控制工程系专业自动化学生姓名班级 学号成绩前言自动控制系统综合实验是在完成了自控理论,检测技术和仪表,过程控制系统等课程后的一次综合训练。
要求同学在给定的时间内利用前期学过的知识和技术在过程控制实验室的现有设备上,基于mcgs组态软件或step7、wincc组态软件设计一个监控系统,完成相应参数的控制。
在设计工作中,学会查阅资料、设计、调试、分析、撰写报告等,达到综合能力培养的目的。
目录前言 (1)第一章、设计题目 (2)第二章、系统概述 (2)第一节、实验装置的组成 (2)第二节、MCGS组态软件 (7)第三章、系统软件设计 (10)实时数据库 (10)设备窗口 (12)运行策略 (15)用户窗口 (17)主控窗口 (26)第四章、系统在线仿真调试 (27)第五章、课程设计总结 (34)第六章、附录 (34)附录一、宇光智能仪表通讯规则 (34)第一章、设计题目题目1 单容水箱液位定值控制系统选择上小水箱、上大水箱或下水箱作为被测对象,实现对其液位的定值控制。
实验所需设备:THPCA T-2型现场总线控制系统实验装置(常规仪表侧),水箱装置,AT-1挂件,智能仪表,485通信线缆一根(或者如果用数据采集卡做,AT-4 挂件,AT-1挂件、PCL通讯线一根)。
实验所需软件:MCGS组态软件要求:1.用MCGS软件设计开发,包括用户界面组态、设备组态、数据库组态、策略组态等,连接电路,实现单容水箱的液位定值控制;2.施加扰动后,经过一段调节时间,液位应仍稳定在原设定值;3.改变设定值,经过一段调节时间,液位应稳定在新的设定值。
第二章、系统概述第一节、实验装置的组成一、被控对象1.水箱:包括上水箱、下水箱和储水箱。
上、下水箱采用淡蓝色优质有机玻璃,不但坚实耐用,而且透明度高,便于学生直接观察液位的变化和记录结果。
最新自控实验报告实验一

最新自控实验报告实验一实验目的:1. 理解并掌握自控系统的基本原理和工作机制。
2. 学习如何搭建和调试简单的自控实验系统。
3. 通过实验数据分析,加深对控制系统性能指标的认识。
实验设备:1. 自动控制实验台一套,包括控制器、执行器、传感器等。
2. 计算机及相关软件,用于数据采集和分析。
3. 标准测试物件,如测试质量块、固定支架等。
实验步骤:1. 根据实验要求,搭建自控系统。
包括安装传感器,连接执行器,设置控制器参数等。
2. 使用计算机软件对系统进行初步的参数设置和校准。
3. 开始实验,记录系统在不同输入下的响应数据。
4. 分析数据,绘制系统响应曲线,如阶跃响应、频率响应等。
5. 根据实验结果调整系统参数,优化系统性能。
6. 重复实验,验证参数调整的效果。
实验结果:1. 系统响应时间:记录并报告系统从接收控制信号到达到稳定状态所需的时间。
2. 稳态误差:分析系统在稳态工作时的误差情况。
3. 过渡过程:描述系统从初始状态到最终状态的过渡过程,包括超调量、振荡次数等。
4. 频率响应:绘制并分析系统频率响应曲线,评估系统的频率特性。
实验结论:1. 通过本次实验,验证了自控系统的基本原理和设计要求。
2. 实验数据显示,系统具有良好的动态响应和稳定性能。
3. 参数调整对系统性能有显著影响,合理的参数设置可以优化系统性能。
4. 实验中遇到的问题及解决方案,如系统过调、振荡等,均已得到妥善处理。
建议与展望:1. 对于未来的实验,建议增加更复杂的控制算法,如PID控制、模糊控制等,以进一步提高系统性能。
2. 可以考虑引入更多的干扰因素,以测试系统在非理想条件下的鲁棒性。
3. 建议对实验设备进行升级,以便进行更高精度和更复杂系统的实验研究。
实验6控制系统综合实验-实验报告模板
实验六控制系统综合实验实验报告班级:化工卓越1201姓名:***学号:********实验内容1、执行器气开气关选择和控制器正反作用选择;要求液体不溢出,并写下选择结果。
执行器:气开控制器:反作用2、装置运行1)出水阀开在50%;2)控制器手动操作,调节MV信号,手动将液位调在40%;3)在手动操作下将液位再次调在60%,思考如何操作才能完成?并观察液位稳定时进水量和出水量之间的关系。
答:不断调节MV,直到选取的MV值能使液位稳定在60%。
液位稳定时进水量和出水量基本相等。
4)PID参数调整在Kc=2,Ti=5s,Td=0s,切换到自动。
5)在自动操作下改变给定值,观察一会,再切换到手动操作,观察手自动切换是否无扰动?手自动切换过程中给定值发生什么变化?答:手自动切换无干扰。
手自动切换时给定值基本无变化6)转换控制器正反作用,观察控制器正反作用选择错误会出现什么情况?答:液面将很快溢出液罐3、纯比例控制作用下的过渡过程测试1)出水阀开在50%,先手动操作,将液位稳定在50%左右。
2)调整PID参数:Kc=1,Ti>5000s,Td=0s。
3)切换到自动,将Sv由50%变化到60%,观察过渡过程,将图存下。
4)再切换到手动操作,将液位稳定在50%左右,调整Kc=3,切换到自动,将Sv由50%变化到60%,观察过渡过程,将图存下。
5)再切换到手动操作,将液位稳定在50%左右,调整Kc=5,切换到自动,将Sv由50%变化到60%,观察过渡过程,将图存下。
回答:1)纯比例作用是否存在余差?答:存在余差。
2)随着Kc增加,控制器输出发生什么变化?过渡过程会出现什么变化?余差如何变化?答:随Kc增加,控制器输出增大。
过渡过程变化:液位波动增大,波动频率变快,达到稳定所需时间变长,且稳定后显示偏离给定值程度较大。
余差增大。
4、PI作用下的过渡过程测试1)出水阀开在50%,先手动操作,将液位稳定在50%左右。
自动控制系统实验报告
自动控制系统实验报告
《自动控制系统实验报告》
摘要:本实验旨在通过对自动控制系统的实验研究,探讨系统的稳定性、性能和鲁棒性等方面的特性。
通过实验结果的分析和总结,得出了对于自动控制系统设计和优化的一些有益的结论。
1. 引言
自动控制系统是现代工程中的重要组成部分,它能够实现对系统的自动调节和控制,提高系统的稳定性、性能和鲁棒性。
因此,对自动控制系统的研究和实验具有重要意义。
2. 实验目的
本实验旨在通过对自动控制系统的实验研究,探讨系统的稳定性、性能和鲁棒性等方面的特性,为系统设计和优化提供参考依据。
3. 实验内容
本实验采用了XXX控制系统作为研究对象,通过对系统的参数调节和实验数据的采集,分析系统的稳定性、性能和鲁棒性等方面的特性。
4. 实验结果分析
通过实验数据的分析和处理,得出了系统的稳定性较好,在一定范围内能够实现对系统的有效控制;系统的性能表现良好,能够满足实际工程的需求;系统的鲁棒性较强,对外部扰动具有一定的抵抗能力。
5. 结论
通过本实验的研究,得出了对于自动控制系统设计和优化的一些有益的结论,为相关工程应用提供了一定的参考价值。
6. 展望
未来可以进一步深入研究自动控制系统的优化设计和应用,为工程实践提供更为有效的控制方案。
综上所述,通过对自动控制系统的实验研究,得出了一些有益的结论,为相关工程应用提供了一定的参考价值。
希望本实验的研究成果能够为自动控制系统的设计和优化提供一定的指导和帮助。
自动控制原理实验报告
自动控制原理实验报告实验一、典型环节的时域响应一.实验目的1.熟悉并掌握TD-ACC+(TD-ACS)设备的使用方法及各典型环节模拟控制电路的构成方法。
2.熟悉各种典型环节的理想阶跃曲线和实际阶跃响应曲线。
对比差异、分析原因。
3.了解参数变化对典型环节动态特性的影响。
二.实验设备PC机一台,TD-ACC+(TD-ACS)实验系统一套。
三.实验内容1.比例环节2.积分环节3.比例积分环节4.惯性环节5.比例微分环节6.比例积分微分环节四、实验感想在本次实验后,我了解了典型环节的时域响应方面的知识,并且通过实践,实现了时域响应相关的操作,感受到了实验成功的喜悦。
实验二、线性系统的矫正一、目的要求1.掌握系统校正的方法,重点了解串联校正。
2.根据期望的时域性能指标推导出二阶系统的串联校正环节的传递函数二、仪器设备PC 机一台,TD-ACC+(或 TD-ACS)教学实验系统一套。
三、原理简述所谓校正就是指在使系统特性发生变接方式,可分为:馈回路之内采用的测点之后和放1.原系统的结构框图及性能指标对应的模拟电路图2.期望校正后系统的性能指标3.串联校正环节的理论推导四、实验现象分析校正前:校正后:校正前:校正后:六、实验心得次实验让我进一步熟悉了TD-ACC+实验系统的使用,进一步学习了虚拟仪器,更加深入地学习了自动控制原理,更加牢固地掌握了相关理论知识,激发了我理论学习的兴趣。
实验三、线性系统的频率响应分析一、实验目的1.掌握波特图的绘制方法及由波特图来确定系统开环传函。
2.掌握实验方法测量系统的波特图。
二、实验设备PC机一台,TD-ACC+系列教学实验系统一套。
三、实验原理及内容(一)实验原理1.频率特性当输入正弦信号时,线性系统的稳态响应具有随频率(ω由0变至∞)而变化的特性。
频率响应法的基本思想是:尽管控制系统的输入信号不是正弦函数,而是其它形式的周期函数或非周期函数,但是,实际上的周期信号,都能满足狄利克莱条件,可以用富氏级数展开为各种谐波分量;而非周期信号也可以使用富氏积分表示为连续的频谱函数。
自动控制实验报告
自动控制实验报告自动控制实验报告引言:自动控制是现代科技的重要领域之一,它在各个行业中都起到了至关重要的作用。
通过对系统进行监测、判断和调整,自动控制系统能够实现对设备、机器和过程的自主控制,提高生产效率、降低成本、提升安全性。
本文将介绍一次关于自动控制的实验,通过实验过程和结果,探讨自动控制的原理和应用。
实验目的:本次实验的目的是通过搭建一个简单的自动控制系统,探究自动控制的基本原理,并了解其在现实生活中的应用。
我们将以温度控制为例,通过调节加热器的功率,使温度保持在设定的范围内。
实验装置:实验装置包括一个温度传感器、一个加热器、一个控制器和一个显示屏。
温度传感器负责实时监测环境温度,将数据传输给控制器。
控制器根据设定的温度范围,判断是否需要调节加热器的功率。
加热器根据控制器的指令,调节加热功率,以达到温度控制的目标。
显示屏用于显示当前温度和设定温度。
实验步骤:1. 将温度传感器安装在实验环境中,并将其与控制器连接。
2. 设置控制器的温度范围,例如设定为20-25摄氏度。
3. 打开加热器,将其与控制器连接。
4. 开始实验,观察温度的变化,并记录数据。
5. 根据实验数据,分析控制器的判断和调节过程,以及加热器的功率调节情况。
实验结果:通过实验,我们观察到温度在设定范围内波动,并且控制器能够根据实时数据进行判断和调节。
当温度低于设定范围时,控制器会发送指令给加热器,增加加热功率;当温度超过设定范围时,控制器会减小加热功率。
在实验过程中,我们还发现控制器的响应速度很快,能够及时做出调整,使温度保持在设定范围内。
讨论和分析:自动控制系统的核心是控制器,它通过不断监测和判断系统的状态,根据预设的目标进行调节。
在本次实验中,控制器通过与温度传感器的连接,获取实时温度数据,并根据设定的范围进行判断和调节。
这种反馈控制的方式使得系统能够自主运行,并且具备一定的稳定性。
自动控制在现实生活中有着广泛的应用。
例如,工业生产中的自动化生产线,通过自动控制系统可以实现对产品质量和生产效率的精确控制。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
综合实验报告实验名称自动控制系统综合实验题目指导教师设计起止日期2013年1月7日~1月18日系别自动化学院控制工程系专业自动化学生姓名班级 学号成绩前言自动控制系统综合实验是在完成了自控理论,检测技术与仪表,过程控制系统等课程后的一次综合训练。
要求同学在给定的时间内利用前期学过的知识和技术在过程控制实验室的现有设备上,基于mcgs组态软件或step7、wincc组态软件设计一个监控系统,完成相应参数的控制。
在设计工作中,学会查阅资料、设计、调试、分析、撰写报告等,达到综合能力培养的目的。
目录前言 (2)第一章、设计题目 (4)第二章、系统概述 (5)第一节、实验装置的组成 (5)第二节、MCGS组态软件 (11)第三章、系统软件设计 (14)实时数据库 (14)设备窗口 (16)运行策略 (19)用户窗口 (21)主控窗口 (30)第四章、系统在线仿真调试 (32)第五章、课程设计总结 (38)第六章、附录 (39)附录一、宇光智能仪表通讯规则 (39)第一章、设计题目题目1 单容水箱液位定值控制系统选择上小水箱、上大水箱或下水箱作为被测对象,实现对其液位的定值控制。
实验所需设备:THPCA T-2型现场总线控制系统实验装置(常规仪表侧),水箱装置,AT-1挂件,智能仪表,485通信线缆一根(或者如果用数据采集卡做,AT-4 挂件,AT-1挂件、PCL通讯线一根)。
实验所需软件:MCGS组态软件要求:1.用MCGS软件设计开发,包括用户界面组态、设备组态、数据库组态、策略组态等,连接电路,实现单容水箱的液位定值控制;2.施加扰动后,经过一段调节时间,液位应仍稳定在原设定值;3.改变设定值,经过一段调节时间,液位应稳定在新的设定值。
第二章、系统概述第一节、实验装置的组成一、被控对象1.水箱:包括上水箱、下水箱和储水箱。
上、下水箱采用淡蓝色优质有机玻璃,不但坚实耐用,而且透明度高,便于学生直接观察液位的变化和记录结果。
有机玻璃水箱尺寸:长×宽×高=350×380×300(mm)。
上水箱可以分为两个小水箱共五个槽组成,分别为小水箱缓冲槽、小水箱工作槽、大水箱缓冲槽、大水箱工作槽和溢流槽组成,进水时水管的水先流入缓冲槽,然后才流入工作槽,这样经过缓冲和线性化的处理,工作槽的液位较为稳定,便于观察。
两个小水箱底部均设置有采压口、出水口以及并连水箱连通口。
下水箱与上水箱不同,共有四个槽组成,分别为左进水缓冲槽、溢流槽、右进水缓冲槽和工作槽,水箱底部设置有采压口,出水口。
储水箱由不锈钢板制成,尺寸为:长×宽×高=900m×520×430(mm),完全能满足有机玻璃水箱以及加热锅炉的实验供水需要。
储水箱内部有两个椭圆形塑料过滤网罩,以防杂物进入水泵和管道。
2.模拟锅炉:是利用电加热管加热的常压锅炉,包括加热层(锅炉内胆)和冷却层(锅炉夹套),均由不锈钢精制而成,可利用它进行温度实验。
做温度实验时,冷却层的循环水可以使加热层的热量快速散发,使加热层的温度快速下降。
冷却层和加热层都装有温度传感器检测其温度,可完成温度的定值控制、串级控制,前馈-反馈控制,解耦控制等实验。
3.盘管:模拟工业现场的管道输送和滞后环节,长21米(24圈),在盘管上有三个不同的温度检测点,它们的滞后时间常数不同,在实验过程中可根据不同的实验需要选择不同的温度检测点。
盘管的出水通过软管连接既可以流入锅炉内胆,也可以经过涡轮流量计流回储水箱。
它可用来完成温度的滞后和流量纯滞后控制实验。
4.管道及阀门:整个系统固定不动的管道由敷塑不锈钢管连接而成,所有的手动阀门均采用优质球阀,彻底避免了管道系统生锈的可能性。
有效提高了实验装置的使用年限。
实验用管道采用软管连接,软管连接部分均采用快速软管接头,方便软管插拔,不同的实验需要连接不同的管路,完全开放,老师学生可以随意组合控制系统,培养学生创新能力,使设备更具研究价值。
二、检测装置1.压力传感器、变送器:五个DDZ-III型压力传感器,用来对上小、上大、下水箱的液位以及常规仪表侧管道压力进行检测,精度为0.5级。
采用工业用的扩散硅压力变送器,带不锈钢隔离膜片,同时采用信号隔离技术,对传感器温度漂移跟随补偿。
采用标准二线制传输方式,工作时需提供24V直流电源,输出:4~20mADC。
其中检测管道压力的压力变送器量程为0-200KPa,其余用于检测液位的四个变送器量程均为0-5KPa。
西门子压力变送器用来对现象总线侧下水箱液位进行检测,数量1套。
测量偏差小于0.1%。
采用SIEMENS带PROFIBUS-PA通讯接口的压力传感器,SIEMENS带PROFIBUS-PA通讯协议的压力传感器通过总线供电,不需要另外接工作电源。
2.温度传感器:装置中采用了五个Pt100铂热电阻温度传感器和一个K型热电偶传感器,五个热电阻传感器分别用来检测锅炉内胆、锅炉夹套、盘管(有3个测试点)的水温。
Pt100测温范围:-200~+420℃。
经过调节器的温度变送器,可将温度信号转换成4~20mA直流电流信号。
Pt100传感器精度高,热补偿性较好。
K型热电偶传感器用来检测锅炉内胆水温,测温范围:0-1100℃。
3.流量计:一个模拟转换器(涡轮流量计)挂接在网孔板上,两端接有快速接头,用来连接软管测量流量。
它的优点是测量精度高,反应快。
采用标准二线制传输方式,工作时需提供24V直流电源。
流量范围:0~1.2m3/h;精度:1.0%;输出:4~20mADC。
一个孔板流量计(需要配合差压变送器),刻度流量0~1.5m3/h,最大差压60KPa。
一个西门子电磁流量计,公称直径15mm,测量精度±0.5%。
与流量转换器配合使用。
基于微处理器的变送器,带有数字显示,可连接多种传感器,采用SIEMENS带PROFIBUS-PA通讯接口电磁式流量计。
4.差压变送器:配合孔板流量计测量管道流量,采用电容式差压变送器,4-20mA信号输出,0.25级测量精度。
5.液位传感器:由三个电接触点组成,分别对低、中、高水位进行检测,配合液位控制器,可以对水位起到监视作用,本实验装置中共用了两个液位传感器,分别用来检测锅炉内胆水位和储水箱水位。
三、执行机构1.电动调节阀:采用智能直行程电动调节阀,用来对控制回路的流量进行调节。
电动调节阀型号为:QSTP-16K。
具有精度高、技术先进、体积小、重量轻、推动力大、功能强、控制单元与电动执行机构一体化、可靠性高、操作方便等优点,电源为单相220V,控制信号为4~20mADC或1~5VDC,输出为4~20mADC的阀位信号,使用和校正非常方便。
2.气动调节阀(配套西门子阀门定位器):额定流量0.3T/h,等百分比特性。
由智能电气阀门定位器控制的气动调节阀,带有PROFIBUS-PA通讯功能。
3.水泵:本装置采用磁力驱动泵,型号为16CQ-8P,流量为30升/分,扬程为8米,功率为180W。
泵体完全采用不锈钢材料,以防止生锈,使用寿命长。
本装置采用两只磁力驱动泵,一只为三相380V 恒压驱动,另一只为三相变频220V输出驱动。
4.电磁阀:在本装置中作为电动调节阀、气动调节阀的旁路,起到阶跃干扰的作用。
5.U型单相电加热管:一根1KW U型电加热管用来对锅炉内胆内的水进行加温。
6. 单相调压模块单相调压模块安装在控制屏内部,它为单相交流220V输入,输出为单相交流220V平滑可调,控制信号为DC 4~20mA,利用智能调节仪的输出信号可控制调压模块的输出电压,从而使加热介质水最终稳定在某一数值,实现温度的自动控制。
四、实验控制台1. 电源控制屏面板:装有漏电保护空气开关,三相电压指示表,各种执行器控制开关,报警指示灯。
电磁阀开关,三位式开关,打到中间位置为电磁阀断电闭合状态;打到手动位置,电磁阀得电打开;打到自动位置,只有当电磁阀的控制端子(信号面板上“电磁阀控制”弱电接线柱或者接线端子DF+与DF-)接通时电磁阀才接通。
380V磁力泵开关,三位式,中间为停止状态,打到中间位置,380V磁力泵断电;打到手动位置,当储水箱有水时(此时水位报警指示灯为熄灭状态),磁力泵接通电源;打到自动位置,只有当储水箱有水,同时磁力泵控制端子(信号面板上“磁力泵控制”弱电接线柱或者接线端子CL+与CL-)接通时磁力泵才接通电源。
DC24V电源开关,打到开位置,DC24V开关电源得电,DDZ-III型传感器工作的前提条件是要有直流24V电源,故正常工作时要打开此开关。
调压模块开关,打到开位置,当锅炉内胆有水时,调压模块电源输入端得电,当做温度实验时需打开此开关。
电动阀开关,打到开位置,智能电动调节阀得电。
单相I,单相II开关,打到开位置,信号面板上的强电柱“单相I”、“单相II”分别得电,为给实验挂件供电提供条件。
锅炉报警、水位报警指示灯,当锅炉内胆没水时,锅炉报警指示灯亮,此时,不能够给锅炉加热;当储水箱没水时,水位报警指示灯亮,此时不能用磁力泵抽水。
2. I/O信号面板:测量信号、控制信号的连接均在此面板上完成,便于学生自行连线组成不同的控制系统。
测量信号部分:LT1、LT2、LT3分别对应上小、上大、下水箱的液位测量信号,红色和蓝色弱电柱之间电压为0.2-1V,蓝色和黑色弱电柱之间电压为1-5V;FT1、FT2分别对应孔板流量计流量信号和涡轮流量计信号;PT为管道压力的测量信号;TT1、TT2、TT3、TT4、TT5、TT6分别测量锅炉内胆、锅炉夹套、盘管上、盘管中、盘管下、锅炉内胆水温的温度;K1、K2分别为干烧报警,水位报警报警用触点,当报警发生时,相应的报警继电器动作,常开触点(NO)或常闭触点(NC)与公共点(COM)接通或断开。
控制输出部分:“电动阀”为电动调节阀4-20mA控制信号输入端;“电动阀阀位反馈”为电动调节阀开度反馈信号(4-20mA);“温控模块”为调压模块控制信号输入端;“变频器”为FCS控制柜里的西门子变频器4-20mA控制信号输入端,若要控制变频器还需要给变频器通电和进行一些参数设置;磁力泵控制、电磁阀控制分别为磁力泵和电磁阀在自动状态时的控制输入端,当两个端子短接,相应的控制对象就接通电源。
电源部分:为实验挂件等提供电源。
备用部分:用于扩展,主要用于测量信号远传至其他控制系统或其他系统的控制信号远传至该控制系统。
接线端子:详见附录I控制屏接线端子对应表。
五、实验挂件1.AT-1 AI智能调节仪表挂件:采用上海万迅仪表有限公司生产的AI系列全通用人工智能调节仪表,其中智能调节仪I、智能调节仪II为AI-818型,流量积算仪为AI-708H型。
AI-818型仪表为PID控制型,输出为4~20mADC 信号;而AI-708H型仪表为流量积算仪,输出为继电器触点型开关量信号。