余弦定理公式

合集下载

余弦定理公式大全

余弦定理公式大全

余弦定理公式大全余弦定理是解决三角形问题时经常使用的重要公式,可以通过它计算三角形的边长或角度。

它的表达式是:c² = a² + b² - 2ab*cos(C)其中,a、b、c分别代表三角形的边长,C代表夹在边a和边b之间的角度。

1.角度公式:根据余弦定理公式,我们可以解出夹在边a和边b之间的角度C的值:cos(C) = (a² + b² - c²) / 2ab通过这个公式,如果我们已知三角形的三个边长a、b、c,就可以计算出夹在边a和边b之间的角度C的大小。

2.边长公式:根据余弦定理公式,我们可以解出边c的值:c = √(a² + b² - 2ab*cos(C))通过这个公式,如果我们已知三角形的两个边长a、b和夹在边a和边b之间的角度C,就可以计算出边c的长度。

3.面积公式:根据余弦定理公式,我们可以推导出三角形的面积公式:S = 1/2 * a * b * sin(C)其中,S代表三角形的面积。

通过这个公式,如果我们已知三角形的两个边长a、b和夹在边a和边b之间的角度C,就可以计算出三角形的面积。

4.费马定理公式:根据余弦定理公式,我们可以推导出费马点定理公式:AF² + BF² + CF² = 4S² / sqrt(3)其中,AF、BF、CF分别代表三角形的三个顶点到费马点的距离,S代表三角形的面积。

通过这个公式,如果我们已知三角形的面积S,就可以计算出费马点到三个顶点的距离。

总结:余弦定理提供了一种解决三角形问题的强大工具。

通过余弦定理公式,我们可以计算三角形的边长、角度和面积等相关参数。

这些公式的应用范围非常广泛,是解决三角形问题时的基础知识之一、掌握了余弦定理公式,我们就可以快速准确地解决三角形相关的数学问题。

余弦定理公式

余弦定理公式

余弦定理公式一、引言余弦定理是解决三角形中的边长或角度关系问题的重要工具。

在数学和物理领域广泛应用,特别是在解决三角形的非直角问题以及相关定理的证明过程中。

本文将对余弦定理的定义、推导过程以及实际应用进行详细介绍。

二、余弦定理的定义余弦定理是三角学中的一个定理,用于计算三角形的边长、角度或判断三角形的形状。

余弦定理的表达式如下:c^2 = a^2 + b^2 - 2abcosC其中,a、b为三角形中的两边,c为斜边,C为斜边对应的角。

三、余弦定理的推导过程余弦定理的推导过程并不复杂。

首先,我们需要设想一个任意的三角形ABC,其中a、b为两条边,C是它们的夹角。

假设c是它们的斜边,我们需要找到c的表达式。

根据正余弦的定义,我们可以得到以下等式:cosA = Adjacent / HypotenusecosB = Opposite / Hypotenuse将这两个等式改写为:Hypotenuse = Adjacent / cosA (1)Hypotenuse = Opposite / cosB (2)我们可以将(1)和(2)两个等式相等:Adjacent / cosA = Opposite / cosB进一步改写为:cosB / cosA = Adjacent / Opposite根据三角公式sinA = 1 / cscA 和 sinB = 1 / cscB,可以将cosB / cosA转换为sinB / sinA:sinB / sinA = Adjacent / Opposite将A和B两个角度的角替换为C, sinA和sinB替换为a和b,可以得到余弦定理的表达式:c^2 = a^2 + b^2 - 2abcosC这就是余弦定理的最终表达式。

四、余弦定理的实际应用1. 计算三角形的边长:通过已知两边和它们夹角的大小,可以利用余弦定理计算第三边的长度。

这对于求解航海、测量不可达距离等问题非常有用。

三角形的余弦定理

三角形的余弦定理

三角形的余弦定理三角形的余弦定理是解决三角形问题中一个重要的数学定理,它能够帮助我们计算三角形的边长和角度。

余弦定理是利用三角形中的余弦函数来表示三角形的边长之间的关系。

在本文中,我们将详细介绍余弦定理的原理和应用,并通过实例来加深理解。

1、余弦定理的原理三角形的余弦定理可以用如下公式来表示:c² = a² + b² - 2abcosC其中,a、b、c分别表示三角形任意两边和角C所对应的边。

该定理可以帮助我们计算三角形的边长和角度。

2、余弦定理的应用(1)已知三角形两边和夹角,求第三边。

假设已知三角形两边分别为a和b,夹角为C,我们通过余弦定理可以很容易地求得第三边c的长度,即:c = √(a² + b² - 2abcosC)。

例如,已知三角形两边分别为5cm和7cm,夹角为60°,我们可以通过余弦定理计算出第三边的长度c = √(5² + 7² - 2×5×7×cos60°) ≈8.86cm。

(2)已知三角形三边,求夹角。

假设已知三角形三边分别为a、b和c,我们可以通过余弦定理计算出夹角C的大小,即:cosC = (a² + b² - c²) / (2ab)。

例如,已知三角形三边分别为3cm、4cm和5cm,我们可以通过余弦定理计算出夹角C的大小:cosC = (3² + 4² - 5²) / (2×3×4) = 0.25,那么夹角C ≈ acos0.25 ≈ 75.52°。

3、余弦定理的实例例题一:已知三角形两边分别为6cm和8cm,夹角为45°,求第三边的长度。

解题过程:根据余弦定理,可知第三边c = √(6² + 8² - 2×6×8×cos45°) ≈ √(36 +64 - 2×6×8×0.7071) ≈ √3 ≈ 9.58cm。

解三角形余弦定理公式

解三角形余弦定理公式

解三角形余弦定理公式
三角形余弦定理又称为余弦定理,它是一种有用的几何定理,可以用来解决三角形的问题。

它指出,在一个三角形中,如果知道两个角的余弦值和一条边的长度,就可以求出另外两条边的长度。

三角形余弦定理的公式如下:
a2 = b2 + c2 - 2bc cos A
b2 = a2 + c2 - 2ac cos B
c2 = a2 + b2 - 2ab cos C
在公式中,a、b、c 分别代表三角形的三条边,而A、B、C则代表三角形的三个内角。

下面,我们来看一个实例:已知三角形ABC的三条边长分别为a=6,b=7,c=5,其中A的余弦值为0.4。

根据上面的三角形余弦定理,我们可以求出B的余弦值:
b2 = a2 + c2 - 2ac cos B
= 62 + 52 - 2 * 6 * 5 * 0.4
= 61.6
∴ cosB = 0.8
因此,三角形ABC的B的余弦值为0.8。

从上面的实例可以看出,三角形余弦定理可以有效解决三角形的问题。

它不仅能够帮助我们求出三角形的边长,还可以帮助我们求出三角形的内角余弦值。

此外,它也可以用于判断一个三角形是否为直角三角形或者是否为等腰三角形。

三角形余弦定理是一种有用的几何定理,它可以有效帮助我们解决三角形的问题。

因此,在学习几何学的时候,我们应该加强对三角形余弦定理的认识,以便能够更好地解决三角形的问题。

余弦定理公式

余弦定理公式

余弦定理公式
余弦定理公式:cosA=(b²+c²-a²)/2bc,cosA=邻边比斜边。

余弦定理是描述三角形中三边长度与一个角的余弦值关系的数学定理。

运用它可解决一类已知三角形两边及夹角求第三边或者是已知三个
边求角的问题。

1余弦定理性质
对于任意三角形,任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的两倍积,若三边为a,b,c三角为A,B,C,则满足性质:
a^2=b^2+c^2-2·b·c·cosA
b^2=a^2+c^2-2·a·c·cosB
c^2=a^2+b^2-2·a·b·cosC
cosC=(a^2+b^2-c^2)/(2·a·b)
cosB=(a^2+c^2-b^2)/(2·a·c)
cosA=(c^2+b^2-a^2)/(2·b·c)
(物理力学方面的平行四边形定则以及电学方面正弦电路向量
分析也会用到)
第一余弦定理(任意三角形射影定理)
设△ABC的三边是a、b、c,它们所对的角分别是A、B、C,则有
a=b·cosC+c·cosB,b=c·cosA+a·cosC,c=a·cosB+b·cosA。

高中正余弦定理数学公式有哪些

高中正余弦定理数学公式有哪些

高中正余弦定理数学公式有哪些高中正余弦定理数学公式有哪些高中正余弦定理数学公式正弦定理:a/sinA=b/sinB=c/sinC=2R R为三角形外接圆的半径余弦定理:a2=b2+c2-2bc__cosA诱导公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinα(k∈Z)cos(2kπ+α)=cosα(k∈Z)tan(2kπ+α)=tanα(k∈Z)cot(2kπ+α)=cotα(k∈Z)二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα三:任意角α与-α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα高考前数学的复习方法1、调整好状态,控制好自我。

保持清醒。

高考数学的考试时间在下午,建议同学们中午最好休息半个小时或一个小时,其间尽量放松自己,从心理上暗示自己:只有静心休息才能确保考试时清醒。

2、提高解选择题的速度、填空题的准确度。

高考数学选择题是知识灵活运用,解题要求是只要结果、不要过程。

因此,逆代法、估算法、特例法、排除法、数形结合法。

尽显威力。

12个选择题,若能把握得好,容易的一分钟一题,难题也不超过五分钟。

由于选择题的特殊性,由此提出解选择题要求“快、准、巧”,忌讳“小题大做”。

填空题也是只要结果、不要过程,因此要力求“完整、严密”。

余弦定理推导公式

余弦定理推导公式

余弦定理,这个在三角学中占据着举足轻重地位的定理,其公式为:$c^2 = a^2 + b^2 - 2ab\cos C$。

这个公式不仅揭示了三角形三边与角度之间的关系,更是解决三角形问题的关键所在。

要深入理解余弦定理,首先要理解余弦定理所适用的条件和范围。

余弦定理适用于任意三角形ABC,其中a、b、c分别代表三角形ABC 的三边长,而角C则是这三边所对应的角度。

在这个定理中,关键的元素是余弦函数,它描述了一个角与其邻边之间的关系。

当我们有了基本的了解后,我们可以深入到余弦定理的推导过程中。

这个过程需要对三角形的各种属性有深入的理解,包括但不限于边长、角度、面积等。

通过一系列的数学变换和推导,我们可以得到余弦定理的公式。

这个公式不仅简洁明了,而且具有很强的实用性,可以广泛应用于三角形的各种问题中。

余弦定理的应用范围非常广泛,不仅限于三角形的问题。

在物理学、工程学、天文学等领域,余弦定理都有着广泛的应用。

例如,在物理学中,我们可以利用余弦定理解决力的合成与分解问题;在工程学中,余弦定理可以帮助我们确定结构的稳定性;在天文学中,余弦定理可以帮助我们研究星球的运动轨迹。

综上所述,余弦定理是一个重要的数学定理,它不仅揭示了三角形三边与角度之间的关系,而且具有广泛的应用价值。

通过深入理解余弦定理的推导过程和应用范围,我们可以更好地掌握这个定理,并将其应用于各种实际问题中。

余弦定理正弦定理公式

余弦定理正弦定理公式

余弦定理正弦定理公式在几何学中,余弦定理和正弦定理是两个重要的公式。

它们在解决三角形和向量的问题时非常有用。

下面,我们来详细了解一下这两个公式。

一、余弦定理余弦定理是用来计算三角形边长和角度之间关系的公式。

具体来讲,它用于计算一个三角形的某个角度的余弦值。

用符号表示,余弦定理的表达式如下:c² = a² + b² - 2ab cos(C)其中,a、b和c是一个三角形的三条边的长度,C是它们之间的夹角,cos是余弦函数。

通过余弦定理,我们可以计算出一个三角形的缺失部分。

例如,当我们已知三角形的两条边和它们之间的夹角时,可以使用余弦定理来计算第三条边的长度。

同样地,如果我们已知三角形的三条边长度,可以使用余弦定理来计算出一个角度的大小。

二、正弦定理正弦定理也是用来计算三角形边长和角度之间关系的公式。

但它和余弦定理不同,它用于计算三角形内一个角的正弦值或计算三角形边长之间的比例关系。

具体来讲,正弦定理的表达式如下:a / sin(A) =b / sin(B) =c / sin(C)其中,a、b和c是一个三角形的三条边的长度,A、B和C是分别位于它们对应边的顶点处的角度。

正弦定理可以帮助我们计算三角形内角度或边长之间的比例关系。

例如,当我们已知一个角的大小和它对应的边长时,我们可以使用正弦定理来计算出另外两条边的长度。

同样地,如果我们已知三角形内三个角的大小,也可以使用正弦定理来计算出三条边的长度比例关系。

通过掌握余弦定理和正弦定理,我们可以在解决三角形和向量问题时更加得心应手。

同时,这两个公式也对我们理解和应用数学和物理学知识有着极大的指导意义。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

4.6 正弦、余弦定理 解斜三角形建构知识网络1.三角形基本公式:(1)内角和定理:A+B+C=180°,sin(A+B)=sinC, cos(A+B)= -cosC,cos2C =sin 2B A +, sin 2C =cos 2B A +(2)面积公式:S=21absinC=21bcsinA=21casinBS= pr =))()((c p b p a p p --- (其中p=2cb a ++, r 为内切圆半径)(3)射影定理:a = b cos C + c cos B ;b = a cos C + c cos A ;c = a cos B + b cos A 2.正弦定理:2sin sin sin a b cR A B C===外 证明:由三角形面积111sin sin sin 222S ab C bc A ac B === 得sin sin sin a b cA B C== 画出三角形的外接圆及直径易得:2sin sin sin a b cR A B C === 3.余弦定理:a 2=b 2+c 2-2bccosA , 222cos 2b c a A bc+-=;证明:如图ΔABC 中,sin ,cos ,cos CH b A AH b A BH c b A ===-22222222sin (cos )2cos a CH BH b A c b A b c bc A=+=+-=+-当A 、B 是钝角时,类似可证。

正弦、余弦定理可用向量方法证明。

要掌握正弦定理、余弦定理及其变形,结合三角公式,能解有关三角形中的问题. 4.利用正弦定理,可以解决以下两类问题:(1)已知两角和任一边,求其他两边和一角; (2)已知两边和其中一边的对角,求另一边的对角;有三种情况:bsinA<a<b 时有两解;a=bsinA 或a=b 时有 解;a<bsinA 时无解。

5.利用余弦定理,可以解决以下两类问题:(1)已知三边,求三角;(2)已知两边和它们的夹角,求第三边和其他两角。

6.熟练掌握实际问题向解斜三角形类型的转化,能在应用题中抽象或构造出三角形,标出已知量、未知量,确定解三角形的方法;提高运用所学知识解决实际问题的能力双基题目练练手B1.(2006山东)在ABC ∆中,角,,A B C 的对边分别为,,a b c ,已知,13A a b π===,则c = ( )A.1B.212.在△ABC 中,AB=3,BC=13,AC=4,则边AC 上的高为( )A.223 B.233 C.23 D.333.(2002年上海)在△ABC 中,若2cos B sin A =sin C ,则△ABC 的形状一定是A.等腰直角三角形B.直角三角形C.等腰三角形D.等边三角形 4. (2006全国Ⅰ)用长度分别为2、3、4、5、6(单位:cm )的5根细木棒围成一个三角形(允许连接,但不允许折断),能够得到的三角形的最大面积为 ( )A. 2B. 2mC. 2D. 220cm5.(2006全国Ⅱ)已知ABC 的三个内角A 、B 、C 成等差数列,且AB=1,BC=4,则边BC 上的中线AD 的长为_________.6.(2006春上海)在△ABC 中,已知5,8==AC BC ,三角形面积为12,则=C 2cos .◆答案:1-4.BBCB; 3.由2cos B sin A =sin C 得ac b c a 222-+×a =c ,∴a =b .4.组成边长6,7,7时面积最大;5.257 四、经典例题做一做【例1】(2006天津)如图,在ABC ∆中,2AC =,1BC =,43cos =C . (1)求AB 的值; (2)求()C A +2sin 的值. 解(Ⅰ): 由余弦定理,2222..cos AB AC BC AC BC C =+- 341221 2.4=+-⨯⨯⨯=∴AB =(Ⅱ)解:由3cos 4C =,且0,C π<<得sin C ==由正弦定理:,sin sin AB BCC A=解得sin sin BC C A AB ==。

所以,cos A =。

由倍角公式sin 2sin 2cos 16A A A =⋅=, 且29cos 212sin 16A A =-=,故 ()sin 2sin 2cos cos 2sin 8A C A C A C +=+=. ◆提炼方法:已知两边夹角,用余弦定理,由三角函数值求三角函数值时要注意“三角形内角”的限制.【例2】在ΔABC 中,已知a=3,b=2,B=45°,求A,C 及边c .解:由正弦定理得:sinA=23245sin 3sin =⋅= b B a ,因为B=45°<90°且b<a, 所以有两解A=60°或A=120°(1)当A=60°时,C=180°-(A+B)=75°, c=22645sin 75sin 2sin sin +=⋅=B Cb , (2)当A=120°时,C=180°-(A+B)=15 °,c=22645sin 15sin 2sin sin -=⋅=BCb ◆提炼方法:已知两边和其中一边的对角解三角形问题,用正弦定理求解,必需注意解的情况的讨论.【例3】(2006上海)如图,当甲船位于A 处时获悉,在其正东方向相距20海里的B 处有一艘渔船遇险等待营救 甲船立即前往救援,同时把消息告知在甲船的南偏西30,相距10海里C 处的乙船,试问乙船应朝北偏东多少度的方向沿直线前往B 处救援(角度精确到1︒)?[解] 连接BC,由余弦定理得BC 2=202+102-2×20×10COS120°=700于是∵710120sin 20sin ︒=ACB , ∴sin ∠ACB=73, ∵∠ACB<90° ∴∠ACB=41°∴乙船应朝北偏东71°方向沿直线前往B 处救援思路点拨:把实际问题转化为解斜三角形问题,在问题中构造出三角形,标出已知量、未知量,确定解三角形的方法;【例4】已知⊙O 的半径为R ,,在它的内接三角形ABC 中,有()()B b aC A R sin 2sin sin 222-=-成立,求△ABC 面积S 的最大值.解:由已知条件得()()()b a BR B A R -=-2sin 2sin sin2222.即有 2222b ab c a -=-,又 222cos 222=-+=ab c b a C ∴ 4π=c .34A B π+=∴ B A R ab C ab S sin sin 44242sin 212⋅===22223sin sin()4sin ()22(sin 21cos 2)2)1]24A A A A A RA A R A ππ=-=+=+-=-+当32,()428A AB πππ-===即时, 2max 212R S +=.◆思路方法:1.边角互化是解三角形问题常用的手段.一般有两种思路:一是边化角;二是角化边。

2.三角形中的三角变换,应灵活运用正、余弦定理.在求值时,要利用三角函数的有关性质.【研讨.欣赏】(2006江西)如图,已知△ABC 是边长为1的正三角形, M 、N 分别是边AB 、AC 上的点,线段MN 经过△ABC 的中心G .设2()33MGA ππαα∠=≤≤. (1) 试将△AGM 、△AGN 的面积(分别记为1S 与2S )表示为α的函数; (2) 求221211y S S =+的最大值与最小值. 解:(1)因为G 为边长为1的正三角形ABC 的中心,所以2,.3236AG MAG π=⨯=∠= 由正弦定理,sinsin()66GM GA πππα=--6sin()6GM α=+得11sin sin (212sin()6S GM GA ααπα=⋅⋅==+则或,sinsin()6sin()666GN GA GN ππαα==--又得21sin sin()(212sin()6S GN GA απαπα=⋅⋅-==-则或2222221211144(2)sin ()sin ()72(3cot ).sin 66y S S ππαααα⎡⎤=+=++-=+⎢⎥⎣⎦因为233ππα≤≤,所以当233ππαα==或时,y 的最大值max 240y =; 当2πα=时, y 的最小值min 216y =.提炼总结以为师1.掌握三角形中的的基本公式和正余弦定理; 2.利用正弦定理,可以解决以下两类问题:(1)已知两角和任一边,求其他两边和一角;(2)已知两边和其中一边的对角,求另一边的对角(从而进一步求出其他的边和角);3.利用余弦定理,可以解决以下两类问题:(1) 已知三边,求三角;(2)已知两边和它们的夹角,求第三边和其他两角。

4.边角互化是解三角形的重要手段.4.6 正弦、余弦定理 解斜三角形【选择题】1.(2004浙江)在△ABC 中,“A >30°”是“sin A >21”的 ( ) A.充分而不必要条件 B.必要而不充分条件 C.充分必要条件 D.既不充分也不必要条件2.(2004全国Ⅳ)△ABC 中,a 、b 、c 分别为∠A 、∠B 、∠C 的对边,如果a 、b 、c 成等差数列,∠B =30°,△ABC 的面积为23,那么b 等于 ( ) A.231+B.1+3C.232+ D.2+3 3..下列条件中,△ABC 是锐角三角形的是 ( )A.sin A +cos A =51 B.AB ·BC >0 C.tan A +tan B +tan C >0D.b =3,c =33,B =30°4.(2006全国Ⅰ)ABC ∆的内角A 、B 、C 的对边分别为a 、b 、c ,若a 、b 、c 成等比数列,且2c a =,则c o s B = ( )A .14 B. 34 C. 4 D. 3【填空题】5.(2004春上海)在ABC ∆中,c b a 、、分别是A ∠、B ∠、C ∠所对的边。

若 105=∠A , 45=∠B ,22=b ,则=c __________6.在锐角△ABC 中,边长a =1,b =2,则边长c 的取值范围是_______.练习简答:1-4.BBCB; 1.在△ABC 中,A >30°⇒0<sin A <1sin A >21;sin A >21⇒30°<A <150°⇒A >30°答案:B2. 2b =a +c .平方得a 2+c 2=4b 2-2ac .由S=21ac sin30°=41ac =23,得ac =6.∴a 2+c 2=4b 2-12.得cos B =ac b c a 2222-+=6212422⨯--b b =442-b =23,解得b =1+3.答案:B3.由tan A +tan B +tan C=tan A tan B tan C >0,A 、B 、C 都为锐角.答案:C5.2;6.若c 最大,由cos C >0.得c <5.又c >b -a =1,∴1<c <5.【解答题】7.(2004春北京)在△ABC 中,a 、b 、c 分别是∠A 、∠B 、∠C 的对边长,已知a 、b 、c 成等比数列,且a 2-c 2=ac -bc ,求∠A 的大小及cBb sin 的值. 剖析:因给出的是a 、b 、c 之间的等量关系,要求∠A ,需找∠A 与三边的关系,故可用余弦定理.由b 2=ac 可变形为c b 2=a ,再用正弦定理可求cBb sin 的值.解法一:∵a 、b 、c 成等比数列,∴b 2=ac .又a 2-c 2=ac -bc ,∴b 2+c 2-a 2=bc . 在△ABC 中,由余弦定理得cos A =bc a c b 2222-+=bc bc 2=21,∴∠A =60°.在△ABC 中,由正弦定理得sin B =aAb sin ,∵b 2=ac ,∠A =60°,∴ac b c B b ︒=60sin sin 2=sin60°=23. 解法二:在△ABC 中,由面积公式得21bc sin A =21ac sin B . ∵b 2=ac ,∠A =60°,∴bc sin A =b 2sin B . ∴cBb sin =sin A =23.评述:解三角形时,找三边一角之间的关系常用余弦定理,找两边两角之间的关系常用正弦定理.8.(2005春北京)在△ABC 中,sin A +cos A =22,AC =2,AB =3,求tan A 的值和△ABC 的面积. 解法一:∵sin A +cos A =2cos (A -45°)=22, ∴cos (A -45°)=21. 又0°<A <180°,∴A -45°=60°,A =105°. ∴tan A =tan (45°+60°)=3131-+=-2-3.∴sin A =sin105°=sin (45°+60°) =sin45°cos60°+cos45°sin60°=462+. ∴S △ABC =21AC ·AB sin A=21·2·3·462+=43(2+6). 解法二:∵sin A +cos A =22, ①∴(sin A +cos A )2=21.∴2sin A cos A =-21. ∵0°<A <180°,∴sin A >0,cos A <0. ∴90°<A <180°.∵(sin A -cos A )2=1-2sin A cos A =23, ∴sin A -cos A =26.②①+②得sin A =462+. ①-②得cos A =462-. ∴tan A =A Acos sin =462+·624-=-2-3.(以下同解法一)9. (2004全国Ⅱ)已知锐角△ABC 中,sin (A +B )=53,sin (A -B )=51. (1)求证:tan A =2tan B ;(2)设AB =3,求AB 边上的高.剖析:有两角的和与差联想到两角和与差的正弦公式,结合图形,以(1)为铺垫,解决(2). (1)证明:∵sin (A +B )=53,sin (A -B )=51, ∴⎪⎪⎩⎪⎪⎨⎧=-=+51sin cos cos sin 53sin cos cos sin B A B A B A B AB A B A B A tan tan 51sin cos 52cos sin ⇒⎪⎪⎩⎪⎪⎨⎧==⇒=2.∴tan A =2tan B . (2)解:2π<A +B <π,∴sin (A +B )=53.∴tan (A +B )=-43, 即B A B A tan tan 1tan tan -+=-43.将tan A =2tan B 代入上式整理得2tan 2B -4tan B -1=0,解得tan B =262±(负值舍去).得tan B =262+,∴tan A =2tan B =2+6.设AB 边上的高为CD ,则AB =AD +DB =A CD tan +B CDtan =623+CD .由AB =3得CD =2+6,所以AB 边上的高为2+6.评述:本题主要考查三角函数概念,两角和与差的公式以及应用,分析和计算能力.10. 在△ABC 中,sin A =CB CB cos cos sin sin ++,判断这个三角形的形状.分析:判断一个三角形的形状,可由三个内角的关系确定,亦可由三边的关系确定.采用后一种方法解答本题,就必须“化角为边”.解:应用正弦定理、余弦定理,可得a =abcb a ca b ac cb 22222222-++-++,所以 22222222c a b a b c b c c b+-+-+=+,化简得a 2=b 2+c 2.所以△ABC 是直角三角形.评述:恒等变形是学好数学的基本功,变形的方向是关键.若考虑三内角的关系,本题可以从已知条件推出cos A =0.【探索题】已知A 、B 、C 是△ABC 的三个内角,y =cot A +)(C B A A-+cos cos sin 2.(1)若任意交换两个角的位置,y 的值是否变化?试证明你的结论. (2)求y 的最小值.解:(1)∵y =cot A +[][])()()(C B C B C B -++-+-cos πcos πsin 2=cot A +)()()(C B C B C B -++-+cos cos sin 2=cot A +CB CB C B sin sin sin cos cos sin +=cot A +cot B +cot C ,∴任意交换两个角的位置,y 的值不变化. (2)∵cos (B -C )≤1,∴y ≥cot A +A A cos 1sin 2+=2tan 22tan 12A A-+2tan 2A =21(cot 2A +3tan 2A )≥2cot 2tan 3A A ⋅=3. 故当A =B =C =3π时,y min =3. 评述:本题的第(1)问是一道结论开放型题,y 的表达式的表面不对称性显示了问题的有趣之处.第(2)问实际上是一道常见题:在△ABC 中,求证:cot A +cot B +cot C ≥3.可由三数的均值不等式结合cot A +cot B +cot C =cot A cot B cot C 来证.。

相关文档
最新文档