分析化学中的误差及其数据处理

分析化学中的误差及其数据处理
分析化学中的误差及其数据处理

分析化学中的误差

定量分析的目的是准确测定试样中组分的含量,因此分析结果必须具有一定的准确度。在定量分析中,由于受分析方法、测量仪器、所用试剂和分析工作者主观条件等多种因素的限制,使得分析结果与真实值不完全一致。即使采用最可靠的分析方法,使用最精密的仪器,由技术很熟练的分析人员进行测定,也不可能得到绝对准确的结果。同一个人在相同条件下对同一种试样进行多次测定,所得结果也不会完全相同。这表明,在分析过程中,误差是客观存在,不可避免的。因此,我们应该了解分析过程中误差产生的原因及其出现的规律,以便采取相应的措施减小误差,以提高分析结果的准确度。

2.6.1 误差与准确度

分析结果的准确度(accuracy )是指分析结果与真实值的接近程度,分析结果与真实值之间差别越小,则分析结果的准确度越高。准确度的大小用误差(error )来衡量,误差是指测定结果与真值(true value )之间的差值。误差又可分为绝对误差(absolute error )和相对误差(relative error )。绝对误差(E )表示测定值(x )与真实值(x T )之差,即

E =x - x T (2-13)

相对误差(E r )表示误差在真实值中所占的百分率,即 %100T

r ?=

x E E (2-14)

例如,分析天平称量两物体的质量分别为 g 和 g ,假设两物体的真实值各为 g 和 g ,则两者的绝对误差分别为:

E 1= g E 2= g

两者的相对误差分别为:

E r1=%1006381

.10001.0?-= %

E r2=%1001638

.00001.0?-= %

由此可见,绝对误差相等,相对误差并不一定相等。在上例中,同样的绝对误差,称量物体越重,其相对误差越小。因此,用相对误差来表示测定结果的准确度更为确切。

绝对误差和相对误差都有正负值。正值表示分析结果偏高,负值表示分析结果偏低。 定量分析误差产生的原因

误差按其性质可以分为系统误差(systematic error )和随机误差(random error )两

大类。也有人将操作过失造成的结果与真值间的差异叫做“过失误差”。其实,过失是错误,是实验过程中应该加以避免的。如试样分解时分解不够完全,称样时试样洒落在容器外,读错刻度,看错砝码,看错读数,记错数据、加错试剂等。

1. 系统误差系统误差是指分析过程中由于某些固定的原因所造成的误差。系统误差的特点是具有单向性和重现性,即它对分析结果的影响比较固定,使测定结果系统地偏高或系统地偏低;当重复测定时,它会重复出现。系统误差产生的原因是固定的,它的大小、正负是可测的,理论上讲,只要找到原因,就可以消除系统误差对测定结果的影响。因此,系统误差又称可测误差。

根据系统误差产生的原因,可将其分为:

方法误差方法误差是由于分析方法本身所造成的误差。例如,滴定分析中指示剂的变色点与化学计量点不完全一致;重量分析中沉淀的溶解损失等。

仪器误差仪器误差是由于仪器本身不够精确而造成的误差。例如,天平砝码、容量器皿刻度不准确等。

试剂误差由于实验时所使用的试剂或蒸馏水不纯而造成的误差称为试剂误差。如,试剂或蒸馏水中含有微量被测物质或干扰物质。

操作误差操作误差(个人误差)是由于分析人员的所掌握的分析操作与正确的分析操作的差别或分析人员的主观原因所造成的误差。如,重量分析对沉淀的洗涤次数过多或不够;个人对颜色的敏感程度不同,在辨别滴定终点的颜色时,有人偏深,有人偏浅;读取滴定管读数时个人习惯性地偏高或偏低等。

2. 随机误差随机误差又称偶然误差,它是由某些随机(偶然)的原因所造成的。例如,测量时环境温度、气压、湿度、空气中尘埃等的微小波动;个人一时辨别的差异而使读数不一致。如在滴定管读数时,估计的小数点后第二位的数值,几次读数不一致。随机误差的产生是由于一些不确定的偶然原因造成的,因此,其数值的大小、正负都是不确定的,所以,随机误差又称不可测误差。随机误差在分析测定过程中是客观存在,不可避免的。

实际工作中,系统误差与随机误差往往同时存在,并无绝对的界限。在判断误差类型时,应从误差的本质和具体表现上入手加以甄别。

分析结果的数据处理

在分析工作中,最后处理分析数据时要用统计方法进行处理:首先对于一些偏差比较大的可疑数据按书中介绍的Q检验法进行检验,决定其取舍;然后计算出数据的平均值、各数据对平均值的偏差、平均偏差与标准偏差等;最后按照要求的置信度求出平均值的置信区间。

随机误差分布规律

由于随机误差是由某些随机(偶然)的原因所造成的。从表面上看,随机误差的出现似

乎很不规律,但如果进行多次测定,则可发现随机误差的分布也是有规律的,它的出现符合正态分布规律。即:

绝对值相等的正误差和负误差出现的概率相同,因而大量等精度测量中各个误差的代数和有趋于零的趋势。

绝对值小的误差出现的概率大,绝对值大的误差出现

的概率小,绝对值很大的误差出现的概率非常小。

正态分布规律可以用图2-1所示的正态分布曲线表示。 图中横坐标轴x-

代表偶然误差的大小,纵坐标轴y 代

表偶然误差发生的概率密度。 图2-1 随机误差的

偏差与精密度 正态分布曲线

实际工作中,真值是无法知道的。虽然在分析化学中存在着“约定”的一些真值,如原子量等。但待测样品是不存在真值的,既然如此,用误差就无法衡量分析结果的好坏。在实际工作中,人们总是在相同条件下对同一试样进行多次平行测定,得到多个测定数据,取其算术平均值,以此作为最后的分析结果。所谓精密度(precision)就是多次平行测定结果相互接近的程度,精密度高表示结果的重复性(repeatability )或再现性(reproducibility )好。重复性表示同一操作者在相同条件下,获得一系列结果之间的一致程度。再现性表示不同操作者在不同条件下,获得一系列结果之间的一致程度。精密度的高低用偏差来衡量。偏差(deviation )又称表观误差,是指各单次测定结果与多次测定结果的算术平均值之间的差别。几个平行测定结果的偏差如果都很小,则说明分析结果的精密度比较高。

50.40

50.20

? ? ?

? ? ? ? ? ?

?

? ?

? ? ? ?

丙 乙 甲

50.30

50.10

50.00

图2-2 不同工作者分析同一试样的结果 ( ●表示个别测定值,表示平均值)

在分析工作中评价一项分析结果的优劣,应该从分析结果的准确度和精密度两个方面入手。精密度是保证准确度的先决条件。精密度差,所得结果不可靠,也就谈不上准确度高。但是,精密度高并不一定保证准确度高。

图2-2显示了甲、乙、丙、丁四人测定同一试样中铁含量时所得的结果。由图可见,甲所得的结果的准确度和精密度均好,结果可靠;乙的分析结果的精密度虽然很高,但准确度较低;丙的精密度和准确度都很差;丁的精密度很差,平均值虽然接近真实值,但这是由于

正负误差凑巧相互抵消的结果,因此丁的结果也不可靠。

总体平均值的估计

随机误差的分布规律给分析数据处理提供了理论基础,但仅是对多次测量而言。实际测定只能是有限次。分析数据处理的任务是通过对有限次测定的数据进行合理的分析,对样本的总体做出科学的判断,其中包括对总体参数的估计以及统计检验。本书只介绍到总体平均值的估计。

对无限次测定而言,总体平均值μ是数据集中趋势的表征,总体标准偏差σ是数据分散程度的表征。但是现实的分析工作不可能完成无限次测定,而且μ 和σ是未知的。在完成有限次测定以后,根据测量数据的分布理论,可以利用样本平均值对总体均值所在的范围进行估计。

1.平均值

对某试样进行n 次平行测定,测定数据为x 1,x 2,…,x n ,则其算术平均值x 为:

x =(1n x 1+ x 2+ … + x n ) =∑=n

i i x n 1

1 (2-15)

2.平均偏差和标准偏差

计算平均偏差d 时,先计算各次测定对于平均值的绝对偏差d i :

d i = x i -x (i =1,2,…,) (2-16) 然后,计算出各次测量偏差的绝对值的平均值,即得平均偏差(averag

e deviation) d : d =

∑-=∑==n

i i n

i i x x n d n 1

11

1

(2-17)

将平均偏差除以算术平均值得相对平均偏差(relative average deviation) :

相对平均偏差=

x

d 100% (2-18)

用平均偏差和相对偏差表示精密度比较简单,但由于在一系列的测定结果中,小偏差占多数,大偏差占少数,如果按总的测定次数要求计算平均偏差,所得结果会偏小,大偏差得不到应有的反映,例如下面A 、B 二组分析数据,通过计算得各次测定的绝对偏差分别为:

d A : +、+、、、+、、+、、、+

n = 10, d A =

d B : 、、+*、、+、+、、+、*

n = 10, d B =

两组测定结果的平均偏差相同,而实际上B 数据中出现二个较大偏差(+,,测定结果精密度较差。为了反映这些差别,引入标准偏差。

标准偏差(standard devaition)又称均方根偏差,当测定次数趋于无穷大时,标准偏差用σ表示:

n

μ)

(x σn

1

i 2

i ∑-=

= (2-19)

式中μ 是无限多次测定结果的平均值,称为总体平均值,即

∑==∞→n

i i n x n μ1

1

lim (2-20)

显然,在没有系统误差的情况下,μ 即为真实值。

在一般的分析工作中,只作有限次数的平行测定,这时标准偏差用s 表示:

1

1

)(1

2

1

2

-∑=

-∑-=

==n d n x x s n

i i

n

i i (2-21)

上述两组数据的标准偏差分别为s A =,s B =。可见采用标准偏差表示精密度比用平均偏差更合理。这是因为,将单次测定的偏差平方后,较大的偏差就能显著地反映出来,因此能更好地反映数据的分散程度。

相对标准偏差( relative standard deviation)也称变异系数(CV ),其计算式为: CV =x

s 100% (2-22)

例2-7 分析某铁矿石中铁的含量(%),其结果为:、、、、。计算结果的平均值、平均偏差、标准偏差及变异系数。 解: (%)34.375

25

.3730.3750.3720.3745.37=++++=

x

单次测量的偏差分别为:d 1=+%;d 2=%;d 3=+%;d 4=%;d 5=%

(%)11.05

09

.004.016.014.011.011

=++++=

∑=

=n

i i d n

d

(%)13.01

504

.004.016.014.011.01

2

2

2

2

2

1

2

=-++++=

-∑=

=n d s n

i i

(%)35.010034.3713.0100=?=?=x s CV

3. 平均值的置信区间

在实际工作中,通常总是把测定数据的平均值作为分析结果报出。测得的少量数据的平均值总是带有一定的不确定性,它不能明确地说明测定的可靠性。在要求准确度较高的分析工作中,报出分析报告时,应同时指出测定结果包含真实值所在的区间范围,这一范围就称为置信区间(the confidence interval ),区间包含真实值的概率,称为置信度或置信水准

(confidence level ),常用P 表示。

表2-2 不同测定次数及不同置信度下的t 值

测定次数 置 信 度

n

50% 90% 95% 99% % 2 3 4 5 6 7 8 9 10 11 21 ∞

在图2-1中,曲线各点的横坐标是x-,其中x 为单次测定值,为总体平均值,在消除系统误差的前提下

无限趋向于真实值,因此x- 即为单次测定的误差。曲线上各

点的纵坐标表示误差出现的几率密度。曲线与横坐标从-∞到+∞之间所包围的面积表示具有各种大小误差的测定值落在这一范围内的概率,应为100%。由数学统计计算可知,真实值落在

2 和

3 的概率分别为%、%和%。也就是说,在1000次的测定中,只有三次测量值的误差大于

3 。以上是对无限次的测定而言。

对于有限次数的测定,真实值 与x 平均值之间有如下关系: n

ts x μ±

= (2-23)

式中s 为标准偏差,n 为测定次数,t 为在选定的某一置信度下的概率系数,可根据测定次数从表2-2中查得。(2-23)式表示,在一定置信度下,以测定的平均值x 为中心,包括总体平均值的范围,这就叫平均值的置信区间。

例2-8 分析SiO 2的质量分数,得到下列数据(%):,,,,,。求平均值、标准偏差和置信度分别为90%和95%时,平均值的置信区间。 解:

56.28%663.2852.2848.2851.2859.2862.28=??

?

??+++++=x

%06.0%1

607.004.008.005.003.006.02

22222=-+++++=s

查表2-2,置信度为90%时,n =6,t =则

()%

05.056.28%606.0015.256.28±=???

? ?

?

=μ 同理,置信度为95%时,n =6,t =

()%07.056.28%606.0571.256.28±=???

? ?

?

=μ 上述计算说明,随着置信度的增加,置信区间同时增大。

从t 值表中还可以看出,当测量次数n 增大时,t 值减小;当测定次数为20次以上到测定次数为∞时,t 值相差不多,这表明当n >20时,再增加测定次数对提高测定结果的准确度已经没有什么意义,因此只有在一定的测定次数范围内,分析数据的可靠性才随平行测定次数的增多而增加。

可疑值的取舍

分析工作者获得一系列数据后,需要对这些数据进行处理。在一组平行测定的数据中,有时会出现较为离群的数据(一个甚至多个),这些数据称为可疑值(doubtful value)或离群值(divergent value )。如这些数据是由实验过失造成的,则应该将该数据坚决弃舍,否则就不能随便将它弃舍,而必须用统计方法来判断是否取舍。取舍的方法很多,常用的有四倍法、格鲁布斯法和Q 检验法等,其中Q 检验法比较严格而且使用比较方便。在此只介绍Q 检验法。

在一定置信度下,Q 检验法可按下列步骤,判断可疑数据是否舍去: 1. 先将数据从小到大排列为:x 1,x 2,…,x n -1,x n 2. 计算出统计量Q

Q =

最小值

最大值邻近值可疑值-- (2-24)

也就是说,若x 1为可疑值,则统计量Q 为: Q =

1

12x x x x n -- (2-25)

若x n 为可疑值,则统计量Q 为: Q =

1

1

x x x x n n n --- (2-26)

式中分子为可疑值与相邻值的差值,分母为整组数据的最大值与最小值的差值,也称之为极

值。Q 越大,说明x 1或x n 离群越远。

3. 根据测定次数和要求的置信度由表2-3查得Q (表值)

4. 将Q 与Q (表值)进行比较,判断可疑数据的取舍。若Q Q (表值),则可疑值应该舍去,否则应该保留。

表2-3 不同置信度下舍弃可疑数据的Q 值

置 信 度 测 定 次 数(n ) 3 4 5 6 7 8 9 10 90% 95% 99%

例2-9 某矿石中钒的含量(%),4次分析测定结果为、、和,Q 检验法判断是否弃舍(置信度为90%) 解:将测定值由小到大排列: 、、、

Q =

92.025

.023.016

.2041.2016.2039.20==

--

查表3-2,在的置信度时,当n = 4,Q (表值) = <Q = 。因此,该数值弃舍。

例2-10:用基准Na 2CO 3标定HCl ,测得其浓度为,,,,,。问上述6次测定值中,是否应舍去(置信度为95%)求平均值、标准偏差、置信度为95%和99%时平均值的置信区间。 解:根据数据统计处理过程做如下处理:

1. 用Q 检验法检验并且判断有无可疑值舍弃。

Q =

605.00038

.00023.01022

.01060.01037.01060.0==

--

由表2-3查得,当测定次数n =6时,若置信度P=95%,则Q (表值)=,所以Q <Q (表值),则不应该舍去。 2. 根据所有保留值,求出平均值x :

x =1036.06

1037.01022.01031.01035.01060.01033.0=+++++

3. 求出标准偏差s :

0013.01

60014.00001.00005.00001.00024.00003.02

22222=-+++++=s

4. 求出置信度为95%、n =6时,平均值的置信区间 查表2-3得t =

0014.01036.06

0013

.0571.21036.0±=?±

求出置信度为99%、n =6时,平均值的置信区间

查表2-3得t =

0021.01036.06

0013

.0032.41036.0±=?±

提高分析结果准确度的方法

在定量分析中误差是不可避免的,为了获得准确的分析结果,必须尽可能地减少分析过程中的误差。特别要避免操作者粗心大意、违反操作规程或不正确使用分析仪器的情况出现。针对分析测试的具体要求,可以采取多种措施,减小分析过程中各种误差的影响,提高分析结果的准确度。

1. 选择合适的分析方法

各种分析方法的准确度和灵敏度是不相同的。重量分析和滴定分析,灵敏度虽不高,但对于高含量组分的测定,能获得比较准确的结果。例如铁的质量分数为 %的试样,用重铬酸钾法测定,方法的相对误差为%,则测定结果的含量范围是%~%。如果用直接分光光度法进行测定,由于方法的相对误差约3%,测得铁的质量分数范围将在%~%之间,误差显然大得多。若试样中铁的质量分数为 %,则用重铬酸钾法无法测定,这是由于方法的灵敏度达不到。若以分光光度法进行测定,可能测得的铁的含量范围为%~%,结果完全符合要求。 2. 减小测量误差

为了保证分析结果的准确度,必须尽量减小测量误差。例如,一般分析天平(电子天平)的称量两次的误差为士,为了使测量时的相对误差在%以下,试样质量就不能太小。从相对误差的计算中可看到:

%100?=

被称物质量

绝对误差

相对误差

可见称取试样的质量必须在以上。

在滴定分析中,滴定管读数两次的误差常有±,为了使测量时的相对误差小 于%,消耗滴定剂的体积必须在20 mL 以上。 3. 减小随机误差

随机误差是由偶然的不固定的原因造成的,在分析过程中始终存在,是不可消除的。在消除系统误差的前提下,平行测定次数愈多,平均值愈接近真实值。因此,增加测定次数,可以提高平均值精密度,平均值越接近真实值。在一般化学分析中,对于同一试样,通常要求平行测定2~4次。如对测定结果的准确度要求较高时,可增加测定次数至10次左右。

教学实验(探索性等实验例外)采用的是较为成熟的分析方法,可认为不存在方法误差;实验若采用符合纯度要求的试剂和蒸馏水,可认为不存在试剂误差;若仪器的各项指标也调试到符合实验要求,可认为无仪器误差。那么实验结果误差的来源就是随机误差。若出现非常可疑的离群值,基本可判断实验存在着操作者的操作误差或过失。

4. 检查和消除系统误差

精密度高是准确度高的先决条件,而精密度高并不表示准确度高。在实际工作中,有时遇到这样的情况,几个平行测定的结果非常接近,似乎分析工作没有什么问题了,可是一旦用其他可靠的方法检验,就发现分析结果有严重的系统误差,甚至可能因此而造成严重差错。因此,在分析工作中,必须十分重视系统误差的消除,以提高分析结果的准确度。造成系统误差的原因有多方面,根据具体情况可采用不同的方法加以消除。一般系统误差可用下面的方法进行检验和消除。

A.对照试验对照试验是检验系统误差的有效方法。通常采用的对照试验方法有三种。

①在相同条件下,以所用的分析方法对标准试样(已知结果的准确值)与被测试样同时进行测定,通过对标准试样的分析结果与其标准值的比较,可以判断测定是否存在系统误差。②在相同条件下,以所用的分析方法与经典的分析方法对同一试样进行测定,分析结果进行对照,以检验是否存在系统误差。③可以通过加入回收的方法进行对照试验,即在试样中加入已知量的被测组分后进行分析,通过结果计算出回收率,从而判断是否存在系统误差。

在许多生产单位,为了检查分析人员之间是否存在系统误差和其他问题,常在安排试样分析任务时,将一部分试样重复安排在不同分析人员之间,互相进行对照试验,这种方法称为“内检”。有时又将部分试样送交其他单位进行对照分析,这种方法称为“外检”。

B.空白试验由蒸馏水、试剂和器皿带进杂质所造成的系统误差,一般可作空白试验来扣除。

所谓空白试验,就是在不加待测组分的情况下,按照待测组分分析同样的操作步骤和条件进行实验。实验所得结果称为空白值。从试样分析结果中扣除空白值后,就得到比较可靠的分析结果。当空白值较大时,应找出原因,加以消除。如选用纯度更高的试剂和改用其他适当的器皿等。在进行微量分析时,空白试验是必不可少的。

C.校准仪器和量器仪器不准确引起的系统误差,可以通过校准仪器来减小其影响。例如砝码、容量瓶、移液管和滴定管等。在精确的分析中,必须进行校准,在测定时采用校正值。

D.采用辅助方法校正分析结果分析过程的系统误差,有时可采用适当的方法进行校正。例如用电重量法测定纯度为%以上的铜,因电解不很完全而引起负的系统误差。为此,可用光度法测定溶液中未被电解的残余铜,将光度法得到的结果加到电重量分析法的结果中去,即可得到铜的较准确的结果。

分析化学中的误差与数据处理

第3章分析化学中的误差与数据处理 一、选择题 1.下列叙述错误的是() A.误差是以真值为标准的,偏差是以平均值为标准的,实际工作中获得的所谓“误差”,实质上仍是偏差 B.对某项测定来说,它的系统误差大小是不可测量的 C.对偶然误差来说,大小相近的正误差和负误差出现的机会是均等的 D.标准偏差是用数理统计方法处理测定的数据而获得的 2.四位学生进行水泥熟料中SiO2 , CaO, MgO, Fe2O3 ,Al2O3的测定。下列结果(均为百分含量)表示合理的是() A.21.84 , 65.5 , 0.91 , 5.35 , 5.48 B.21.84 , 65.50 , 0.910 , 5.35 , 5.48 C.21.84 , 65.50 , 0.9100, 5.350 , 5.480 D.21.84 , 65.50 , 0.91 , 5.35, 5.48 3.准确度和精密度的正确关系是() A.准确度不高,精密度一定不会高B.准确度高,要求精密度也高 C.精密度高,准确度一定高D.两者没有关系 4.下列说法正确的是() A.精密度高,准确度也一定高B.准确度高,系统误差一定小 C.增加测定次数,不一定能提高精密度D.偶然误差大,精密度不一定差 5.以下是有关系统误差叙述,错误的是() A.误差可以估计其大小B.误差是可以测定的 C.在同一条件下重复测定中,正负误差出现的机会相等D.它对分析结果影响比较恒定6.滴定终点与化学计量点不一致,会产生() A.系统误差B.试剂误差C.仪器误差D.偶然误差 7.下列误差中,属于偶然误差的是() A.砝码未经校正B.容量瓶和移液管不配套 C.读取滴定管读数时,最后一位数字估计不准D.重量分析中,沉淀的溶解损失8.可用于减少测定过程中的偶然误差的方法是() A.进行对照试验B.进行空白试验C.进行仪器校准D.增加平行试验的次数9.下列有效数字位数错误的是() A.[H+]=6.3×10-12mol/L (二位) B.pH=11.20(四位) C.CHCl=0.02502mol/L (四位) D.2.1 (二位) 10.由计算器算得9.250.21334 1.200100 ? ? 的结果为0.0164449。按有效数字运算规则将结果修约 为() A.0.016445B.0.01645C.0.01644D.0.0164 11.下列有关随机误差的叙述中不正确的是() A.随机误差在分析中是不可避免的B.随机误差出现正误差和负误差的机会是均等的C.随机误差具有单向性D.随机误差是由一些不确定的偶然因素造成的 12.指出下列表述中错误的表述() A.置信水平愈高,测定的可靠性愈高B.置信水平愈高,置信区间愈宽 C.置信区间的大小与测定次数的平方根成反比D.置信区间的位置取决于测定的平均值13.在分析工作中要减小测定的偶然误差可采取()方法

分析结果的误差和处理习题

分析结果的误差和处理习题 一、选择题: 1.平行实验的精密度愈高,其分析结果准确度也愈高。( ) 2.操作误差是由于错误操作引起的。( ) 3.绝对误差是指测定值与平均值之差。( ) 4.系统误差是不可避免的,随机误差(偶然)是可以避免的。( ) 5.K a=10-4.76的有效数字为两位。( ) 6.算式 7415 .5 ) 37 . 12 41 . 18 ( 67 . 27- ? 的结果为三位有效数字。( ) 7.蒸馏水中带有少量影响测定结果的杂质,实验中引进了随机误差。( ) 8.精密度只检验平行测定值之间的符合程度,和真值无关。( ) 9.分析者个人操作误差可用对照试验进行校正。( ) 10.在定量分析中,测量的精密度越好,准确度越高。( ) 11.用感量为万分之一的分析天平称样0.4000克,称量的相对误差大于0.2%。( ) 12.p K a=4.76为两位有效数字。( ) 13.因为pH=7.00,所以[H+]=1.00?10-7mol/L。( ) 14.用G检验法取舍离群值(可疑值)时,当计算G值大于查表G值时,离群值应保留。( ) 15.用感量为万分之一的分析天平称样0.1000克,称量的相对误差小于0.1%。( ) 16.精密度高的分析结果,其准确度不一定高。( ) 17.系统误差的特征之一是具有随机性。( ) 18.无限次测量的随机误差服从正态分布规律。( ) 19.偏差愈小,测定值的准确度愈高。( ) 20.使用的玻璃仪器洗不干净而引入杂质,使测量产生仪器误差。( ) 21.在无被测成分存在的条件下,按所使用的方法和步骤进行的实验称为空白实验。( ) 22.滴定分析中,精密度是准确度的先决条件。( ) 23.用蒸馏水代替试液,按所使用的方法和步骤进行的试验称为对照试验。( ) 24.理论上,被测成分的真实值是无法确定的。( ) 25.pH=8.52,则[H+]的有效数字为三位。( ) 26.用万分之一的天平进行减量法称量0.05g、0.2g物体时,引起的相对误差相同。( ) 27.溶解试样的蒸馏水含有杂质会引入随机误差。( ) 28.减小随机误差的方法可用标准方法进行对照试验求校正系数校正。( ) 29.系统误差,重复测定重复出现,并可以用某些方法检验出来。( ) 30.所有的系统误差通常都可用对照试验来校正。( ) 31.读数时,最后一位数字估计不够准确所引起的误差属于操作误差。( ) 32.蒸馏水中带有少量影响测定结果的杂质,使实验中引进了试剂误差。( ) 33.当溶液的pH=7.00时,其[H+]=1.0×10-7mol·L-1。( ) 二、选择题: 34.一组测量结果的精密度最好用( )表示。 A、绝对偏差 B、相对误差 C、相对平均偏差 D、相对标准偏差 35.算式 000 .1 ) 80 . 24 00 . 25 ( 1010 .0- 的结果应报出有效数字( )位。 A、五 B、三 C、四 D、两

误差和分析数据处理

第二章 误差和分析数据处理 第一节 概 述 定量分析的任务是要准确地解决“量”的问题,但是定量分析中的误差是客观存在的,因此,必须寻找产生误差的原因并设法减免,从而提高分析结果的可靠程度,另外还要对实验数据进行科学的处理,写出合乎要求的分析报告。 第二节 测量误差 一、绝对误差和相对误差 1. 绝对误差 测量值与真实值之差称为绝对误差。δ = x - μ 2. 相对误差 绝对误差与真值的比值称为相对误差。 %100%100?-=?μ μμδ x 若真实值未知,但δ 已知,也可表示为 %100?x δ 3. 真值与标准参考物质 理论真值:如某化合物的理论组成等。 约定真值:如国际计量大会上确定的长度、质量、物质的量单位等。 相对真值:如标准参考物质的含量。 标准参考物质:经权威机构鉴定并给予证书的,又称标准试样。 实际工作中,常把最有经验的人用最可靠的方法对标准试样进行多次测定所得结 果的平均值作为真值的替代值。 二、系统误差和偶然误差 1. 系统误差(可定误差) 由某种确定的原因引起,一般有固定的方向,大小在试样间是恒定的,重复测定 时重复出现。

按系统误差的来源分类:方法误差、仪器或试剂误差、操作误差。 方法误差:滴定分析反应进行不完全、干扰离子的影响、滴定终点与化学计量点 不符、副反应的发生、沉淀的溶解、共沉淀现象、灼烧时沉淀的分解或挥发。 仪器或试剂误差:砝码、容量器皿刻度不准、试剂中含有被测物质或干扰物质。 操作误差:称样时未注意防止吸湿、洗涤沉淀过分或不充分、辨别颜色偏深(浅)、 读数偏高(低)。 按系统误差的数值变化规律分类:恒定误差、比例误差。 系统误差可用加校正值的方法予以消除。 2. 偶然误差(随机误差、不可定误差) 由于偶然的原因如温度、湿度波动、仪器的微小变化、对各份试样处理时的微小 差别等引起,其大小和正负都不固定。 偶然误差服从统计规律,可用增加平行测定次数加以减免。 三、准确度和精密度 1. 准确度与误差 准确度表示分析结果与真实值接近的程度。准确度的大小用绝对误差或相对误差 表示。评价一个分析方法的准确度常用加样回收率衡量。 2. 精密度与偏差 精密度表示平行测量的各测量值之间互相接近的程度。精密度的大小可用偏差、 相对平均偏差、标准偏差和相对标准偏差表示。重复性与再现性是精密度的常见别名。 偏差:d = x i - x 平均偏差: n x x d n i i ∑=-=1 相对平均偏差: %100/)(%1001?-=?∑=x n x x x d n i i 标准偏差(标准差): 1 )(1 2 --= ∑=n x x S n i i

实验大数据误差分析报告与大数据处理

第一章实验数据误差分析与数据处理 第一节实验数据误差分析 一、概述 由于实验方法和实验设备的不完善,周围环境的影响,以及人的观察力,测量程序等限制,实验测量值和真值之间,总是存在一定的差异,在数值上即表现为误差。为了提高实验的精度,缩小实验观测值和真值之间的差值,需要对实验数据误差进行分析和讨论。 实验数据误差分析并不是即成事实的消极措施,而是给研究人员提供参与科学实验的积极武器,通过误差分析,可以认清误差的来源及影响,使我们有可能预先确定导致实验总误差的最大组成因素,并设法排除数据中所包含的无效成分,进一步改进实验方案。实验误差分析也提醒我们注意主要误差来源,精心操作,使研究的准确度得以提高。 二、实验误差的来源 实验误差从总体上讲有实验装置(包括标准器具、仪器仪表等)、实验方法、实验环境、实验人员和被测量五个来源。 1.实验装置误差 测量装置是标准器具、仪器仪表和辅助设备的总体。实验装置误差是指由测量装置产生的测量误差。它来源于: (1)标准器具误差 标准器具是指用以复现量值的计量器具。由于加工的限制,标准器复现的量值单位是有误差的。例如,标准刻线米尺的0刻线和1 000 mm刻线之间的实际长度与1 000 mm单位是有差异的。又如,标称值为 1kg的砝码的实际质量(真值)并不等于1kg等等。 (2)仪器仪表误差 凡是用于被测量和复现计量单位的标准量进行比较的设备,称为仪器或仪表.它们将被测量转换成可直接观察的指示值。例如,温度计、电流表、压力表、干涉仪、天平,等等。 由于仪器仪表在加工、装配和调试中,不可避免地存在误差,以致仪器仪表的指示值不等于被测量的真值,造成测量误差。例如,天平的两臂不可能加工、调整到绝对相等,称量时,按天平工作原理,天平平衡被认为两边的质量相等。但是,由于天平的不等臂,虽然天平达到平衡,但两边的质量并不等,即造成测量误差。 (3)附件误差 为测量创造必要条件或使测量方便地进行而采用的各种辅助设备或附件,均属测量附件。如电测量中的转换开关及移动测点、电源、热源和连接导线等均为测量附件,且均产生测量误差。又如,热工计量用的水槽,作为温度测量附件,提供测量水银温度计所需要的温场,由于水槽内各处温度的不均匀,便引起测量误差,等等。 按装置误差具体形成原因,可分为结构性的装置误差、调整性的装置误差和变化性的装置误差。结构性的装置误差如:天平的不等臂,线纹尺刻线不均匀,量块工作面的不平行性,光学零件的光学性能缺陷,等等。这些误差大部分是由于制造工艺不完善和长期使用磨损引起的。调整性的装置误差如投影仪物镜放大倍数调整不准确,水平仪的零位调整不准确,千分尺的零位调整不准确,等等。这些误差是由于仪器仪表在使用时,未调整到理想状态引起的。变化性的装置误差如:激光波长的长期不稳定性,电阻等元器件的老化,晶体振荡器频率的长期漂移,等等。这些误差是由于仪器仪表随时间的不稳定性和随空间位置变化的不均匀性造成的。 2.环境误差 环境误差系指测量中由于各种环境因素造成的测量误差。 被测量在不同的环境中测量,其结果是不同的。这一客观事实说明,环境对测量是有影响的,是测量的误差来源之一。环境造成测量误差的主要原因是测量装置包括标准器具、仪器仪表、测量附件同被测对象随着环境的变化而变化着。 测量环境除了偏离标准环境产生测量误差以外,从而引起测量环境微观变化的测量误差。 3.方法误差

分析化学中的误差和分析数据的处理

第一章 分析化学中的误差和分析数据的处理 教学要求: 1、了解误差的意义和误差的表示方法 2、了解定量分析处理的一般规则 3、掌握有效数字表示法和运算规则 重点、难点: 误差的表示方法 随机误差的正态分布 有效数字及运算规则 教学内容: 第一节 分析化学中的误差 一、误差:测定结果与待测组分的真实含量之间的差值。 二、分类: ㈠、系统误差:由某些确定的、经常性的原因造成的。在重复测定中,总是重复出现,使测定结果总是偏高或偏低 1、特点: 重现性:在相同的条件下,重复测定时会重复出现 单向性:测定结果系统偏高或偏低 可测性:数值大小有一定规律 2、原因: ① 方法误差 ② 仪器和试剂误差 ③ 操作误差 ㈡、随机误差(偶然误差):有不固定的因素引起的,是可变的,有时大,有时小,有时正,有时负。 1、特点:符合正态分布 2、规律:对称性:绝对值相同的正、负误差出现的几率相等;单峰性:小误差出现的几率大,大误差出现的几率小。很大的误差出现的几率近于零;有界性:随机误差的分布具有有限的范围,其值大小是有界的,并具有向μ集中的趋势。 第二节 测定值的准确度与精密度 以准确度与精密度来评价测定结果的优劣 一、准确度与误差: 1、准确度:真值是试样中某组分客观存在的真实含量。测定值X与真值T相接近的

程度称为准确度。 测定值与真值愈接近,其误差(绝对值)愈小,测定结果的准确度愈高。因此误差的大小是衡量准确度高低的标志。 2、表示方法: 绝对误差:E a ===x-T(如果进行了数次平行测定,X为平均值) 相对误差:E r === 100×T E a % 3、误差有正、负之分。 当测定值大于真值时误差为正值,表示测定结果偏高; 当测定值小于真值时误差为负值,表示测定结果偏低; 二、精密度与偏差 1、精密度:一组平行测定结果相互接近的程度称为精密度 2、表示方法:用偏差表示 如果测定数据彼此接近,则偏差小,测定的精密度高; 如果测定数据分散,则偏差小,测定的精密度低; ⑴、绝对偏差、平均偏差和相对平均偏差: 绝对偏差:d i =x i -(i=1,2,…,n) ? x 平均偏差:d =n d d d n ±±±…21=∑=n i i d n 1 1 相对平均偏差:d r = 100×x d % ⑵、标准偏差和相对标准偏差 总体:一定条件下无限多次测定数据的全体 样本:随机从总体中抽出的一组测定值称为样本 样本容量:样本中所含测定值的数目称为样本的大小或样本容量。 若样本容量为n,平行测定数据为x 1、x 2、 …、x n ,则此样本平均值为x=∑i x n 1 当测定次数无限多时,所得的平均值即总体平均值μ x n ∞ →lim =μ 当测定次数趋于无限时,总体标准偏差σ表示了各测定值x 对总体平均值 μ的偏离程度: σ= n x i ∑?2 )(μ σ2称为方差

分析化学中的误差及其数据处理

分析化学中的误差 定量分析的目的是准确测定试样中组分的含量,因此分析结果必须具有一定的准确度。在定量分析中,由于受分析方法、测量仪器、所用试剂和分析工作者主观条件等多种因素的限制,使得分析结果与真实值不完全一致。即使采用最可靠的分析方法,使用最精密的仪器,由技术很熟练的分析人员进行测定,也不可能得到绝对准确的结果。同一个人在相同条件下对同一种试样进行多次测定,所得结果也不会完全相同。这表明,在分析过程中,误差是客观存在,不可避免的。因此,我们应该了解分析过程中误差产生的原因及其出现的规律,以便采取相应的措施减小误差,以提高分析结果的准确度。 2.6.1 误差与准确度 分析结果的准确度(accuracy )是指分析结果与真实值的接近程度,分析结果与真实值之间差别越小,则分析结果的准确度越高。准确度的大小用误差(error )来衡量,误差是指测定结果与真值(true value )之间的差值。误差又可分为绝对误差(absolute error )和相对误差(relative error )。绝对误差(E )表示测定值(x )与真实值(x T )之差,即 E =x - x T (2-13) 相对误差(E r )表示误差在真实值中所占的百分率,即 %100T r ?= x E E (2-14) 例如,分析天平称量两物体的质量分别为 g 和 g ,假设两物体的真实值各为 g 和 g ,则两者的绝对误差分别为: E 1= g E 2= g 两者的相对误差分别为: E r1=%1006381 .10001.0?-= % E r2=%1001638 .00001.0?-= % 由此可见,绝对误差相等,相对误差并不一定相等。在上例中,同样的绝对误差,称量物体越重,其相对误差越小。因此,用相对误差来表示测定结果的准确度更为确切。 绝对误差和相对误差都有正负值。正值表示分析结果偏高,负值表示分析结果偏低。 定量分析误差产生的原因 误差按其性质可以分为系统误差(systematic error )和随机误差(random error )两

定量分析的误差和分析结果的数据处理习题

第五章 定量分析的误差和分析结果的数据处理习题 1.是非判断题 1-1将、、和处理成四位有效数字时,则分别为、、和。 1-2 pH=的有效数字是四位。 1-3 [HgI 4]2-的lg 4θβ=,其标准积累稳定常数4θβ为×1030 。 1-4在分析数据中,所有的“0”均为有效数字。 1-5有效数字能反映仪器的精度和测定的准确度。 1-6欲配制·L -1K 2Cr 2O 7(M=·mol -1 )溶液,所用分析天平的准确度为+,若相对误差要求为 ±%,则称取K 2Cr 2O 7时称准至。 1-7从误差的基本性质来分可以分为系统误差,偶然误差和过失误差三大类。 1-8误差的表示方法有两种,一种是准确度与误差,一种是精密度与偏差。 1-9相对误差小,即表示分析结果的准确度高。 1-10偏差是指测定值与真实值之差。 1-11精密度是指在相同条件下,多次测定值间相互接近的程度。 1-12系统误差影响测定结果的准确度。 1-13测量值的标准偏差越小,其准确度越高。 1-14精密度高不等于准确度好,这是由于可能存在系统误差。控制了偶然误差,测定的 精密度才会有保证,但同时还需要校正系统误差,才能使测定既精密又准确。 1-15随机误差影响到测定结果的精密度。 1-16对某试样进行三次平行测定,得平均含量%,而真实含量为%,则其相对误差为%。 1-17随机误差具有单向性。 1-18某学生根据置信度为95%对其分析结果进行处理后,写出报告结果为+%,该报告的结 果是合理的。 1-19置信区间是指测量值在一定范围的可能性大小,通常用百分数表示。 1-20在滴定分析时,错误判断两个样液滴定终点时指示剂的颜色的深浅属于工作过失。 2.选择题. 2-1下列计算式的计算结果(x)应取几位有效数字:x=[×× A.一位 B.二位 C.三位 D.四位

误差分析和数据处理

误差和分析数据处理 1 数据的准确度和精度 在任何一项分析工作中,我们都可以看到用同一个分析方法,测定同一个样品,虽然经过多少次测定,但是测 定结果总不会是完全一样。这说明在测定中有误差。为此 我们必须了解误差产生的原因及其表示方法,尽可能将误 差减到最小,以提高分析结果的准确度。 1.1 真实值、平均值与中位数 (一)真实值 真值是指某物理量客观存在的确定值。通常一个物理量的真值是不知道的,是我们努力要求测到的。严格来讲,由于测量仪器,测定方法、环境、人的观察力、测量的程 序等,都不可能是完善无缺的,故真值是无法测得的,是 一个理想值。科学实验中真值的定义是:设在测量中观察 的次数为无限多,则根据误差分布定律正负误差出现的机 率相等,故将各观察值相加,加以平均,在无系统误差情 况下,可能获得极近于真值的数值。故“真值”在现实中 是指观察次数无限多时,所求得的平均值(或是写入文献 手册中所谓的“公认值”)。 (二)平均值 然而对我们工程实验而言,观察的次数都是有限的,

故用有限观察次数求出的平均值,只能是近似真值,或称 为最佳值。一般我们称这一最佳值为平均值。常用的平均 值有下列几种: (1)算术平均值 这种平均值最常用。凡测量值的分布服从正态分布 时,用最小二乘法原理可以证明:在一组等精度的测量中, 算术平均值为最佳值或最可信赖值。 n x n x x x x n i i n ∑=++==121 式中: n x x x 21、——各次观测值;n ――观察的次数。 (2)均方根平均值 n x n x x x x n i i n ∑=++==1222221 均 (3)加权平均值 设对同一物理量用不同方法去测定,或对同一物理量 由不同人去测定,计算平均值时,常对比较可靠的数值予 以加重平均,称为加权平均。 ∑∑=++++++===n i i n i i i n n n w x w w w w x w x w x w w 11212211 式中;n x x x 21、——各次观测值; n w w w 21、——各测量值的对应权重。各观测值的

误差和分析数据处理习题

第二章误差和分析数据处理习题 一、最佳选择题 1. 如果要求分析结果达到0.1%的准确度,使用灵敏度为0.1mg的天平称取试样时,至少应称取() A. 0.1g B. 0.2g C. 0.05g D. 0.5g 2. 定量分析结果的标准偏差代表的是()。 A. 分析结果的准确度 B. 分析结果的精密度和准确度 C. 分析结果的精密度 D. 平均值的绝对误差 3. 对某试样进行平行三次测定,得出某组分的平均含量为30.6% ,而真实含量为30.3% ,则30.6%-30.3%=0.3% 为() A. 相对误差 B. 绝对误差 C. 相对偏差 D. 绝对偏差 4. 下列论述正确的是:() A. 准确度高,一定需要精密度好; B. 进行分析时,过失误差是不可避免的; C. 精密度高,准确度一定高; D. 精密度高,系统误差一定小; 5. 下面哪一种方法不属于减小系统误差的方法() A. 做对照实验 B. 校正仪器 C. 做空白实验 D. 增加平行测定次数 6. 下列表述中,最能说明系统误差小的是( ) A. 高精密度 B. 与已知的质量分数的试样多次分析结果的平均值一致 C. 标准差大 D. 仔细校正所用砝码和容量仪器等 7. 用下列何种方法可减免分析测定中的系统误差() A. 进行仪器校正 B. 增加测定次数 C. 认真细心操作 D. 测定时保证环境的湿度一致 8. 下列有关偶然误差的论述中不正确的是() A.偶然误差是由一些不确定的偶然因素造成的; B.偶然误差出现正误差和负误差的机会均等; C.偶然误差在分析中是不可避免的; D.偶然误差具有单向性

9. 滴定分析中出现下列情况,属于系统误差的是:() A. 滴定时有溶液溅出 B. 读取滴定管读数时,最后一位估测不准 C. 试剂中含少量待测离子 D. 砝码读错 10. 某一称量结果为0.0100mg, 其有效数字为几位?() A . 1 位 B. 2 位 C. 3 位 D. 4 位 11. 测的某种新合成的有机酸pK a值为12.35,其K a值应表示为() A. 4.467×10 -13; B. 4.47×10 -13; C.4.5×10 -13; D. 4×10 -13 12. 指出下列表述中错误的表述( A ) A. 置信水平愈高,测定的可靠性愈高 B. 置信水平愈高,置信区间愈宽 C. 置信区间的大小与测定次数的平方根成反比 D. 置信区间的位置取决于测定的平均值 13. 下列有关置信区间的描述中,正确的有:( A ) A. 在一定置信度时,以测量值的平均值为中心的包括真值的范围即为置信区间 B. 真值落在某一可靠区间的几率即为置信区间 C. 其他条件不变时,给定的置信度越高,平均值的置信区间越宽 D. 平均值的数值越大,置信置信区间越宽 14. 分析测定中,使用校正的方法,可消除的误差是( )。 A. 系统误差 B. 偶然误差 C. 过失误差 D. 随即误差 15. 关于t分布曲线和正态分布曲线形状的叙述,正确的是:( ) A. 形状完全相同,无差异; B. t分布曲线随f而变化,正态分布曲线随u而变; C. 两者相似,而t分布曲线随f而改变; D. 两者相似,都随f而改变。 16. ) 457 .2 1. 17 /( ) 25751 .0 83 .2 5. 472 (+ ? ? = y的计算结果应取有效数字的位数是( ) A. 3位 B. 4位 C. 5位 D. 6位 17. 以下情况产生的误差属于系统误差的是( )。 A. 指示剂变色点与化学计量点不一致; B. 滴定管读数最后一位估测不准; C. 称样时砝码数值记错; D. 称量过程中天平零点稍有变动。 18. 下列数据中有效数字不是四位的是( )。 A. 0.2400 B. 0.0024 C. 2.004 D. 20.40 19. 在定量分析中,精密度与准确度之间的关系是( )。

误差分析和数据处理

误差分析和数据处理

误差和分析数据处理 1 数据的准确度和精度 在任何一项分析工作中,我们都可以看到用同一个分析方法,测定同一个样品,虽然经过多 少次测定,但是测定结果总不会是完全一样。这 说明在测定中有误差。为此我们必须了解误差产 生的原因及其表示方法,尽可能将误差减到最 小,以提高分析结果的准确度。 1.1 真实值、平均值与中位数 (一)真实值 真值是指某物理量客观存在的确定值。通常一个物理量的真值是不知道的,是我们努力要求 测到的。严格来讲,由于测量仪器,测定方法、 环境、人的观察力、测量的程序等,都不可能是 完善无缺的,故真值是无法测得的,是一个理想 值。科学实验中真值的定义是:设在测量中观察 的次数为无限多,则根据误差分布定律正负误差 出现的机率相等,故将各观察值相加,加以平均, 在无系统误差情况下,可能获得极近于真值的数 值。故“真值”在现实中是指观察次数无限多时, 所求得的平均值(或是写入文献手册中所谓的 “公认值”)。

(二)平均值 然而对我们工程实验而言,观察的次数都是 有限的,故用有限观察次数求出的平均值,只能 是近似真值,或称为最佳值。一般我们称这一最 佳值为平均值。常用的平均值有下列几种: (1)算术平均值 这种平均值最常用。凡测量值的分布服从正 态分布时,用最小二乘法原理可以证明:在一组 等精度的测量中,算术平均值为最佳值或最可信 赖值。 n x n x x x x n i i n ∑=++==121 式中: n x x x 21、——各次观测值;n ――观察 的次数。 (2)均方根平均值 n x n x x x x n i i n ∑=++==12 22221 均 (3)加权平均值 设对同一物理量用不同方法去测定,或对同 一物理量由不同人去测定,计算平均值时,常对 比较可靠的数值予以加重平均,称为加权平均。

分析化学中的误差及其数据处理

2.6 分析化学中的误差 定量分析的目的是准确测定试样中组分的含量,因此分析结果必须具有一定的准确度。在定量分析中,由于受分析方法、测量仪器、所用试剂和分析工作者主观条件等多种因素的限制,使得分析结果与真实值不完全一致。即使采用最可靠的分析方法,使用最精密的仪器,由技术很熟练的分析人员进行测定,也不可能得到绝对准确的结果。同一个人在相同条件下对同一种试样进行多次测定,所得结果也不会完全相同。这表明,在分析过程中,误差是客观存在,不可避免的。因此,我们应该了解分析过程中误差产生的原因及其出现的规律,以便采取相应的措施减小误差,以提高分析结果的准确度。 2.6.1 误差与准确度 分析结果的准确度(accuracy )是指分析结果与真实值的接近程度,分析结果与真实值之间差别越小,则分析结果的准确度越高。准确度的大小用误差(error )来衡量,误差是指测定结果与真值(true value )之间的差值。误差又可分为绝对误差(absolute error )和相对误差(relative error )。绝对误差(E )表示测定值(x )与真实值(x T )之差,即 E =x - x T (2-13) 相对误差(E r )表示误差在真实值中所占的百分率,即 %100T r ?= x E E (2-14) 例如,分析天平称量两物体的质量分别为1.6380 g 和0.1637 g ,假设两物体的真实值各为1.6381 g 和0.1638 g ,则两者的绝对误差分别为: E 1=1.6380-1.638= -0.0001 g E 2=0.1637-0.1638= -0.0001 g 两者的相对误差分别为: E r1=%1006381.10001.0?-= -0.006% E r2= %1001638 .00001.0?-= -0.06% 由此可见,绝对误差相等,相对误差并不一定相等。在上例中,同样的绝对误差,称量物体越重,其相对误差越小。因此,用相对误差来表示测定结果的准确度更为确切。 绝对误差和相对误差都有正负值。正值表示分析结果偏高,负值表示分析结果偏低。 2.6.2 定量分析误差产生的原因 误差按其性质可以分为系统误差(systematic error )和随机误差(random error )两大类。也有人将操作过失造成的结果与真值间的差异叫做“过失误差”。其实,过失是错误,是实验

物理误差分析及数据处理

第一章 实验误差评定和数据处理 (课后参考答案) 制作:李加定 校对:陈明光 3.改正下列测量结果表达式的错误: (1)± 625 (cm ) 改:±(cm ) (2) ± 5(mm ) 改: ± 5(mm ) (3)± 6 (mA ) 改: ± (mA ) (4)96 500±500 (g ) 改: ± (kg ) (5)±(℃) 改: ±(℃) 4.用级别为,量程为10 mA 的电流表对某电路的电流作10次等精度测量,测量数据如下表所示。试计算测量结果及标准差,并以测量结果形式表示之。 解:①计算测量列算术平均值I : 10 1 19.548 ()10i i I I mA ===∑ ②计算测量列的标准差I σ: 0.0623 (cm)I σ= = ③根据格拉布斯准则判断异常数据: 取显著水平a =,测量次数n =10,对照表1-3-1查得临界值0(10,0.01) 2.41g =。取max x ?计算i g 值,有 6 60.158 2.536 2.410.0623 I I g σ?= = => 由此得6I =为异常数据,应剔除。 ④用余下的数据重新计算测量结果

重列数据如表1-3-3。 计算得 9 1 19.564 ()9i i I I mA ===∑ ,0.0344 ()I mA σ== 再经过格拉布斯准则判别,所有测量数据符合要求。 算术平均值I 的标准偏差为I σ 0.01145I σ= = = (mA ) 按均匀分布计算系统误差分量的标准差σ仪 为 0.0289σ?=仪0.5%10 (mA ) 合成标准差σ为 0.031σ (mA ) 取0.04σ= (mA),测量结果表示为 9.560.04x x σ=±=± (mA ) 5.用公式24m d h ρπ= 测量某圆柱体铝的密度,测得直径d =±(cm ),高h =±(cm ),质量m =±(g )。计算铝的密度ρ和测量的标准差ρσ,并以测量结果表达式表示之。 解 (1)计算铝的密度ρ: 322 4436.488 2.7003g /m 3.1416 2.042 4.126 m c d h ρπ?= =??=() (2)计算g 标准差相对误差: 对函数两边取自然对数得 ln ln 4ln ln 2ln ln m d h ρπ=-+-- 求微分,得

定量分析中的误差和数据处理(自测题)-923802176讲课教案

定量分析中的误差和数据处理(自测题)-923802176

第三章定量分析中的误差和数据处理 自测题 一.填空题 1.系统误差的特征 是:,,,。 2.随机误差的特征 是:,,,。 3.在分析过程中,下列情况各造成何种(系统、随机)误差(或过失)? (1)天平两臂不等长,引起。 (2)称量过程中天平零点略有变动,是。 (3)过滤沉淀时出现穿滤现象,是。 (4)读取滴定管最后一位时,估测不准,是。 (5)蒸馏水中含有微量杂质,引起。 (6)重量分析中,有共沉淀现象,是。 4.测定饲料中淀粉含量,数据为20.01%,20.03%,20.04%,20.05%。则淀 粉含量的平均值为;测定的平均偏差为;相对平均偏差为;极差为。 5.总体平均值 是当测量次数为时,各测定值的值。若 没误差,总体平均值就是值。 6.测定次数n为时,标准偏差S的表达式为,式 中的n – 1被称为。

7.对某一溶液中NaOH的浓度测定4次,其结果分别是:0.2043, 0.2039, 0.2049, 0.2041 mol/L。则这一组测量的平均值x为,平均偏差 d为,标准偏差S为。由结果可知,同一组测量值的标准偏差值比平均偏差值,说明标准偏差对于更敏感。 8.检验分析结果的平均值与标准值之间是否存在显著性差异,应当用 检验法;判断同一试样的两组测定结果的平均值之间是否存在显著性差异,应先用检验法判断两组数据的是否有显著性差异,再进一步用检验法判断平均值之间是否有显著性差异。 9.25.5508有位有效数字,若保留3位有效数字,应按 的原则修约为。计算下式0.1001(25.450821.52)246.43 2.03591000 ?-? ? 并按 有效数字保留原则所得的结果为。 10.根据有效数字修约规则计算下列各式: pH = 3.25,[H+] = ; pH = 6.74,[H+] = ; [H+] = 1.02×10-5,pH = 。 [H+] = 3.45×10-5,pH = 。 二. 正误判断题 1.测定方法的准确度高,精密度一定高。 2.测定方法的精密度高,不一定能保证准确度也高。 3.随机误差小,准确度一定高。

误差理论与数据处理试题

误差分析与数据处理 一.填空题 1. ______(3S或莱以特)准则是最常用也是最简单的判别粗大误差的准则。 2. 随机误差的合成可按标准差和______(极限误差)两种方式进行。 3. 在相同测量条件下,对同一被测量进行连续多次测量所得结果之间的一致性称为______(重复)性。 4. 在改变了的测量条件下,同一被测量的测量结果之间的一致性称为______(重现)性。 5. 测量准确度是指测量结果与被测量______(真值)之间的一致程度。 6. 根据测量条件是否发生变化分类,可分为等权测量和______(不等权)测量。 7. 根据被测量对象在测量过程中所处的状态分分类,可分为静态测量和_____(动态)测量。 8. 根据对测量结果的要求分类,可分为工程测量和_____(精密)测量。 9. 真值可分为理论真值和____(约定)真值。 10. 反正弦分布的特点是该随机误差与某一角度成_____(正弦)关系。 11. 在相同条件下,对同一物理量进行多次测量时,误差的大小和正负总保持不变,或按一定的规律变化,或是有规律地重复。这种误差称为______(系统误差)。 12. 在相同条件下,对某一物理量进行多次测量时,每次测量的结果有差异,其差异的大小和符号以不可预定的方式变化着。这种误差称为______(偶然误差或随机误差)。 13. 系统误差主要来自仪器误差、________(方法误差)、人员误差三方面。 14. 仪器误差主要包括_________(示值误差)、零值误差、仪器机构和附件误差。 15. 方法误差是由于实验理论、实验方法或_________(实验条件)不合要求而引起的误差。 16. 精密度高是指在多次测量中,数据的离散性小,_________(随机)误差小。 17. 准确度高是指多次测量中,数据的平均值偏离真值的程度小,_________(系统)误差小。 18. 精确度高是指在多次测量中,数据比较集中,且逼近真值,即测量结果中的_________(系统)误差和_________(随机)误差都比较小。 19. 用代数方法与未修正测量结果相加,以补偿其系统误差的值称为_____(修正值)。 20. 标准偏差的大小表征了随机误差的_____(分散)程度。 21. 偏态系数描述了测量总体及其误差分布的_____(非对称)程度。 22. 协方差表示了两变量间的_____(相关)程度。

第3章分析化学中的误差与数据处理(精)

第三章 分析化学中的误差与数据处理 一、选择题: 1.下列论述中错误的是 ( ) A .方法误差属于系统误差 B .系统误差具有单向性 C .系统误差又称可测误差 D .系统误差呈正态分布 2.下列论述中不正确的是 ( ) A .偶然误差具有随机性 B .偶然误差服从正态分布 C .偶然误差具有单向性 D .偶然误差是由不确定的因素引起的 3.下列情况中引起偶然误差的是 ( ) A .读取滴定管读数时,最后一位数字估计不准 B .使用腐蚀的砝码进行称量 C .标定EDTA 溶液时,所用金属锌不纯 D .所用试剂中含有被测组分 4.分析天平的称样误差约为0.0002克,如使测量时相对误差达到0.1%,试样至少应该称 A: 0.1000克以上 B: 0.1000克以下 C: 0.2克以上 D: 0.2克以下 5.分析实验中由于试剂不纯而引起的误差叫 ( ) A: 系统误差 B: 过失误差 C: 偶然误差 D: 方法误差 6.定量分析工作要求测定结果的误差 ( ) A .没有要求 B .等于零 C .在充许误差范围内 D .略大于充许误差 7.可减小偶然误差的方法是 ( ) A .进行仪器校正 B .作对照试验 C .作空白试验 D .增加平行测定次数 8.从精密度就可以判断分析结果可靠的前提是( ) A .偶然误差小 B .系统误差小 C .平均偏差小 D .标准偏差小 9.下列结果应以几位有效数字报出 ( ) A .5 B .4 C . 3 D .2 10.用失去部分结晶水的Na 2B 4O 7·10H 2O 标定HCl 溶液的浓度时,测得的HCl 浓度与实际浓度相比将 ( ) A .偏高 B .偏低 C .一致 D .无法确定 11.pH 4.230 有几位有效数字 ( ) A 、4 B 、 3 C 、 2 D 、 1 12.某人以差示光度法测定某药物中主成分含量时,称取此药物0.0250g ,最后计算其主成分含量为98.25%,此结果是否正确;若不正确,正确值应为( ) A 、正确 B 、不正确,98.0% C 、不正确,98% D 、不正确,98.2% 13.下列情况中,使分析结果产生负误差的是( ) 1000) 80.1800.25(1010.0-?

“误差分析和数据处理”习题及解答

“误差分析和数据处理”习题及解答 1.指出下列情况属于偶然误差还是系统误差? (1)视差;(2)游标尺零点不准;(3)天平零点漂移;(4)水银温度计毛细管不均匀。 答:(1)偶然误差;(2)系统误差;(3)偶然误差;(4)系统误差。 2.将下列数据舍入到小数点后3位: 3.14159; 2.71729; 4.510150; 3.21650; 5.6235; 7.691499。 答:根据“四舍六入逢五尾留双”规则,上述数据依次舍为: 3.142; 2.717; 4.510; 3.216; 5.624; 7.691。 3.下述说法正确否?为什么? (1)用等臂天平称衡采取复称法是为了减少偶然误差,所以取左右两边所称得质量的平均值作为测量结果,即 ()1 2 m m m = +左右 (2)用米尺测一长度两次,分别为10.53 cm 及10.54 cm ,因此测量误差为0.01 cm 。 答:(1)错。等臂天平称衡时的复称法可抵消因天平不等臂而产生的系统误差。被测物(质量为m )放在左边,右边用砝码(质量为m r )使之平衡,ml 1 = m r l 2,即 2 r 1 l m m l = 当l 1 = l 2时,m = m r 。当l 1 ≠ l 2时,若我们仍以m r 作为m 的质量就会在测量结果中出现系统误差。为了抵消这一误差,可将被测物与砝码互换位置,再得到新的平衡,m l l 1 = ml 2,即 1 l 2 l m m l = 将上述两次称衡结果相乘而后再开方,得 m = 这时测量结果中不再包含因天平不等臂所引起的系统误差。 (2)错。有效数字末位本就有正负一个单位出入;测量次数太少;真值未知。 4.氟化钠晶体经过五次重复称量,其质量(以克计)如下表所示。试求此晶体的平均质量、平均误差和标准误差。

误差分析与数据处理

误差分析与数据处理 物理化学实验是研究物质的物理性质以及这些物理性质与其化学反应间关系的一门实验科学。在实验研究工作中,一方面要拟定实验的方案,选择一定精度的仪器和适当的方法 进行测量;另一方面必须将所测得的数据加以整理归纳,科学地分析并寻求被研究变量间的 规律。但由于仪器和感觉器官的限制,实验测得的数据只能达到一定程度的准确性。因此,在着手实验之前要了解测量所能达到的准确度以及在实验以后合理地进行数据处理,都必须 具有正确的误差概念,在此基础上通过误差分析,选用最合适的仪器量程,寻找适当的实验方法,得出测量的有利条件。下面首先简要介绍有关误差等几个基本概念。 —、一、基本概念 1.误差。在任何一种测量中,无论所用仪器多么精密,方法多么完善,实验者多么细心,所得结果常常不能完全一致而会有一定的误差或偏差。严格地说,误差是指观测值与真 值之差,偏差是指观测值与平均值之差。但习惯上常将两者混用而不加区别。根据误差的种类、性质以及产生的原因,可将误差分为系统误差、偶然误差和过失误差三种。 系统误差: 这种误差是由于某种特殊原因所造成的恒定偏差,或者偏大或者偏小,其数值总可设法 加以确定,因而一般说来,它们对测量结果的影响可用改正量来校正。系统误差起因很多,例如: (1)仪器误差。这是由于仪器构造不够完善,示数部分的刻度划分得不够准确所引起,如天平零点的移动,气压表的真空度不高,温度计、移液管、滴定管的刻度不够准确等。 (2)测量方法本身的限制。如根据理想气体方程式测量某蒸汽的相对分子质量时,由于实际气体对理想气体有偏差,不用外推法求得的相对分子质量总较实际的相对分子质量为大。 (3 )个人习惯性误差。这是由于观测者有自己的习惯和特点所引起,如记录某一信号的时间总是滞后、有人对颜色的感觉不灵敏、滴定等当点总是偏高等。 系统误差决定测量结果的准确度。它恒偏于一方,偏正或偏负,测量次数的增加并不能 使之消除。通常是用几种不同的实验技术或用不同的实验方法或改变实验条件、调换仪器等 以确定有无系统误差存在,并确定其性质,设法消除或使之减 少,以提高准确度。 偶然误差: 在实验时即使采用了完善的仪器,选择了恰当的方法,经 过了精细的观测,仍会有一定的误差存在。这是由于实验者的感官的灵 敏度有限或技巧不够熟练、仪器的准确度限制以及许 多不能预料的其他因素对测量的影响所引起的。这类误差称为 偶然误差。它在实验中总是存在的,无法完全避免,但它服从几 率分布。偶然误差是可变的,有时大,有时小,有时正,有 时负。但如果多次测量,便会发现数据的分布符合一般统计规律。这种规律可用图I一1中的典型曲线表示,此曲线称为误差的正态分布曲线,此曲线的函数形式为: y= y = 式中:h称为精确度指数,b为标准误差,h与b的关系为:h= 。 自图I 一1中的曲线可以出: (1)误差小的比误差大的出现机会多,故误差的几率与误差大小有关。个别特别大的误差出现的次数极少。 (2)由于正态分布曲线与y轴对称,因此数值大小相同,符号相反的正、负误差出现的机率近于相等。如以m代表无限多次测量结果的平均值,在没有系统误差的情况下,它可以代表真值。b为无限多次测量所得标准误差。由数理统计方法分析可以得出,误差在土

相关文档
最新文档