第二章 误差与数据处理

合集下载

第2章误差分析与数据处理

第2章误差分析与数据处理

系统误差 随机误差 粗大误差 测量精度
22
2.2 误差的分类
根据测量数据中的误差所呈现的规律及产生的原 因可将其分为系统误差、随机误差和粗大误差。
2.2.1 系统误差 在同一测量条件下,多次测量被测量时,绝对
值和符号保持不变,或在条件改变时,按一定规律 (如线性、 多项式、周期性等函数规律)变化的误 差称为系统误差。前者为恒值系统误差,后者为变 值系统误差。
44
2.3.2 随机误差及其处理
随机误差一般具有以下几个性质: ① 对称性 绝对值相等的正误差与负误差出现的 次数大致相等。 ② 有界性 在一定测量条件下的有限测量值中, 其随机误差的绝对值不会超过一定的界限。 ③ 单峰性 绝对值小的误差出现的次数比绝对值 大的误差出现的次数多。 ④ 抵偿性 对同一量值进行多次测量,其误差的 算术平均值随着测量次数n的增加趋向于零。
的标准条件下所具有的误差。例如,某传感器是在电源
电压(220±5)V、电网频率(50±2)Hz、环境温度
(20±5)℃、湿度65%±5%的条件下标定的。如果传
感器在这个条件下工作,则传感器所具有的误差为基本
误差。仪表的精度等级就是由基本误差决定的。
(5)附加误差 附加条件下出现的误差。例如,温度附加误差、
26
2.2 误差的分类
系统误差也称装置误差,它反映 了测量值偏离真值的程度。凡误差的 数值固定或按一定规律变化者,均属 于系统误差。
系统误差是有规律性的,因此可 以通过实验的方法或引入修正值的方 法计算修正,也可以重新调整测量仪 表的有关部件予以消除。
夏天摆钟变慢的原因是什么? 27
V
A
V
- 3 15
23
2.2 误差的分类

第二章 误差和分析数据处理

第二章 误差和分析数据处理

课堂互动 下面是三位学生练习射击后的射击靶 图,请您用精密度或准确度的概念来评 价这三位学生的射击成绩。
二、系统误差和偶然误差
误差(error):测量值与真实值的差值
根据误差产生的原因及性质,可以将误差分为系统误 差和偶然误差。
1 系统误差 (systematic error) 又称可测误差,由某
§3 有效数字及计算规则
小问题:1与1.0和1.00相等吗? 答:在分析化学中1≠1.0≠1.00 一、有效数字(significant figure) 概念:分析工作中实际上能测量到的数字,除最后一 位为可疑数字,其余的数字都是确定的
如:分析天平称量:1.21 23 (g) 滴定管读数:23.20 (ml)
=0.17
S 0.17 RSD 100 % 100 % 1.1% 15.82 X
用标准偏差比用平均偏差更科学更准确。
例: 两组数据
(1) 0.11, -0.73, 0.24, 0.51, -0.14, 0.00, 0.30, -0.21,
n=8 n=8 d1=0.28 d2=0.28 s1>s2 s1=0.38 s2=0.29 (2) 0.18, 0.26, -0.25, -0.37, 0.32, -0.28, 0.31,-0.27
(1)绝对误差 (δ) : δ= x-μ (2) 相对误差(RE): R E= δ / μ× 100%
注:
注1:两种误差都有正、负值之分。
小问题1:
买猪肉1000斤少0.5斤和买1斤少0.5斤哪个误差大?
小问题2: 用分析天平称量两个样品,一个是0.0021克,另一 个是0.5432克,两个测量值的绝对误差都是0.0001 克,试通过计算相对误差来说明哪种表示法更好。

检测技术 第二章:误差分析与数据处理

检测技术 第二章:误差分析与数据处理

可以得到精确的测量结果,否则还可能损坏仪器、设备、元器件等。
2.理论误差 理论误差是由于测量理论本身不够完善而采用近似公式或近似值计算测量 结果时所引起的误差。例如,传感器输入输出特性为非线性但简化为线性 特性,传感器内阻大而转换电路输入阻抗不够高,或是处理时采用略去高 次项的近似经验公式,以及简化的电路模 型等都会产生理论误差。
误差,周期性系统误差和按复杂规律变化的系统误差。如图2.1所示,其中1为定值系差,2 为
线性系统误差,3为周期系统误差,4为按复杂规律变化的系统误差。 系统误差的来源包括仪表制造、安装或使用方法不正确,
测量设备的基本误差、读数方法不正确以及环境误差等。
系统误差是一种有规律的误差,故可以通过理论分析采 用修正值或补偿校正等方法来减小或消除。
•理论真值又称为绝对真值,是指在严格的条件下,根据一定的理论,按定义确定的数值。 例如三角形的内角和恒为180°一般情况下,理论真值是未知的。 •约定真值是指用约定的办法确定的最高基准值,就给定的目的而言它被认为充分接近于 真值,因而可以代替真值来使用。如:基准米定义为“光在真空中1/299792458s的时间 间隔内行程的长度”。测量中,修正过的算术平均值也可作为约定真值。
表等级为0.2级。
r=
0.12 100% 100% 0.12 A 100
在选仪表时,为什么应根据被测值的大小,在满足被测量数值范围的前提下,尽可能 选择量程小的仪表,并使测量值大于所选仪表满刻度的三分之二。在满足使用 要求时,满量程要有余量,一般余量三分之一,为了装拆被测工件方便。 (同一精度,量程越大,误差越大,故量程要小,但留余量)
第二章 误差分析与数据处理
三.测量误差的来源
1.方法误差 方法误差是指由于测量方法不合理所引起的误差。如用电压表测量电压时,

误差和数据处理

误差和数据处理

三、有效数字的运算法则
根据误差传递规律
加减法中 按小数点后位数最少的(绝对误差传递) 0.5362 + 0.001 + 0.25 = 0.79
0.5362 0.001 0.25
绝对误差 0.0001 0.001
0.01
29
有效数字的运算法则
根据误差传递规律
乘除法中 按有效数字位数最少的(相对误差传递) 0.0121 25.64 1.0578 = 0.328
例2-5:用8-羟基喹啉测定Al含量,9次测定的标准偏差为0.042%,
平均值为10.79%。估计真值在95%和99%置信水平时应是多大?
95%置信度时:
P =0.95 a =1-P =0.05 f=9-1=8
查表 t0.05,8=2.306
代入公式 =x tS/n =10.79 0.032%
测量步骤的准确度应与分析方 法的准确度相当
增加平行测定的次数
(四)消除测量中的系统误差
19
提高分析结果准确度的方法
(一)选择恰当的分析方法 (二)减小测量误差 (三)减小偶然误差的影响
(四)消除测量中的系统误差
经典方法比较 校准仪器 对照实验 回收实验 空白实验
试样中组分含量
标样中组分含量

试样中组分测得量
26
有效数字的修约规则
在修约标准偏差等时 修约的结果应使准确度 降低 例如:标准偏差(S)=0.213
取两位时,修约为 0.22 取一位时,修约为 0.3
27
有效数字的修约规则
与标准限度值比较时不应修约
例如:
某标准试样中镍含量≤0.03%为合格
获得的测量值为
0.033%
修约为

第二章 误差与数据处理

第二章 误差与数据处理
P ydx x f ( x ) dx
x1
1
x2
x2
这里的P就是在x1~x2这个范围内测量值出现的 概率, 在正态分布曲线图上表现为曲线下x=x1和 x=x2两条直线之间所夹的面积。
为了把一个普通的正态分布转换为标准正态分布,
xμ 设 u u称为标准正态变量 σ
x为测定值,µ 为总体平均值,σ总体标准偏差。
二 偶然误差(随机误差)
由不确定原因产生
1.特点:
1)不具单向性(大小、正负不定)
2)不重复、不可测定 3)不可消除(原因不定)
但可减小(测定次数↑)
4) 分布服从统计学规律(正态分布)
二 偶然误差(随机误差)
偶然误差的分布
消除系统误差后,同样条件下重复测定,偶然
重复性和再现性的差别
在相同条件下,对同一样品进行多次重复测定,所
得数据的精密度称为方法的重复性。 在不同条件下,用同一方法对相同样品重复测定多 次,所得数据的精密度称为分析方法的再现性。
2-4 随机误差的分布规律
测量值x的分布规律——正态(高斯)分布曲 x 线 1
2
y f x
解: x 10 .43 %
d

n
di
0 .036 % × dr%= d × 100 % 100 % 0 . 35 % x 10 .43 %
s
0 . 18 % 0 . 036 % 5

d i2 n 1
8 .6×10 7 4 .6 ×10 4 0 .046 % 4
准确度低 精密度高
准确度高 精密度差
准确度高 精密度高
准确度低 精密度差
测量点

第二章 定量分析中的误差与数据处理

第二章 定量分析中的误差与数据处理
x x
平均偏差( 平均偏差(average deviation)又称算术平均偏差: )又称算术平均偏差:
d=
∑d
i=1
n
i
n
=
∑x
i =1
n
i
−x
n
相对平均偏差: 相对平均偏差:
d ×100% x
例:测定合金中铜含量的两组结果如下
d dr 测定数据/ 测定数据/% X 第一 10.3,9.8,9.4,10.2,10.1, 10.0 0.24% 2.4% 组 10.4,10.0,9.7,10.2,9.7 第二 10.0,10.1,9.3*,10.2,9.9, 10.0 0.24% 2.4% 组 9.8,10.5*,9.8,10.3,9.9
特点 单向性。 ① 单向性。对分析结果的影响 比较固定, 比较固定,即误差的正或负固 定。 重现性。平行测定时, ② 重现性。平行测定时,重复 出现。 出现。 可测性。可以被检测出来, ③ 可测性。可以被检测出来, 因而也是可以被校正的。 因而也是可以被校正的。
偶然误差(随机误差)—由偶然因素引起的误差
10kg
±1 Ea % = ×100% = 10% 10
±1 Ea % = × 100% = ±0.1% 1000
1000kg
1.相对误差衡量分析结果的准确度更加客观; 1.相对误差衡量分析结果的准确度更加客观; 相对误差衡量分析结果的准确度更加客观 2.当绝对误差相同时,被测定的量越大, 2.当绝对误差相同时,被测定的量越大,相对误 当绝对误差相同时 差越小,测定的准确程度越高。 差越小,测定的准确程度越高。
*
1.64 1.65 1.62 1.70 1.60 1.61 1.66 1.61 1.59

第二章_误差和分析数据处理讲解

第二章_误差和分析数据处理讲解
• (2)积、商结果的相对标准偏差的平方,等于各 测量值的相对标准偏差的平方和。
化学分析
第二章 误差和分析数据处理
30
• 例 设天平称量时的标准偏差S=0.1mg,求称量试
样时的标准偏差Sm。
• 解:试样量是两次称量所得m1与m2的差值,即

m=m1-m2 或 m=m2-m1
• 读取称量m1与m2时平衡点的偏差,要反映到m中 去,因此
化学分析
第二章 误差和分析数据处理
7
3. 真值与标准值
• 某一物理量本身具有的客观存在的真实数值,即 为该量的真值。一般来说,真值是未知的,但下 列情况的真值可以认为是已知的。
• (1)理论真值:如某化合物的理论组成等。
• (2)约定真值:由国际计量大会定义的单位(国 际单位)及我国的法定计量单位。如长度、质量、 时间、电流强度、热力学温度、发光强度及物质 的量。元素的原子量也为约定真值。
• ②比例误差(proportional error):如果系统误差 的绝对值随试样量的增大而成比例的增大,但相 对值保持不变则称为比例误差。例如,试样中存 在的干扰成分引起的误差,误差绝对值随试样量 的增大而成比例的增大,而其相对值保持不变。
化学分析
第二章 误差和分析数据处理
22
• (二)偶然误差(accidental error) • 1. 定义:又称为随机误差。它是由一些无法控制
23
• 系统误差和偶然误差来源不同,处理方法也不 同。但二者经常同时存在,有时很难分清,从 而将认识不到的系统误差归为偶然误差。
• 除了系统误差和偶然误差外,在分析过程中往 往会遇到由于疏忽或差错引起的所谓“过失”, 其实质是一种错误,不能称为误差。这种错误 主要是由于操作者主观上责任心不强,粗枝大 叶或工作差错(如加错试剂、记录错误等)造 成的。

第二章 误差及分析数据处理

第二章  误差及分析数据处理
3. 减免方法:增加平行测定次数
4.产生原因: 偶然因素 随机变化因素(环
境温度、湿度和气压 的微小波动)
三、误差的减免
1. 系统误差的减免 与标准试样的标准结果对照
(1) 对照实验: 与标准方法比较 回收实验 “内检”与“外检”
(2) 空白实验 (3) 校准仪器 (4)定期培训
•分析化学常用试验的方法检查系统误差的存在, 并对测定值加以校正,使之更接近真实值。常有 以下试验方法:
二、数字的修约规则 四舍六入五成双
注意: 1、要修约的数值小于等于4则舍;
2、要修约的数值大于等于6则进到前一位
3、要修约的数值为5时:如5后无数或为 零时,5前为奇数则进到前一位; 5前为偶数则 舍弃;但当5后有非零数字时,无论5前为奇数 还是偶数,都要进到前一位;
4、在对数字进行修约时,只能一次修约到 所需的位数,不能分步修约。
2.平均偏差 ( d )
为各次测定值的偏差的绝对值的平均值
特点:简单;
n
Xi X
d i1 n
缺点:大偏差得不到应有反映。
3.相对平均偏差:为平均偏差与平均值之 比,常用百分率表示:
Rd d 100 % X
4.标准偏差(standard deviation; S)
使用标准偏差是为了突出较大偏差的影
解:X =(15.67+15.69+16.03+15.89)/4=15.82
d = Xi-X =15.67-15.82=-0.15
RE% =-0.15/15.82×100%=-0.95%
n
Xi X
d i1
=(0.15+0.13+0.21+0.07)/4=0.14
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章误差与数据处理基本术语分析化学中的误差是客观存在的。

例如,设有一铁的标准样品,其含铁的标准值为T。

对这一铁标准样品进行分析,即使采用最可靠的方法,使用最精密的仪器,由最有经验的分析工作者进行测定,所得的结果也不可能与T完全一致;由同一有经验的分析人员对同一样品进行多次分析,所得的结果也不可能完全一致。

1、准确度准确度表征测定结果与真实值的符合程度。

准确度的高低用误差来衡量。

测量值与真实值之间差别越小,则分析结果的准确度越高。

2、精密度精密度表征几次平行测量值相互符合程度。

精密度的高低用偏差来衡量。

平行测定所得数据间差别越小,则分析结果的精密度越高。

3、精密度与准确度的关系例:A、B、C、D四个分析人员对同一铁标样(w Fe=37.40%)中的铁含量进行测量,结果如图示,比较其准确度和精密度?精密度与准确度的关系可表示为:1.精密度是保证准确度的前提;2.精密度高,不一定准确度高。

4、系统误差系统误差是由某种固定的原因造成的误差。

具有重现性,系统误差的正负、大小都有一定的规律性。

在理论上讲是可以测定的,又称可测误差。

系统误差存在与否决定分析结果的准确度。

1.方法误差,由分析方法自身不足所造成的误差。

如,重量分析法中,沉淀的溶解度大,沉淀不完全引起的分析结果偏低;滴定分析中,指示剂选择不适合,滴定终点与化学计量点不符合引起的误差。

2.仪器误差,由测量仪器自身的不足所引起的误差。

如,容量仪器体积不准确;分光光度计的波长不准确。

3.试剂误差,由于试剂不纯引起的误差。

如,试剂和蒸馏水含有待测组分,使测定结果系统偏高。

4.操作误差由分析人员的主观原因造成的误差。

如分析人员掌握的分析操作与正确的分析操作有差别;分析人员对颜色敏感度的不同等。

5、随机误差(亦称偶然误差)随机误差是由某些不确定的偶然的因素引起的误差。

例如,测量时环境温度、湿度和气压的微小波动;仪器电源的微小波动;分析人员对各份试样处理的微小差别等。

随机误差的正负、大小都不可预见,也称不可测误差。

随机误差的出现符合统计规律。

随机误差的大小决定分析结果的精密度。

6、总体与样本在统计学中,对于所考察的对象的全体,称为总体(或母体)。

从总体中随机抽出的一组测量值,称为样本(或子样)。

样本所含测量值的数目,称为样本容量(或大小)。

例如,对某批矿石中的镍含量进行分析,经取样、破碎、过筛、混匀、缩分后,得到一定数量(例如500 g)的试样供分析用。

这就是分析试样,是供分析用的总体。

如果分析人员甲和乙分别从中称取3份和4份进行平行分析,分别得到3个和4个测量值,则这两组分析结果就是矿石分析试样总体的两个随机样本,样本容量分别为3和4。

7、直值某一物理量本身具有的客观存在的真实值。

其值是未知的、客观存在的量,在特定情况下认为是已知的:(1) 理论真值(如化合物的理论组成);(2) 计量学约定真值(如国际计量大会确定的长度、质量、物质的量单位等等);(3) 相对真值(如高一级精度的测量值相对于低一级精度的测量值)。

8、平均值样本容量为n的一组测量数据的算数平均值为:9、中位数一组测量数据按大小顺序排列,中间一个数据即为中位数x M。

当测量值的个数为偶数时,中位数为中间相邻两个测量值的平均值。

10、误差对真值为T的分析对象总体随机抽取一个样本进行n次测量。

(1) 个别测量值的误差为E i=x i-T ;(2) 实际上,通常用各次测量结果的平均值表示测定结果,测定结果的绝对误差为E a=-T;(3) 测量结果的相对误差为。

11、极差(R)式中,x max和x min分别为测量数据中的最大值和最小值。

12、相对极差(RR)13、公差公差是生产部门对于分析结果允许误差的一种表示方法。

如果分析结果超出允许的公差范围,称为超差,该项分析工作必须重做。

如,对钢中硫含量分析的允许公差范围规定如下:14、偏差与标准偏差样品容量为n的一组测量数据;(1) 各次测量值的偏差为d i=x i-;(2) 个别测量值的平均偏差为;(3) 个别测量值的相对平均偏差为;(4) 样本的标准偏差为式中(n- 1)称为自由度,以f表示。

自由度f是指计算一组测量数据分散程度的独立偏差数;(5) 样本的相对标准偏差,亦称变异系数(CV)。

16、总体标准偏差当测量次数为无限多次时,各测量值对总体平均值μ的偏离,用总体标准偏差σ表示,17、总体平均值当测量次数为无限多次时,所得的平均值为总体平均值μ,若没有系统误差,则总体平均值μ就是真值T。

18、总体平均偏差当测量次数为无限多次时,单次测量的平均偏差为19、平均值的标准偏差当测量次数无限增多(或实际上n> 30 )时,单次测量值x i的偏差为σi= x i-μ求各次测量值的偏差和,得是平均值对总体平均值的偏离,即为平均值的总体平均偏差。

故上式表明,测定的平均值的偏差等于各测量值偏差求平均值。

当测定次数趋于无穷大时,正、负误差互相抵消,计算平均值的偏差的平方,有根据误差分布规律,上式二倍乘积的各项有不同的符号以及相对称的两项其绝对值相等,因而其代数和趋于零,上式变为:即平均值的总体标准偏差为单次测定的总体标准误差除以测定次数的平方根。

对有限次测量,则为平均值的标准偏差与测定次数的关系增加测定次数,可以提高测量的精密度,但增加测定次数的代价不一定能从减小误差得6次就已足够。

到补偿。

在分析化学实际工作中,一般平行测定4~20、有效数字有效数字就是实际上能测到的数字,其最后一位是可疑数字。

例如,读取滴定管上的刻度,三个学生可能得不同的读数。

甲 22.42 ml乙 22.43 ml丙 22.41 ml这三个测量数据中,前三个数字都是准确的,第四位是估计出来的,所以稍有差别,称为可疑数字。

这三个测量数据的有效数字都是4。

1.数字的修约规则各测量值的有效数字位数确定后,就要将它后面多余的数字舍弃。

舍弃多余数字的过程称为“数字修约”,目前一般采用“四舍六入五成双”规则。

“四舍六入五成双”规则规定,当测量值中被修约的那个数字等于或小于4时,该数字舍弃;等于或大于6时,进位;等于5时,如进位后末位数为偶数则进位,进位后末位数为奇数则舍弃。

根据这一规则,将下列测量值修约为两位有效数字时,结果应为:3.148 3.17.397 7.40.736 0.7475.5 762.数据的计算规则数据的计算规则,是根据误差的传递规律而确定的。

加减法是各个测量值绝对误差的传递,绝对误差最大的测量值的绝对误差决定了分析结果的不确定性。

因此,求几个测量值的代数和时,有效数字位数的保留,应以小数点后位数最少的数为依据。

例如:乘除法是各个测量值相对误差的传递,结果的相对误差应与各测量值中相对误差最大的那个数相适应。

因此,在乘除法运算中通常根据有效数字位数最少的数来进行修约。

例如:随机误差是由一些偶然的因素造成的,其大小、正负具有随机性,服从一定的统计规律。

2.2.1 频率分布某校的学生对海水中的卤素含量进行测定,得到由于测定过程中存在随机误差,测量值有高有低,具有分散性。

将测量值按大小顺序排列,由最大值和最小值可知测量值落在范围。

如果按组距将198个测量值分组,每组中数据出现的个数称为频数(n i),频数除以测量值总数(n)称为频率(n i /n),频率除以组距(△S)称为频率密度(n i/n△S),以频率密度对相应组值范围作图,就得到频率密度直方图。

14、偏差与标准偏差样品容量为 n 的一组测量数据;△S 趋近于无穷小,频率密度曲线趋近于一条正(1) 各次测量值的偏差为d i=x i-;(2) 个别测量值的平均偏差为;(3) 个别测量值的相对平均偏差为;(4) 样本的标准偏差为式中(n- 1)称为自由度,以f表示。

自由度f是指计算一组测量数据分散程度的独立偏差数;(5) 样本的相对标准偏差,亦称变异系数(CV)。

10、误差对真值为T的分析对象总体随机抽取一个样本进行n次测量。

(1) 个别测量值的误差为E i=x i-T ;(2) 实际上,通常用各次测量结果的平均值表示测定结果,测定结果的绝对误差为E a=-T;(3) 测量结果的相对误差为。

11、极差(R)式中,x max和x min分别为测量数据中的最大值和最小值。

12、相对极差(RR)13、公差公差是生产部门对于分析结果允许误差的一种表示方法。

如果分析结果超出允许的公差范围,称为超差,该项分析工作必须重做。

如,对钢中硫含量分析的允许公差范围规定如下:4、系统误差系统误差是由某种固定的原因造成的误差。

具有重现性,系统误差的正负、大小都有一定的规律性。

在理论上讲是可以测定的,又称可测误差。

系统误差存在与否决定分析结果的准确度。

1.方法误差,由分析方法自身不足所造成的误差。

如,重量分析法中,沉淀的溶解度大,沉淀不完全引起的分析结果偏低;滴定分析中,指示剂选择不适合,滴定终点与化学计量点不符合引起的误差。

2.仪器误差,由测量仪器自身的不足所引起的误差。

如,容量仪器体积不准确;分光光度计的波长不准确。

3.试剂误差,由于试剂不纯引起的误差。

如,试剂和蒸馏水含有待测组分,使测定结果系统偏高。

4.操作误差由分析人员的主观原因造成的误差。

如分析人员掌握的分析操作与正确的分析操作有差别;分析人员对颜色敏感度的不同等。

5、随机误差(亦称偶然误差)随机误差是由某些不确定的偶然的因素引起的误差。

例如,测量时环境温度、湿度和气压的微小波动;仪器电源的微小波动;分析人员对各份试样处理的微小差别等。

随机误差的正负、大小都不可预见,也称不可测误差。

随机误差的出现符合统计规律。

随机误差的大小决定分析结果的精密度。

随机误差是由一些偶然的因素造成的,其大小、正负具有随机性,服从一定的统计规律。

2.2.1 频率分布某校的学生对海水中的卤素含量进行测定,得到由于测定过程中存在随机误差,测量值有高有低,具有分散性。

将测量值按大小顺序排列,由最大值和最小值可知测量值落在范围。

如果按组距将198个测量值分组,每组中数据出现的个数称为频数(n i),频数除以测量值总数(n)称为频率(n i /n),频率除以组距(△S)称为频率密度(n i/n△S),以频率密度对相应组值范围作图,就得到频率密度直方图。

直接连接相邻组中值对应的频率密度点,得到频率密度分布图。

频率密度分布图直观地反映出测量数据的集中趋势。

当测量值个数n 趋近于无穷大,组距△S趋近于无穷小,频率密度曲线趋近于一条正态分布的平滑曲线。

该曲线称为概率密度曲线。

2.2.2 正态分布当测量值个数n 趋近于无穷大,组距△S趋近于无穷小,频率分布曲线趋近于一条正态分布的平滑曲线,称为概率密度曲线。

正态分布的概率密度函数式是这样的正态分布记作 N(μ,σ2),其中,y表示概率分布;x 表示测量值; μ表示总体平均值,即无限次测定所得数据的平均值,表示无限个数据的集中趋势。

相关文档
最新文档