第3章 分析化学中的误差及数据处理.

合集下载

第三章分析化学中的误差与数据处理

第三章分析化学中的误差与数据处理

d
1 5
(|0.03|%+|0.01|%+|-0.15|%+|0.17|%+|-0.08|%)
= 0.09%
d
r

0 . 09 % 38 . 01 %
×100% = 0.24%
河北农大化学系 臧晓欢
S
( 0 . 03 %)
2
( 0 . 01 %)
2
( 0 . 15 %) 5 1
河北农大化学系 臧晓欢
三、系统误差与随机误差
系统误差 (Systematic error)—某种固定的因素 造成的误差。 随机误差 (Random error)—不定的因素造成的 误差
过失(Gross error, mistake)
河北农大化学系 臧晓欢
1.系统误差
某些固定的原因造成的误差 特点:a.对分析结果的影响比较恒定;单向性 b.同一条件下,重复测定,重复出现;重现性 c.大小正负可以测定; 可测性 d.用适当方法进行校正或加以消除。 (1)方法误差(Method error)——分析方法本身 不够完善 (反应不完全、终点不一致) 例: 重量分析中沉淀的溶解损失; 滴定分析中指示剂选择不当。
河北农大化学系 臧晓欢
例3-2 测定某亚铁盐中铁的质量分数(%)分别为38.04, 38.02, 37.86, 38.18, 37.93。计算平均值、平均偏差、相 对平均偏差、标准偏差、相对标准偏差和极差。 解:
x 1 5
(38.04+38.02+37.86+38.18+37.93)%=38.01% d1=38.04%-38.01% = 0.03%; ……. d5=37.93%-38.01% =-0.08%;

分 析 化 学第三章 误差和分析数据处理

分 析 化 学第三章 误差和分析数据处理

(二)已知样本标准偏差(s) 对于有限次测定,须根据t分布进行统计处理 1. 使用单次测定值
μ = x t p,f s
2. 使用样本平均值
μ = x t p,f s x = x t p,f
t值可通过p90表4-3查得
s n
t分布的意义 真值虽然不知,但可以通过由有限次
测定值计算出一个范围,它将以一定的置
x-μ u= σ
y = Φ(u) = 1 e 2π
u2 2

标准正态分布曲线
【特点】曲线的形状与µ 和σ的大小无关。
三、随机误差的区间概率
正态分布曲线与横坐标之间所包围的总面积,
表示来自同一总体的全部测定值或随机误差在上
述区间出现的概率总和为100%。

+
-
1 + Φ(u)du = e du = 1 2π -
正态分布曲线
(二)正态分布曲线的讨论
1.测定值的正态分布(x分布)
(1)x = μ时,其概率密度最大,曲线以x=μ
这一点的垂线为对称轴分布。 (2)精密度不同的两组测定值的正态分布曲 线,σ 值较小的相应的曲线陡峭,σ 值较大的曲 线较平坦。(☆)
(3)µ 和σ是正态分布的基本参数,一旦µ和
σ确定后,正态分布曲线的位置和形状就确了,这
二、正态分布
(一)正态分布曲线的数学表达式 测定次数无限增加,其测定值服从正态分布 的规律,其数学表达式为:
1 y = f(x) = e σ 2π (x-μ)2 2σ 2
σ-总体标准偏差,µ -总体平均值,在无系统 误差存在时,µ 就是真值T。y为测定次数无限时,
测定值xi出现的概率密度。 以x横坐标,y纵坐标 作图,得测定值的正态分布曲线。

分析化学第三章 分析化学中的误差与数据处理_OK

分析化学第三章  分析化学中的误差与数据处理_OK

分类
方法误差、仪器与试剂 环境的变化因素、主
误差、主观误差
观的变化因素等
性质
重现性、单向性(或周 服从概率统计规律、
期性)、可测性
不可测性
影响
准确度
精密度
消除或减 小的方法
校正
增加测定的次数 12
系统误差的校正
• 方法系统误差——方法校正 • 主观系统误差——对照实验校正(外检) • 仪器系统误差——对照实验校正 • 试剂系统误差——空白实验校正
误差
10
• 随机误差: • 由某些不固定偶然原因造成,使测定结果在一定范围内波动,大小、正负不定,难以
找到原因,无法测量。 • 特点:不确定性;不可避免性。 • 只能减小,不能消除。每次测定结果无规律性,多次测量符合统计规律。 • 过失、错误误差
11
系统误差与随机误差的比较
项目
系统误差
随机误差
产生原因 固定因素,有时不存在 不定因素,总是存在
相对误差: 绝对误差占真值的百分比,用Er表示
Er =E/xT = x - xT /xT×100%
2
相对误差反映误差在真值中所占的比例
误差以真值为标准
真值:某一物理量本身具有的客观存在的真实值。真值是
未知的、客观存在的量。在特定情况下认为 是已知的:
理论真值(如化合物的理论组成)(如,NaCl中Cl的 含量) 计量学约定真值(如国际计量大会确定的长度、质 量、物质的量单位等等) 相对真值(如高一级精度的测量值相对于低一级精 度的测量值)(例如,标准样品的标准值)
6 15.99 34 0.172
7 16.02 55 0.278
8 16.06 40 0.202
9 16.09 20 0.101

第3章-分析化学中的误差与数据处理

第3章-分析化学中的误差与数据处理

分 析 化 学 中 的 误 差
§3-1 分析化学中的误差
关键词: 误 差 系统误差 偶然误差 公 差


准 确 度
精 密 度
分 析 化 学 中 的 误 差
课程学习要点
1、理解真值、中位数、极差、偏差的含义。
2、掌握系统误差和随机误差的产生、特点及消除方法。
3、理解准确度与误差、精密度与偏差的含义及二者关系
分 析 化 学 中 的 误 差
八、系统误差 可测误差 1、产生:因某种确定的因素所引起,使结 果有偏高或偏低的趋势。 2、特点: ①重现性: ②单向性: ③可测性: 3、分类:
分 析 化 学 中 的 误 差
从产生的原因上可分为 : 方法误差 仪器误差 系统误差试剂误差 操作误差 主观误差
分 析 化 学 中 的 误 差
十一 误差的传递
分析结果通常是经过一系列测量步骤之后获得的,其 中每一步骤的测量误差都会反映到分析结果中去。 设测定值为A,B,C, 其绝对误差为EA,EB,EC, 相对误差为EA/A, EB/B, EC/C, 标准偏差分别为SA、SB、SC, 分析结果R: 绝对误差为ER, 相对误差为ER/R, 标准偏差为SR.
分 析 化 学 中 的 误 差
7.下列情况对分析结果产生何种影响 (A.正误差;B.负误差;C.无影响;D.降低精密度) (1)标定HCl溶液时,使用的基准物Na2CO3中含少量 NaHCO3 。 (2)在差减法称量中第一次称量使用了磨损的砝码。 (3)把热溶液转移到容量瓶中并立即稀释至标线 。 (4)配标准溶液时,容量瓶内溶液未摇匀。 (5)平行测定中用移液管取溶液时,未用移取液洗移 液管。 ( ) (6)将称好的基准物倒入湿烧杯。 ( )

03第3章 分析化学中的误差及数据处理-03

03第3章 分析化学中的误差及数据处理-03

5、在计算式中,常数、e的数值及乘除因子如 2 、1/2等有
效数字,可认为无限制,根据需要,要几位就写几位。 分析化学

NaOH
w CaCO 3 =
CaCO3 2HCl CaCl 2 H2CO3 HCl(过量)
H2O+CO2
1 0.1000 25.00 0.1000 24.10 M ( CaCO3 ) 2 3 ms 10
◇台秤(称至0.1g): 4.0g(2), 0.2g(1)
V ☆滴定管(量至0.01mL):26.32mL(4), 3.97mL(3) ☆容量瓶:100.0mL(4),250.0mL (4)
☆移液管:25.00mL(4);
☆量筒(量至1mL或0.1mL):25mL(2), 4.0mL(2) 分析化学
随机误差 a. 加减法
R=mA+nB-pC
b. 乘除法 R=mA×nB/pC c. 指数运算 R=mAn
sR2=m2sA2+n2sB2+p2sC2
sR2/R2=sA2/A2+sB2/B2+sC2/C2 sR/R=nsA/A sR=0.434msA/A 分析化学
d. 对数运算
R=mlgA
B. Li2CO3试样中,
T 0.042%,
x 0.044%
Ea x T 0.002%
A.
Er Er
Ea T Ea T
100% -0.06 / 62.38 0.1% 100% 0.002 / 0.042 5%
分析化学
B.
2. 精密度 精密度表示平行测定的结果互相靠近的程度,一 般用偏差表示。 3. 准确度与精密度的关系

第三章 分析化学中的误差与数据处理解读

第三章 分析化学中的误差与数据处理解读

平均偏差
例4:有两组测定值 甲组:2.9 2.9 3.0 3.1 3.1
乙组:2.8 解:甲组:
ቤተ መጻሕፍቲ ባይዱ
3.0
3.0
3.0
3.2
平均值=3.0 平均偏差=0.08
乙组:
平均值=3.0 平均偏差=0.08
5)标准偏差:又称均方根偏差,当测定次数趋于无限 多时,称为总体标准偏差,用σ 表示。
总体标准差:
d

i 1
n
xi x n
4)相对平均偏差:平均偏差与测量平均值的比值
d 相对平均偏差 % 100% x
x
i 1
n
i
x 100%
nx
说明:平均偏差不计正负号.
缺点:小偏差的测定总是占多数,大偏差的测定总
是占少数,按总的测定次数去求平均偏差所得的结
果偏小,大偏差得不到充分的反映。
标准参考物质:指某些具有确定含量的组分,在实际
样品定量测定中用作计算被测组分含量的直接或间接 的参照标准的一类物质。 经公认的权威机构鉴定并给予证书的 具有很好的均匀性和稳定性 含量测量的准确度至少高于实际测量3倍
例1:用分析天平称量两物体的质量各为1.6380g和0.1637g, 假定两者的真实质量分别为1.6381g和0.1638g,求两者称量的 绝对误差 和相对误差。 解:两者称量的绝对误差分别为
精密度: 平行测定结果相互靠近的程度,用偏差衡量。
偏差: 测量值与平均值的差值,用 d表示
1)绝对偏差:个别测量值与平均值之间的差值, 用 d表示。 各单次测定的偏差相 加,其和为零。
∑ di = 0
2)相对偏差:绝对偏差与平均值的比值。
dr

第3章 分析化学中的误差及数据处理

第3章 分析化学中的误差及数据处理

b:如何确定滴定体积消耗?(滴定的相对误差
小于0.1% )
0~10ml; 20~30ml; 40~50ml
万分之一的分析天平可称准至±0.1mg
常量滴定管可估计到±0.01mL
一般常量分析中,分析结果的精密度以平均相 对偏差来衡量,要求小于0.3%;准确度以相对误差 来表示,要求小于0.3%。
误差传递,每一个测定步骤应控制相对误差更小 如,称量相对误差小于0.1%
使用计算器作连续运算时,过程中可不必对每一步 的计算结果进行修约,但要注意根据准确度要求,正确 保留最后结果的有效数字位数。
四、有效数字在分析化学中的应用
1. 正确地记录数据 2. 正确地选取用量和适当的仪器 3. 正确表示分析结果
问题: 分析煤中含硫量时,称样量为3.5g,甲、乙 两人各测2次,甲报结果为0.042%和0.041%,乙报结 果为0.04201%和0.04199%,谁报的结果合理?
5. 大多数情况下,表示误差或偏差时,结果取一位 有效数字,最多取两位有效数字。
6. 对于组分含量>10%的,一般要求分析结果保留4 位有效数字;对于组分含量1%~10%的,一般要求分析 结果保留3位有效数字;对于组分含量<1%的,一般要 求分析结果保留2位有效数字。
7. 为提高计算的准确性,在计算过程中每个数据可 暂时多保留一位有效数字,计算完后再修约。
3)pH,lgK等对数值 有效数字的位数仅取决于小数部分数字(尾数)的位数。
4)不是测量得到的倍数、比率、原子量、化合价、 π、e等可看作无限多位有效数字。
5)不能因为变换单位而改变有效数字的位数。
二、有效数字的修约规则
应保留的有效数字位数确定之后,舍弃多余数字的 过程称为数字修约
修约规则:“四舍六入五成双”

分析化学知识点归纳 第三章

分析化学知识点归纳 第三章

第三章分析化学中的误差与数据处理1、误差⑴绝对误差绝对误差是测量值是真实值之间的差值。

绝对误差的单位与测量值相同,误差越小表示测量值与真实值越接近,准确度越高;反之,误差越大,准确度越低。

当测量值大于真实值时,误差为正值,表示测量结果偏高;反之,误差为负值,表示测量结果偏低。

⑵相对误差响度误差是指绝对误差相当于真实值的百分率。

相对误差有大小、正负之分,反应的是误差在真实值中所占的比例大小,因此绝对误差相同的条件下,待测组分含量越高,相对误差越小;反之相对误差越大。

⑶真值真值是某一物理量本身具有的客观存在的真实值。

严格的说任何物质中各组分的真实含量是不知道的,用测量方法是得不到真值的。

在分析化学中常将以下的作为真值①理论真值化合物的理论组成等;②计算学约定真值国际剂量大会上确定的长度、质量、物质的量的单位等;③相对真值人们设法采用各种可靠的分析方法,使用最精密的仪器,经过不同的实验室、不同人员进行平行分析,用数理统计方法对分析结果进行处理,确定出各组分相对准确的含量,此值称为标准值,一般用标注值代表该物质中各组分的真实含量。

2、偏差偏差是指测量值与各次测量结果的算术平均值之间的差值(中位数与平均值相比优点是受离群数据影响较小,缺点是不能充分利用数据)。

偏差有正有负,还有一些偏差可能为零。

如果将单次测定的偏差相加,其和为零或接近于零。

平均偏差是指单次测定偏差绝对值的平均数,代表一组测量数据中任何一个数据的偏差,没有正负号。

因此,它最能表示一组数据的重现性。

在一般分析工作中平行测定的次数不多时,常用平均偏差表示分析结果精密度。

相对平均偏差是平均偏差在各次测量结果平均值中所占的百分比例。

标准偏差的表达式是()112--=∑=nxxsnii,相对标准偏差(RSD,rs)又称变异系数,是指标准偏差在平均值中所占的百分比例。

标准偏差通过平方运算能将较大的偏差更显著的表现出来,因此标准偏差能更好的反映测定值的精密度,实际工作中,都用RSD表示分析结果精密度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2)可变性:时大、时小,可正,可负
3)服从统计规律——正态分布
(三) 过失
由于疏忽或差错引起 注意: 如果不能确定是因过失引起的,一般情况下, 数据的取舍应当由数理统计的结果来决定
系统误差与随机误差的比较
项目 产生原因 分类 性质 影响 消除或减 小的方法 系统误差 随机误差 固定因素,有时不存在 不定因素,总是存在 方法误差、仪器与试剂 环境的变化因素、主 误差、主观误差 观的变化因素等
三、有效数字的运算规则
1. 加减法 例:0.0121+25.64+1.05782 = ? 26.71 0.0121 25.64 + 1.05782 26.70992 总结: 数据相加或相减时,它们的和或差的有效数字的 保留,以小数点后位数最少的数据为依据,即以绝对 误差最大的数字为依据。
常量滴定管可估计到±0.01mL
一般常量分析中,分析结果的精密度以相对平
均偏差来衡量,要求小于0.3%;准确度以相对误差
来表示,要求小于0.3%。
误差传递,每一个测定步骤应控制相对误差更小 如,称量相对误差小于0.1%
滴定相对误差小于0.1%
(样本)标准偏差
s
x x
i 1 i
n
2
三、系统误差和随机误差 (一)系统误差(偏倚、可测误差)
由固定因素引起 特点: 1)重现性 2)单向性 3)可测性(数值基本固定,能设法减免或校正) 分类: 1)方法误差 2)仪器误差 3)试剂误差 4)操作误差 5)个人误差(主观误差)
(二) 随机误差(偶然误差、不定误差)
由某些难以控制且无法避免的偶然因素造成 特点: 1)不可避免性:可设法减小,不能校正
析结果中去,影响分析结果的准确度。
误差传递的规律依系统误差和随机误差有 所不同
第二节 有效数字及其运算规则
一、有效数字
在滴定管上读取溶液的体积,甲:26.23mL,
乙:26.25mL
1、概念
有效数字是实际上能测量到的数字,除最后一 位是可疑的外,其余的数字都是准确可靠的 对有效数字的最后一位可疑数字,通常理解为
可能有±1个单位的误差。
2、有效数字位数的确定
试样质量 0.2560g
0.25g 溶液体积 25.00mL 25mL 离解常数 溶液酸度 Ka=1.8×10-5 pH=11.20
四位有效数字(分析天平称取)
二位有效数字(托盘天平称取) 四位有效数字
(滴定管或移液管移取)
二位有效数字(量筒量取) 二位有效数字 二位有效数字 标准溶液浓度 0.1000mol/L 四位有效数字
问题: a: 基准物:硼砂 Na2B4O7· 10H2O M=381
碳酸钠
Na2CO3
M=106
选那一个更能使测定结果准确度高? (不考虑其他原因,只考虑称量)
b:如何确定滴定体积消耗?(滴定的相对误差
小于0.1% ) 0~10ml; 20~30ml; 40~50ml
万分之一的分析天平可称准至±0.1mg
说明: 1)零的作用 标准溶液浓度 0.0010mol/L
2)极大或极小的数:科学记数法 45000 0.00055 4.5×104、4.50×104、4.500×104 5.5×10-4、5.50×10-4、5.500×10-4
3)pH,lgK等对数值 有效数字的位数仅取决于小数部分数字(尾数)的位数。 4)不是测量得到的倍数、比率、原子量、化合价、
例如,将下列数据修约为2位有效数字:
0.2146
7.36 7.451
→ 0.21
→ 7.4 → 7.5
7.45
7.35
→ 7.4
→ 7.4
注意: 在修约数字时,应一次修约到位,不得连续多次修 约。 例如,将0.2146修约为2位有效数字,不能先修约 为0.215,再修约为0.22,而应一次修约为0.21。
n 1
测定次数较多
式中n-1称为自由度,用f 表示。
自由度是指独立偏差的个数
相对标准偏差(变异系数)
s sr 100% x
偏差也可用极差表示。简单直观,但未利用全部数据。
二、准确度与精密度
对于分析结果,精密度高不一定准确度高, 准确度高一定需要精密度高,精密度是保证准确 度的先决条件,精密度高的分析结果才有可能获 得高准确度。
重现性、单向性(或周 服从概率统计规律、 期性)、可测性 不可测性
准确度 校正 精密度 增加测定的次数
四、公差
公差是生产部门对分析结果误差允许的一种限量 公差范围的确定,与许多因素有关:对分析结果 准确度的要求、试样组成及待测组分含量、分析方法 所能达到的准确度
五、误差的传递
分析结果是通过各个测量值按一定的公式 运算得到的,是间接测量值。 每个测量值都有各自的误差,将要传到分
π、e等可看作无限多位Байду номын сангаас效数字。
二、有效数字的修约规则
应保留的有效数字位数确定之后,舍弃多余数字的 过程称为数字修约 修约规则:“四舍六入五成双” 即 被修约的尾数的首位≤4 被修约的尾数的首位≥6 被修约的尾数 的首位为5 舍去 进位 进位后得偶数,则进 5后为“0” 进位后得奇数,则不进 5后有数 进位
(六) 精密度与偏差
精密度表示在相同条件下,同一试样的重复 测定值之间的符合程度。 重复性 再现性
绝对偏差 d x x
d RD 100% x n 平均偏差 d d1 d2 dn 1 di n n i 1 相对平均偏差 RMD d 100% x
相对偏差 平均相对偏差 相对偏差 / n
x5
xM x3
xM ( x3 x2 ) / 2
x1 x2 x3 x 4
(四) 极差(全距) R
R xmax xmin
(五)准确度与误差
准确度是指测量值与真值之间符合的程度 准确度的高低用误差来衡量。 绝对误差 相对误差
Ea x xT
Ea Er 100% xT
绝对误差和相对误差都有正值和负值
第三章 误差与分析数据的处理
第一节
分析化学中的误差
一、误差与偏差
(一)真值(xT) 客观存在的真实数值 理论真值 计量学约定真值 相对真值
(二)算术平均值(简称平均值) x
x1 x2 xn 1 n x xi n n i 1
(三) 中位数 xM
x1 x2 x3 x4
相关文档
最新文档