LF精炼炉渣性能探讨

合集下载

浅析LF炉脱硫精炼渣

浅析LF炉脱硫精炼渣

浅析LF炉脱硫精炼渣【摘要】随着现代科学技术和工业的发展,对钢材质量(如纯净度)要求越来越高,用普通炼钢炉冶炼出来的钢水已经难以满足其质量的要求。

另外,连铸技术的发展,对钢水的成分、温度和气体的含量等也提出了更严格的要求。

于是就产生了各种将初炼钢水进行炉外精炼的方法。

LF精炼法是其中最常用的一种。

本文对LF法中常用的几种脱硫渣系(如CaO- CaF2、CaO-Al2O3、CaO-Al2O3-CaF2、BaO-MgO-Al2O3-SiO2)的组成及其冶金功能等进行研究与探讨,对精炼渣的发展前景和方向作出展望,为以后精炼渣的开发研究提供了依据和参考。

【关键词】LF精炼渣;脱硫;碱度LF法就是在非氧化性气氛下,通过电弧加热、造高碱度还原渣,进行钢液的脱氧、脱硫、合金化等冶金反应,以精炼钢液。

钢包底部的吹氩搅拌,使钢液与所造的精炼渣充分接触,强化精炼反应,有效去除杂质,促进钢液温度和合金成分的均匀化,为连铸提供温度、成分准确均匀的钢水,协调炼钢与连铸的节奏。

LF合成渣精炼可以更好完成脱硫、脱氧、去除夹杂的任务,从而得到纯净钢水。

1、LF法的精炼原理LF法的工作原理:钢包到站后,将钢包移到精炼工位,加入合成渣料,降下石墨电极插入熔渣中对钢水进行埋弧加热,补偿精炼过程中的温降,同时进行底吹氩搅拌。

LF精炼法通过强化热力学和动力学条件,使钢液在短时间内得到高度净化和均匀。

造白渣进行钢水精炼,可生产超低硫钢和低氧钢。

因此,白渣精炼是LF炉工艺操作的核心,也是提高钢水纯净度的重要保证。

白渣精炼的工艺要点是:①挡渣出钢,控制下渣量小于5kg·t-1钢;②钢包渣改质(一般采用Al2O3-CaO-SiO2系炉渣),控制钢包渣碱度大于2.5~3,渣中W(FeO+MnO)含量小于1.0~3.0%;③保持熔渣良好的流动性和较高的渣温,确保脱硫、脱氧效果;④控制LF炉内为还原性气氛,避免炉渣再次氧化;⑤适当搅拌,避免钢液面裸露,并保证熔池内具有较高的传质速度。

LF精炼渣系研究

LF精炼渣系研究
在 以下三 方面 。
1 ) 转 炉 出钢下 渣量 超过 l O O m m 对精 炼效 果 的影 响 。 转 炉下 渣量 超过 l O O mm时 , 加入 大量渣 料( 活 性石 灰 、 精炼渣) 、 脱 氧剂 ( 硅铁 粉 等 ) 和 溶
渣 淹 没 电弧 提高 热 效 率 , 降 低 电耗 、 减 少 耐 火 材 料 的侵 蚀 , 是 提 高 双 高产 品质 量 , 实 现 降 本 增 效
. r 前 言
脱 氧元 素 不断 变化 【 1 ] . 这 种原 始渣 氧 化性 强 , 炉 渣 氧 势高 , 且渣中 S i O : 含 量较 高 、 碱 度低 , 给L F精
随着 用 户对 加 工 材 品种 钢 质 量 的要 求 越 பைடு நூலகம்
越高 , L F炉精 炼 是 提 高 加 工 材 品种 钢 质 量 的重
Ho n g J u n
( S t e e l m a k i n g P l a n t , S h o u g a n g S h u i c h e n g I r o n& S t e e l ( G r o u p ) C o . , L t d . , L i u p a n s h u i 5 5 3 0 2 8 , G u i z h o u , C h i n a )
进 行 分析 研 究 , 制 定 出合 理 的 渣 系 配 比和 适 合 水钢 1 0 0吨 L F炉 的 造 渣 制 度 , 通 过 实践 取 得 了稳 定的 脱 硫 、 脱 氧 及 吸 附 夹杂 物 效 果 。
关键词 : L F ; 精炼 ; 造渣工艺; 脱硫 ; 脱氧 ; 夹 杂物
Re s e a r c h o n L F Re i f n i n g S l a g

LF炉高碱度精炼渣脱硫研究实验方案

LF炉高碱度精炼渣脱硫研究实验方案

LF炉高碱度精炼渣脱硫研究实验方案4.研究目标针对LF炉高碱度精炼渣的脱硫问题,通过研究高碱度精炼渣的CaO含量,以及熔化温度、粘度、脱硫率等指标,找到了高碱度精炼渣各成分含量的工艺参数,掌握了CaO—A12O3一CaF2一SiO2四元渣系脱硫的方法,达到LF炉高碱度精炼渣脱硫的目标。

(1)阐明随着市场对钢材质量要求的不断提高和我国钢铁企业在国际市=场中面临的竞争力,高品质洁净钢对钢中硫含量提出的要求越来越严格因此在冶炼过程中必须控制钢中硫含量,提高钢种的质量和性能。

(2)掌握了CaO—A12O3一CaF2一SiO2四元渣系脱硫的方法。

(3)达到满足精炼渣对钢液脱硫效果的需求,提高精炼渣脱硫效率,进一步提高冶炼钢种的冶金性能的目的。

5.研究内容炉外精炼技术在冶炼高品质的钢材中起到了非常重要的作用,是钢铁冶炼过程中不可或缺的环节,精炼渣性能的好坏直接关系到产品的质量和产品在市场中的竞争力,性能良好的精炼渣有助于提高产品的质量以及市场竞争力,同时还可以降低生产成本增加钢铁企业经济效益。

5.1.1对基础渣系CaO-SiO2-Al2O3-MgO-CaF2不同碱度对精炼渣脱硫效果的研究。

通过改变CaO-SiO2-Al2O3-MgO-CaF2的碱度,研究不同碱度的精炼渣的脱硫效果及变化规律,结合这些规律,分析最佳碱度。

5.1.2对基础渣系CaO-SiO2-Al2O3-MgO-CaF2不同Al2O3含量对精炼渣脱硫效果的研究。

通过改变CaO-SiO2-Al2O3-MgO-CaF2中Al2O3的用量,研究不同Al2O3含量精炼渣的脱硫效果及变化规律,结合这些规律,分析最佳含量。

5.1.3对基础渣系CaO-SiO2-Al2O3-MgO-CaF2不同CaF2含量对精炼渣脱硫效果的研究。

通过改变CaO-SiO2-Al2O3-MgO-CaF2中CaF2的用量,研究不同CaF2含量精炼渣的脱硫效果及变化规律,结合这些规律,分析最佳含量。

钢包炉LF用预熔精炼渣的研究和应用

钢包炉LF用预熔精炼渣的研究和应用

1253.6
1266.3
3760.3
1231.6
1239.7
1244.6
3715.9
1293.6
1269.5
1278
3841.1
1259.3
1269.5
1296.7
3825.5
1269.5
1282.5
1248
3800
1272.1
1308.9
1286.3
3867.3
1247.3
1258.6
1264.4
实验号
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
熔化温度(℃)
1
2
3
合计si (℃)
1295.3
1325.3
1339.5
3960.1
1322.3
1298.7
1307
3928
1303
1298.7
1303
3904.7
1293.7
1290.3
1308.7
3892.7
1240.4
R 45.225 9.041667 17.08333 19.35 22.38333
第一列(A因素) R=1307.1-1261.9=42.2 第二列(B因素) R=1290.6-1281.5=9.1 第三列(C因素) R=1295.1-1278.0=17.1 第四列(D因素) R=1295.6-1276.2=19.4 第五列(E因素) R=1296.6-1274.2=22.2
中,其在它A1因、素A2(、B、A3C、、AD4各和自E)的所1在、的2、实3验、组4 水平都分别出现了一次。把第一组实验所得 的实验数据相加,其和记作I,同理,把第 二组、第三组、第四组的数据相加分别记作 II、III和IV。

LF炉精炼用渣冶金性能研究

LF炉精炼用渣冶金性能研究
Vau gne rng l e En i e i
! !! !竺 ! 苎! ! !! 苎 ! 竺 ! ! !! ! ! ! ! !竺 竺 苎竺 ! ! ! ! 竺
・2 7 ・ 2
L F炉 精 炼 用 渣 冶 金 性 能研 究
Pe f r r o man e St c udy o fLF fn n Re i g Fur ac l g M e a l gy i n e Sa t lur
高 瑞 林 Ga ul oR in i
( 中冶 京诚 ( 口 ) 备技术 有 限公司 , 口 1 5 0 ) 营 装 营 1 0 5 ( h n y igh n ( n k n)q ime t eh ooyC .Ld, igo 0 5 C ia) Z og eJn ee g Yig o E up n c n lg oI t.Yn k u 15 0 , hn T 1
要求。
Absr c :Atp e e t ta t r s n,LF f n c e nigi neo e mo ti ot n e h oo d ptd b o q n &S Co, d i h o u to ftp ga e ura er f n so ft s mp ra ttc n lg a o e yCh ng i gI . n t eprd cin o rd i h y Lt o
文献标识码 : A
文章编号 :0 6 4 l (0 0)8 0 2 — 1 10 — 3 12 1 1— 2 7 0
1 未混转炉渣时 L F渣的熔化性能研究 铝矾土等 ) 均为重钢七厂于 实验前提供。 渣料的组成 为 4 %转炉 渣+ 1 11熔化实验 观察 先对未 混转炉渣时 的 L . F渣进行熔 化实验 5 %L 9 F渣, 中 L 其 F渣组成 为 2 .%埋 弧渣+ 0 %精炼 渣。渣料先 94 7. 6 观察 , 实验 渣 样 号 为控 铝 钢 A M 、 铝 钢 B , 2 ,含 渣料 的各 组 分 先破 碎 在 1 K 0 G感 应 炉 中 用 石墨 坩 锅 内预 熔 。 从上 述 的测 试 研 究 可 认 为 , 所 设计 的 L 对 F渣 ( 括 控 铝 钢 和 含 包 至 2 0目 , 分 混 匀 , 后 装 在 石 墨坩 锅 内 , 二 硅 化 钼 炉 内从 室 06 充 然 在 温 缓 慢 升 温 到 15 % 。 结 果 表 明 :对 未 混 转 炉 渣 时 的 L 40 : F渣 , 在 铝 钢 用 两 类 )在 没 有 混 转 炉 渣 时 , 熔 点 在 15 ℃以 上 。按 L , 其 40 F实 15  ̄的温度 内, 4 0C 碳酸盐基本分解完 , 渣不能熔化 , 最后渣发生轻微 际 生 产 混 进 4 %左 右 的 转 炉 渣 时 ,其 熔 点 在 16 —4 0C 0 3 1 17  ̄ 的范 围。 的烧 结 。 三种 方法 测 出 的渣 熔 点 相 差 较 大 , 要 是 测 试 原 理 不 同或 者 说 对 炉 主 12理 论 分 析 由于 设 计 的 L . F渣 在 碳 酸 盐 分 解 完 后 组 分 应 为 渣熔 点的定义不同产生的。未熔炉 渣是 一混合 物, 其熔化是在一定 学术 上定 义 炉 渣 熔 点 为 加 热 时 固 态 完 全 转 变 为 均 匀 液 C O SO 、 1 3M O, 将 Mg a 、 i2A2 、 g 若 O O折算 为 C O, a 根据 C O— i2A23 区 间进 行 的 , a SO一 1 O 相 , 分 , 看出在未混转炉渣时 的 L 成 可 F渣 的 熔 点 都 在 15 ~ 9 0C 相 或冷 却 时 液 相 开 始 出 现 固相 的温 度 。 50 10 o 范 围 , 15 ̄ 的温 度 下 是 不 能 熔 化 的 。 在 4 0C 3 碳 酸 盐 发泡 剂 的选 用 及 其 分解 特性 测 试 分 析 2 混 有 转炉 渣 时 L F渣 的熔 化 性 能 研 究 目前 L F用到 的发泡剂主要有两 类:①碳酸盐 ,常用的有石灰 21二 硅 化 钼 炉 内熔 化 实验 重 钢 实 际 的 L . F生产 中 ,在 L F渣 石、 白云石、 工业碱和 菱镁矿 ; 碳及含碳 化合物 , 的有 焦碳 、 ② 常用 碳 ( 埋弧 渣和精炼 渣 ) 加入前 , 钢包 内 已有部分残余转炉 渣, 根据我们 化硅和 电石等。碳及含碳化合物能与炉渣中(e 或钢中氧起反应 F O) 对重钢生产现场调查 , L 进 F工 位 时 , 包 内 带 进 的 转 炉 渣 约 为 L 放 出大量气体 , 钢 F 且气体产生的速率也较慢 , 有利于延长发泡时间。 但 精炼 总渣量的 4 %左右 , 1 据此 比例 , 我们将设计 出的渣混入转炉渣 , 碳及含碳化合物做 发泡剂具有极易 引起钢水增碳增硅等缺点 , 故我 再测 试 研 究 其熔 化性 能。 们设计的 L F渣选用碳酸盐( 石灰石、 白云石和菱镁矿 ) 作发泡剂。 观测所用渣料( 石灰 石 、 灰 、 石 白云 石 、 矾 土 等 ) 为重 钢 七 厂 铝 均 石灰石 的开始 分解温度 和沸腾 温度分 别为 80 0 ℃和 9 0C: 3  ̄ 菱 镁 矿 的开 始 分 解 温 度 和 沸 腾 温 度 分 别 为 3 0C 60C: 由于 白云 2  ̄和 8  ̄ 于实验前提供。 渣 料 的组 成 为 4 %转炉 渣+ 9 F渣 ,其 中 L 1 5 %L F渣组 成 为 石中 C C Mg O 结合为复杂化合 物, aO与 C 降低 了 Mg O 的活度 , C 所 2. 94 %埋弧渣+ 0 %精炼渣。渣料先在 1K 7. 6 0 G感应炉 中用石墨坩锅 以 白云 石 中 M C , 分 解 温 度 比 单 独 存 在 的 M C , 解 温 度 高 , gO 的 gO 分 预 熔 , 后 将 预熔 渣 ( 组 20 2 0克 ) 电脑 控 制 的二 硅 化 钼 电 阻 因 C C , Mg O 稳 定 , 热 时 Mg O 先 分 解 , 然 每 0~5 在 aO 比 C, 加 C, 白云 石 的分 解 分 为 炉 内观 测 其软 化 、 化 过 程 。观 测 结 果 如 表 1 示 。实 际 生产 中 L 两阶段 , 熔 所 F 第一 阶段 是 M C , g O 分解 , 沸腾点为 7 0 7 0C, 2 ~ 8  ̄ 第二阶段是 精炼终点渣的熔点一般控制在 15 ~ 4 0 3 0 10 ℃左右。从表 1 观测结果 C C 解 , 腾 点 为 90C aO分 沸 0  ̄。 看 , 3、 . Z两 组 渣 的熔 化 温度 偏 高 ; 三 组 的完 全 熔 化 温 度 都 BLZ AM。 后 从 B 、 AM, 的 热 分 析 ,三 个 渣 的 T 曲线 都 存 在 三 个 山 BL、 渣 G 在 13 q左 右 , 4 0C 比通 常 L F精 炼 时控 制 温 度 ( 点 渣 15 40C) 明 显 的 失 重 变 化 , D C曲 线 上 对 应 存 在三 个 显 著 的 吸 热 峰 ( 表 终 3 0 10  ̄ 在 S 见 稍 高 , 由于 L 但 F渣 经 过 精 炼 后 , 分增 加 , 使 熔 化 温 度 降 低 , 4)第一 个失重变化 (3 — 7 ℃) 组 将 因 , 2 0 2 0 应该是渣料 中吸附气体 的挥 发和 此 , 1中后 三组 渣 的熔 化 温 度 可 以满 足 生 产 要 求 。 另 外 从 实 验 过 渣 料 中 结 构 水 挥 发 , C ( H 2 解 失 去 水 变成 C O 因 为在 热 分 表 即 aO �

LF炉精炼研究总结

LF炉精炼研究总结

LF工艺操作LF 是一种拥有电弧加热装置的炉外精炼方法,于1971年由日本特殊钢公司提出,它也被叫做钢包加热炉。

LF主体是一个带有底吹氩的钢包,来自转炉或电炉的钢液(无渣)注入到该钢包内,然后钢包被吊车吊运到钢包车上,运往LF处理工位。

在水冷炉盖下方提供三相电极,盖上水冷炉盖,加入高碱度的复合渣,然后通电,那么常压下即可达到埋弧加热的效果。

由于LF处理方法提供电弧加热、复合渣精炼,吹氩搅拌和合金微调等功能,因此LF精炼可达到以下冶金目的:1)通过还原气氛中高碱度复合渣的精炼,LF有很高的脱硫和脱氧能力,钢液中硫含量和溶解氧可降低到20PPm以下,此外夹杂物也可有效的去除。

2) 钢液电弧加热调整钢液温度,加速复合渣熔化;3) 底吹氩方式达到钢液成分和温度的混匀;4) 依靠自动加料系统对钢液进行成分微调。

加热过程转炉出钢1) 钢包条件钢包应当干净,不附带任何残余炉渣;此外,换包周期不能多于4小时,否则钢包必须烘烤加热到1000-1200℃。

钢包内残余钢液或炉渣会引起钢包温降,失去的热量需LF处理补偿,这些因素在LF电脑模型中都需要考虑进去。

2) 挡渣转炉出钢需要进行挡渣,众所周知转炉顶吹终点,钢液中存在一定含量的溶解氧,它与渣中氧保持平衡。

渣中FeO 和 P2O5含量很高。

当还原剂加入钢包钢液中溶解氧含量降低,钢渣间的氧平衡被打破,渣中 FeO 含量减小。

因为炉渣的氧化性降低,发生回磷现象。

因此为了阻止钢液回磷和保证稳定的LF加热过程,转炉出钢要求挡渣。

3)合金和造渣剂的添加为保证钢液成分,出钢过程中需加入合金和还原剂。

LF加热过程钢包精炼工艺包括几个过程,彼此间相互关联。

对于不同钢种,加热操作不尽相同,且处理过程参数均有相关的标准计算模型。

步骤A:搅拌当钢包抵达LF处理位,接通自动快换接头向钢包提供氩气,根据钢种选择不同的吹氩模式。

a) 吹氩量: 150~300Nl/min步骤B:混匀依据钢种提供不同的混匀方法a) 吹氩量: 300~600Nl/minb) 还原剂:硅铁,铝丸不同混匀模式中,还原剂用量是一定的 (~TS).这个步骤分为两个加热阶段,第一阶段持续1分钟,加热速度越慢越好,温度上升大约3℃/mi n,这是起弧阶段。

预熔型LF钢包炉精炼渣研究

预熔型LF钢包炉精炼渣研究

长效缓式脱氧剂
作用:可同时代替 起弧渣 LF炉精炼渣 大部分铝,碳等脱氧剂 • 深脱氧 深脱硫 大量去除夹杂 • 加入方法:从高位料仓分期加入 • 加入量:3~5Kg/T.S
强、弱长效缓释脱氧剂
• 用途:深脱氧脱硫钢及特殊钢生产时应用 • 缓释脱氧剂的理化性能指标: 强缓: (%) Al CaO Al2O3 MgO CaF2 SiO2 C 烧减 25~30 23~27 12~16 8~10 3~5 ≤5 ~5 ≥ 5 弱缓( %) 7~10 24~28 18~22 8~10 3~5 ≤5 10~15 ≥25 堆比重:≯1.0g/cm3 粒度:经造球处理后的粒度为5~20mm
开发预熔精炼渣的目的和意义
(1) 熔化温度明显低于机械混合渣,且具有低熔 点,高熔速,起泡性能好的特点。 (2) 仅吸收很少的能量就可快速形成液态渣,具 有良好的铺展性,覆盖钢液面,使钢液与空 气隔离,减少了钢水吸收H2-O2-N2 。 (3) 它允许根据各厂现场条件用石灰准确调整炉 渣,以形成高碱度的液态石灰饱和渣。 (4) 避免使用萤石(它对环境及耐材都有害)
预熔型LF钢包炉精炼渣研究
背景资料
• 以前国内外以采用CaO-CaF2二元渣系或CaOCaF2-SiO2三元渣系为主。 前者成渣迅速并能 较好脱硫,但对钢包内衬的侵蚀严重,降低钢 包的使用寿命,其埋弧效果不理想,氟化物对 环境的污染也不可忽视。后者也是在前者的基 础上为解决质量问题发展起来的。 • CaF2 与CaO 作用形成低熔点(1362℃) 的共晶 体,并能降低CaO· SiO2 熔点和炉渣粘度,增 加渣的流动性,因此,促进了炼钢初期渣早形 成,提高了去S 率。
这种固体合成渣存在两个缺陷: (1) 这种渣的熔点很高,熔速慢,在初炼 炉出钢过程加入时不易成渣,需靠提高 出钢温度或LF炉电弧加热化渣,影响生 产节奏;并且深脱硫效果不理想。 (2) 渣料中石灰活性度较高,容易吸收水 分、二氧化碳等变质,造成运输和储藏 上的不便。

浅析LF炉精炼渣冶金性能的研究现状

浅析LF炉精炼渣冶金性能的研究现状

浅析LF炉精炼渣冶金性能的研究现状[摘要]在钢材的铸造领域中,连铸技术自身的不断完善发展及社会各界对钢材质量需求的提升,钢包精炼炉受到的重视程度越来越大,在很多钢铁冶炼企业的钢包精炼炉中除采用常规化的还原氛埋弧的加热技术、透气砖的吹氩搅拌技术及真空脱气等较为成熟的技术外,合成渣的精炼技术也得到着较为广泛的应用。

文章就目前合成精炼渣所具有的作用及LF炉精炼渣冶金的熔化性能、脱硫性能及发泡性能等重点性能进行研究分析,并就LF炉精炼渣冶金性能的发展趋势等进行简单分析。

【关键字】LF炉;精炼渣;冶金性能炉外精炼作为现代化钢铁冶炼流程中的主要的生产环节,因其高效的性能已经在国内外的很多钢铁制造企业中广泛的采用,并在连铸技术、纯净钢的生产技术的完善以及生产运行成本降低等现实要求之下,与炉外精炼技术相匹配的工艺流程及生产设备逐步完善并迅速普及,精炼炉的种类相对较大,在我国的大部分钢铁冶炼企业中多以LF炉为主要的精炼炉,而与该精炼炉所生产的钢种类别相匹配的精炼渣,需要具有较高的冶金性能。

一.LF炉精炼渣内容概述LF炉渣按照自身的制作形态可以划分为混合型、烧结型、预熔型,其中混合型是由多种合成渣被均匀的混合制成的粒状的混合物,烧结型是由多种合成渣被均匀的混合后被控制在低于熔点的温度而烧结成的混合物,预熔型是由多种合成渣被混合均匀后再被控制在高于熔点的温度下而熔融加工制成。

烧结型与预熔型LF炉渣因为成本等诸多原因,在生产实践中应有的相对较少,使用的较多的是混合精炼渣。

在LF炉精炼的过程中,向钢包中注入被经过特殊比例配制而成的混合渣料,可在电弧的加热处理下熔化成为液态的渣体,从而达到精炼钢液、绝热保温等目的,而精炼渣在具体的钢铁精炼过程中的冶金作用主要是:利用高还原性、合适碱强度的精炼渣料实现钢中的硫及氧被进一步脱除的目的;以提高热效率来实现炉衬的保护;进行钢中所含有的非金属夹杂的吸收,对夹杂实施变性处理,并对钢液进行净化处理;进行冶炼过程中的大气的隔绝,以控制钢水出现吸气现象等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Ab t a t B ig c n ie e 8 o eo ih ef i n ymeh d f e o d r f i g L a i u o a u e f e t g sr c : en o sd r d a n fh g —f ce c t o so c n e n n , F W i v r e s me me s r so a n i s i s n t h i u yt ee e t c a , d eie s g a d ag n b o i g t c iv e amso p dd o i ain, e u p u iain,  ̄n e p b lc r r r u t l n ro lw n a h e e t i f a i e x d t h i e e v a o h r o d s lh r t z o mi g t h
王 菲, 杨 军, 徐畔 来
西安 7 05 ) 10 5 ( 西安建筑科技大学 冶金工程学院 , 陕西

要 :F钢包炉作为一种高效钢 的二次精炼手段 , L 借助电弧加热、 造还原渣 和底 吹氩气 搅拌等手段 , 以达 到快速
脱氧 、 脱硫 、 均匀钢水温度 、 成分 , 以及有效去除钢水 中夹杂物的 目的。探讨合理 的精炼渣成分对于提高 L F的作业 率, 降低脱硫时间 , 优化转炉 、 精炼炉和连铸之 间的工艺衔接和加快 生产节奏都具有重要 的意义。
K e o d : F; e up u iain; fnn l g y W r s L d sl h rz t o ri i g sa e
1 引言
随 着用户对 钢 材质 量 的要 求越 来 越 高 , 外 精 炉
CO CF渣 系具 有很 强 的脱 硫 能力 , 硫容 量 a —a 其
第3 2卷第 4期 21 00年 8月




V0 . 2 No 4 I3 . Au ., 0 0 g 2 1
CANSU ME TAL LURGY
文 章 编 号 :624 6 (0 0 0 -0 20 17 -4 1 2 1 )40 1 - 2
L F精 n e L L d c n i u u a t g a d a c lr t g te p o u t n r yh ai h r n z g t D, F a o t o sc si n c e eai rd ci h tm. o i h n n n n h o
t n u e o t m o o st n o f i gsa , ih w l o e r a in f a c n r d c n e t f e u p u l o f d o tt p i i h mu c mp i o f e n n lg whc l f rag t g i c n eo u i gt meo s l h r i ri i e s i e h i d —
( h c ol fM tlri l nier gXi nU i rt o rhtc r n eh o g ,X n7 05 C ia T eSho o eaug a gnei nv sy f ci t eadT cnl y i 10 5,hn ) l c E n a e i A eu o a
t p rueadcm oet o qi el n m v g h c s nf m tel u t l viby t a eyipr t e ea r n o pnns fiuds e adr o n e nl i o qi s e aaal.Iw s r m ot m t l t e i t i uo r h i d e l v n a
关键词 : F ; L 炉 脱硫 ; 精炼炉渣
中图 分 类 号 :F0 . T 735 文 献标 识 码 : A
Dic s i n On Th fn n l g Pe f r a c s u so e LF Re i g S a r o m n e i
WANG e , ANG J n, a - i F iY u XU P n l a
在二元渣 系中最 高。C O C F 渣系在 1 0 C 的 a .a 0o下 5
硫 容量高 达 000 .3 。合 成渣 中 C O与 C F应有适 当 a a:
炼作为提升钢材质 量的重要手段得到 了迅速 的发 的比例。若渣 中 CO含量较高 , a 则合成渣熔点 过 展 。钢包精炼 炉 已经成 为现代化 钢铁生产 短流程 中 高 , 流动性差 , 精炼效果不明显 ; 比 若 值过低 , 合成渣 不可 缺少 的一道 工 序 。L’ F炉精 炼 工 艺 主要是 依 靠 中 c F含 量 较 高 , C O 起 了 稀 释 作 用 , 低 了 a2 对 a 降 电极加 热 、 钢包 底 吹氩 、 白渣等手 段来降低 钢水 中 C O的有 效浓度 , 造 a 对脱硫 不利 。 氧 、 等有害元 素 的含 量 , 到精炼 的 目的。炼钢 2 2 Ca Al03C F 渣 系 硫 以达 . O- 2 - a 2 就是炼 渣 , 炉渣 的 流动 性好 , 度适 当 , 配 以相 应 碱 再 由于精 炼渣原 料 中不 可避 免 的带人 SO , i 因而 的吹氩参 数 , 能最 大 限度 的控 制 钢 中 的夹杂 物 总 C O A 2 3 a 2 系 实 际 为 C O A2 3C F-SO 就 a —1 - F 渣 O C a - 1O 一 a 2 i 2 量, 净化钢 种 , 因此 炉外精 炼 中特别 重视造 渣。 渣 系。O uhS等人测定 了 C O A2 3C F一 i2 gc a ・ 1O - a 2 SO 渣
相关文档
最新文档