卫生统计学重点笔记

合集下载

卫生统计学知识点整理

卫生统计学知识点整理

卫生统计学知识点整理1.数据类型:卫生统计学包括两种主要类型的数据,即定量数据和定性数据。

定量数据是数值型数据,如身高、体重等,可以使用各种统计方法进行分析。

定性数据是非数值型数据,如性别、职业等,可以使用描述性统计方法进行分析。

2.数据收集方法:卫生统计学使用多种方法收集数据,其中包括调查、观察、实验和文献研究等。

调查是最常用的数据收集方法,通过设计问卷或面对面访谈等手段收集信息。

观察是观察和记录事件或行为,以获取相关数据。

实验是通过对照组和干预组进行比较来确定原因和效果的方法。

文献研究是通过分析已有的文献、报告和统计数据来获取相关信息。

3.数据描述和总结:在数据收集完成后,卫生统计学需要对数据进行描述和总结。

这包括计算各种统计指标,如平均数、中位数、众数和标准差等,以了解数据的分布和变异程度。

4.假设检验:卫生统计学中常用的方法之一是假设检验,用于判断一些变量是否与其他变量有显著关联或差异。

假设检验基于统计学原理,通过计算样本数据与预期数据之间的差异,评估是否拒绝或接受一些假设。

5.相关分析:相关分析是研究两个或多个变量之间关系的统计方法。

它可以确定变量之间的相关性大小和方向,并计算相关系数来度量相关性的强弱。

6.回归分析:回归分析是用来预测和解释一个或多个因变量与一个或多个自变量之间关系的方法。

它可以估计自变量对因变量的影响程度,并评估其统计显著性。

7.生存分析:生存分析是研究个体在一定时间内生存或发生一些事件的概率的统计方法。

它通常用于研究疾病的生存率和治疗效果。

8.抽样方法:抽样方法是在卫生调查中常用的一种方法,它可以通过选择一部分样本来代表整体群体。

常见的抽样方法包括随机抽样、系统抽样、分层抽样和整群抽样等。

9.统计软件:卫生统计学使用各种统计软件来进行数据分析和统计计算。

常用的统计软件包括SPSS、SAS、R和STATA等,它们提供了丰富的统计功能和图形展示方式。

10.数据伦理:卫生统计学中数据伦理是一个重要的问题,主要涉及数据的保密性、隐私保护和知情同意等方面。

卫生统计学笔记整理

卫生统计学笔记整理

卫生统计学笔记整理第1章绪论1、卫生统计学的概念:2、统计工作的基本步骤:3、卫生统计学的几个基本概念(attention:资料的分类)第2章调查研究设计1、调查研究的特点:2、调查研究的类型,按调查抽样比例划分.第3章实验设计1、实验设计的特点.2、实验设计的三要素四原则。

3、常用的实验设计方案:(attention:正确区别完全随机设计和配对设计)第4章定量资料的统计描述1、频数表的编制步骤和频数表的用途2、集中趋势的描述。

(P55知识点4-2)3、离散趋势的描述。

(P58知识点4-3)4、正态分布的特征5、制定医学参考值范围第5章定性资料的统计描述1、相对数是对定性资料进行统计描述的一类指标。

2、常用相对数(率、构成比、相对比)的定义3、应用相对数需要注意的问题[知识点5-3] P694、标准化法的意义和基本思想5、标准化率的计算方法与注意事项[知识点5-5] P74补充:1、该方法便于比较,但不能反映实际情况。

2、并非所有资料都可以计算标准化率,若各组间出现交叉,不宜用该方法。

3、两样本做标准化率后应做假设检验第6章总体均数和总体率的估计1、抽样误差的概念。

2、标准误的概念。

[知识点6-2] P793、t分布(了解)(一)t分布的概念与计算公式(二)t分布的特征与t界值表4、可信区间的概念。

5、总体均数的估计方法:[知识点6-3] P83第7章假设检验1、假设检验的基本思想及基本步骤[知识点7-1] P922、Ⅰ型错误与Ⅱ型错误。

[知识点7-2] P933、单侧检验与双侧检验区分。

[知识点7-3] P954、假设检验应该注意的问题。

[知识点7-3] P97第8章 t检验第一节样本与总体均数的比较1.检验步骤2.[知识点8-1] P1003.当样本数量n≧50或总体均数已知时用z检验[知识点8-2] P102第二节配对设计均数的比较1.检验步骤2.[知识点8-3] P103第三节两样本均数的比较1.检验步骤2.z检验的适用条件第9章方差分析第一节方差分析的基本思想和应用条件(1)总变异、组间变异、组内变异的定义与公式(2)条件:符合定量资料,具有独立性正态分布方差齐性的特征,多样本(3或3个以上)间的比较第二节完全随机设计的方差分析(1)检验步骤(2)注意事项:[知识点9-2] P120第四节多个样本均数的两两比较1.q检验适用范围:当方差分析得出结论拒绝H0接受H1假设时需进行q检验2.掌握检验步骤第10章 X2检验第一节2x2表的X2 检验(一)完全随机设计X2 检验1.检验步骤及公式2.注意事项:[知识点10-2] p141(二)配对设计X2 检验1.检验步骤及公式2.[知识点10-3] p142第二节RⅹC表的X2 检验1.注意事项:[10-4] p143第11章非参数检验适用条件:(1)总体分布形式未知或分布类型不明(2)偏态分布的资料(3)等级资料不能精确测定,只能以严重程度优劣等级次序先后等表示(4)不满足参数检验条件资料各组方差明显不齐(5)数据的一端或两端为不确定数值的资料、等级资料(6)[知识点11-1] p153第一节秩和检验1.检验步骤:详读p154 (2)(3)3.第二节两样本比较的秩和检验1.掌握编秩的方法2.注意条件详看p157的3第12章双变量关联性分析第一节直线相关1、直线相关的概念:又称简单相关,是用来描述具有直线关系的两变量x、y相互关系的统计方法,要求两变量均来自双变量正态分布的随机变量,且两变量不分主次,处于同等地位。

卫生统计学知识点汇总

卫生统计学知识点汇总

卫生统计学知识点汇总卫生统计学知识点汇总卫生统计学是一门研究如何收集、整理、分析和解释与人类健康相关的统计数据的学科。

以下是一些卫生统计学的知识点汇总:1. 健康指标和健康统计数据卫生统计学研究的核心是健康指标和健康统计数据。

健康指标是用来衡量人类健康状况的指标,如死亡率、发病率、存活率等。

健康统计数据是指收集和整理的与人类健康相关的数据信息。

2. 健康调查和流行病学研究卫生统计学包括健康调查和流行病学研究。

健康调查是通过问卷调查、面访和体检等方式,对人群的健康状况进行评估和监测。

流行病学研究是研究疾病在人群中分布、发生和传播规律的学科。

3. 死因统计学死因统计学是研究人口死亡原因及其统计方法的学科。

通过对死亡证明和其他相关资料的分析,可以得到不同死因的死亡率和死因结构,为公共卫生和医疗健康政策制定提供依据。

4. 卫生服务利用统计卫生服务利用统计研究人群对卫生服务的需求,以及卫生服务的提供情况。

包括统计各类卫生机构的数量、位置和服务范围,以及人群对卫生服务的需求和利用情况。

5. 卫生经济学指标卫生经济学指标是研究卫生经济学相关问题的统计指标。

包括卫生资源投入和产出指标,如医疗卫生总费用、卫生人力资源和医疗服务产出等。

6. 因素分析和回归分析因素分析是研究多个相关变量之间关系的统计方法,可以用于探索影响健康的各种因素。

回归分析是通过建立数学模型,研究一个或多个自变量对因变量的影响程度和方向。

7. 卫生统计学软件与工具卫生统计学的研究除了基本的统计学知识外,还需要掌握一些卫生统计学软件和工具的使用。

如SPSS、R、EpiInfo等数据处理和分析软件。

以上是一些卫生统计学的知识点汇总,这门学科涵盖了众多的知识领域,为研究人类健康提供了重要的数据支持和决策依据。

卫生统计学知识点(笔记)

卫生统计学知识点(笔记)

第一章绪论1.统计学(statistics)是一门处理数据中变异性的科学与艺术,内容包括收集、分析、解释和表达数据,目的是求得可靠的结果。

2.▲总体(population)用来表示大同小异的对象全体,例如一个国家的所有成年人;某地的所有小学生。

可分为目标总体和研究总体。

若试图对某个总体下结论,这个总体便称为目标总体(target population);资料常来源于目标总体中的一个部分,它称为研究总体(study population)。

需要谨慎的是,就研究总体所下的结论未必适用于目标总体。

3.▲样本(sample)是指从研究总体中抽取的一部分有代表性的个体。

获取样本的过程称为抽样(sampling)。

抽样研究的目的是用样本数据推断总体的特征。

需要注意的是,统计学的结论从来就不是完全肯定或完全否定的,能不能成功地达到从样本推断总体的目的,关键是抽样的方法、样本的代表性和推断的技术。

4.▲同质(homogeneity)是指同一总体中个体的主要性质相同。

5.▲变异(variation)是指同质的个体之间存在的差异。

6.▲变量的类型二分类变量分类变量或名义变量定性变量多分类变量变量有序变量或等级变量定量变量离散型变量连续型变量变量的转化:只能由“高级”向“低级”转化,即由信息量多的向信息量少的类型转化,如:定量有序分类二值7.▲参数(parameter)是反映总体特征的指标,参数的大小是客观存在的,是一个常数,不会发生变化,然而往往是未知的,需要通过样本资料来估计,如总体均数μ,总体标准差σ。

8.▲统计量(statistic)又称样本统计量,是反映样本特征的指标,是由观察资料计算出来的,如样本均数 X,样本标准差S。

统计学的任务就是依据样本统计量来推断总体参数。

9.▲概率与频率的区别:概率是参数,频率是统计量;频率总是围绕概率上下波动。

当某事件发生的概率≤0.05时,即P≤0.05,统计学习惯上称该事件为小概率事件。

卫生统计学重点总结

卫生统计学重点总结

第一章绪论1.卫生统计学的概念P1卫生统计学是应用概率论和数理统计学的基本原理和方法,研究居民卫生情况以及卫生服务领域中数据的收集、整理和分析的一门科学。

2.卫生(医学)统计学的主要步骤P3设计;收集资料;整理资料;分析资料3.(选择、判断)卫生统计学的基本概念P4同质(homogeneity):统计学中,若某些观察对象具有相同的特征或属性,称之为同质或具有同质性。

变异(variation):将同质个体的某项特征或属性的观察值或测量值之间的差异称为变异。

总体(population):是根据研究目的确定的的所有观察单位某种特征或属性的观察值或测量值的集合。

样本(sample):是从总体中随机抽取的具有代表性的部分观察单位的集合。

样本中包含的观察单位个数称为样本含量。

参数(parameter):反映总体特征的指标称为参数,一般是未知的,常用希腊字母表示。

统计量(statistic):根据样本观察值计算出来的指标称为统计量,常用拉丁字母表示。

变量(variable):每个观察单位的某项特征或属性称为变量。

抽样研究(sampling research):从总体中随机抽取样本,通过样本信息推断总体特征的研究方法称为抽样研究。

抽样误差(sampling error):由随机抽样造成的样本统计量与总体参数之间、样本统计量之间的差异称为抽样误差。

资料(data):变量值的集合称之为资料。

★4.资料的分类P4(1)定量资料:亦称计量资料,其变量值是定量的,表现为数值大小,一般有度、量、衡单位。

(2)定性资料:亦称分类资料,其观察值是定性的,表现为互不相容的类别或属性,一般无度、量、衡单位。

可进一步细分为两种资料:1)计数资料:指将观察单位按某种类别或属性进行分组,清点各组观察单位数所得的资料。

包括:①二项分类资料;②无序多项分类资料2)等级资料:亦称有序多分类资料,是将观察单位按某特征或属性的程度或等级顺序分组,清点各组观察单位数所得的资料。

卫生统计学的重点归纳

卫生统计学的重点归纳

卫生统计学的重点归纳卫生统计学的重点归纳一、卫生统计学的定义卫生统计学是以统计理论和方法为基础,应用数学、物理、化学、计算机等学科技术,研究卫生和医疗问题的数据分析方法。

它以收集,处理,分析和解释卫生和医疗等领域的统计数据为基础,以定量分析和定性分析卫生数据,研究卫生和应用流行病学方法,识别患病危险因素,以及制定卫生与医疗保健的政策与措施,为医学和公共卫生提供科学依据的一门学科。

二、卫生统计学的基本原理(1)基本理论卫生统计学的基本理论包括:(1)数理统计学:数理统计学是以统计学的数据处理方法为工具,探讨多变量间相互关系的学科;(2)社会科学统计学:社会科学统计学是以统计学的方法为工具,研究社会判断和实证研究的学科;(3)中国统计学:中国统计学是以中国传统的统计学理论和方法为基础,研究社会发展进程中社会变迁的学科;(4)应用统计学:应用统计学是以统计学的方法来解决实际问题,如实验设计与分析、生态学分析、经济学分析等。

(2)基本方法卫生统计学的基本方法包括:(1)分类法:分类法是按照实际问题的性质,将被研究对象进行科学的定性分类;(2)测度法:测度法是按照实际问题的性质,将被研究对象进行科学的定量测度;(3)统计方法:统计方法是利用统计技术处理数据,以处理、描述、分析和预测实证问题;(4)流行病学方法:流行病学方法是指在全面调查的基础上,利用统计技术,研究病因、流行病学及其预防控制等方面的方法。

三、卫生统计学的应用1、卫生统计学用于事件分析。

事件分析包括:病原体检测、医疗并发症监测、病因研究、新药研发、疾病控制等研究;2、卫生统计学用于政策分析,为卫生政策、医疗政策、公共卫生政策的制订、实施和评价,提供科学依据;3、卫生统计学用于质量控制。

对质量控制体系中的质量指标进行定量分析、定性分析和评价;4、卫生统计学用于教育考试。

有助于改进教育评价,提高客观能力,开发判断及决策技能;5、卫生统计学用于职业卫生领域,可以指导职业卫生政策的制定和促进各种职业病的预防。

卫生统计学复习笔记

卫生统计学复习笔记

卫生统计学复习笔记一、概述1、卫生统计学的概念(熟练掌握)统计学是研究数据的收集、整理和分析的一门科学,帮助人们分析所占有的信息,达到去伪存真、去粗取精、正确认识世界的一种重要手段。

卫生统计学是应用数统计学的原理与方法研究居民健康状况以及卫生服务领域中数据的收集、整理和分析的一门科学。

由此看出:统计学是处理资料中变异性的科学和艺术,是在收集、归类、分析和解释大量数据的过程中获取可靠结果的一门学科.这里强调了“过程”,但在实际工作中,许多人往往是忽略了设计、收集和归类(整理),到了分析数据时才想到统计学,此时难免发生“悔之晚矣”的憾事。

作为统计学的应用者应充分认识到这一点。

卫生统计学的内容(了解):1)健康统计:医学人口统计、疾病统计和生长发育统计等;2)卫生服务统计:包括卫生资源利用、医疗卫生服务的需求、医疗保健体制改革等方面的统计学问题。

2、卫生统计学的工作步骤(熟练掌握)统计学对统计工作的全过程起指导作用,任何统计工作和统计研究的全过程都可分为以下四个步骤:1)、设计:在进行统计工作和研究工作之前必须有一个周密的设计.设计是在广泛查阅文献、全面了解现状、充分征询意见的基础上,对将要进行的研究工作所做的全面设想。

其内容包括:明确研究目的和研究假说,确定观察对象、观察单位、样本含量和抽样方法,拟定研究方案、预期分析指标、误差控制措施、进度与费用等。

设计是整个研究工作中最关键的一环,也是指导以后工作的依据2)、收集资料:遵循统计学原理采取必要措施得到准确可靠的原始资料.及时、准确、完整是收集统计资料的基本原则。

卫生工作中的统计资料主要来自以下三个方面:①统计报表:是由国家统一设计,有关医疗卫生机构定期逐级上报,提供居民健康状况和医疗卫生机构工作的主要数据,是制定卫生工作计划与措施、检查与总结工作的依据。

如法定传染病报表,职业病报表,医院工作报表等。

②经常性工作记录:如卫生监测记录、健康检查记录等。

卫生统计学-重点整理资料

卫生统计学-重点整理资料

卫生统计学第一章绪论1、卫生统计学的概念(P1)卫生统计学是应用概率论和数理统计学的基本原理和方法,研究居民卫生状况以及卫生服务领域中数据的收集、整理和分析的一门科学,是卫生及其相关领域研究中不可缺少的分析问题。

2、卫生统计学的4个基本步骤(P3):设计、收集资料、整理资料、分析资料3、卫生统计学的几个基本概念(P4):⑴同质:在统计学中,若某些观察对象具有相同的特征或属性,我们就称之为同质,或具有同质性。

⑵变异:同质个体的某项特征或属性的观察值或测量值之间的差异。

⑶总体:同质的所有观察单位某种特征或属性的观察值或测量值的集合。

⑷样本:从总体中随机抽取的具有代表性的部分观察单位的集合。

样本中包含的观察单位个数成为样本含量。

⑸参数:反映总体特征的指标,一般是未知的,常用希腊字母表示,如总体均数μ、总体率π等。

⑹统计量:根据样本观察值计算出来的指标,常用拉丁字母表示,如样本均数⎺x 、样本率ρ等。

⑺变量与资料:对每个观察单位进行观察或测量的某项特征或属性称为变量;变量值的集合成为资料。

⑻定量资料:亦称计量资料,其变量值是定量的,表现为数值大小,一般有度、量、衡单位。

⑼定性资料:亦称分类资料,其观察值是定性的,表现为互不相容的类别或属性,一般无度、量、衡单位。

可细分为:①计数资料;②等级资料第二章调查研究设计★1、调查研究的特点(P7):①不能人为施加干预措施;②不能随机分组;③很难控制干扰因素;④一般不能下因果结论2、常用抽样方法(名称、原理):⑴单纯随机抽样:先将调查总体的全部观察单位统一编号,然后采用随机数字表、统计软件或抽签方法之一随机抽取n(样本大小)个编号,由这n 个编号所对应的n个观察单位构成研究样本。

⑵系统抽样:又称机械抽样或等距抽样。

事先将总体内全部观察单位按某一顺序号等距分成n(样本大小)个部分,每一部分内含m个观察单位;然后从第一部分开始,从中随机抽出第i号观察单位,依此用相等间隔m机械地在第2部分、第3部分直至第n部分内各抽出一个观察单位组成样本。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

医师资格考试蓝宝书-预防医学医学统计学方法第一节基本概念和基本步骤(非常重要)一、统计工作的基本步骤设计(最关键、决定成败)、搜集资料、整理资料、分析资料。

总体:根据研究目的决定的同质研究对象的全体,确切地说,是性质相同的所有观察单位某一变量值的集合。

总体的指标为参数。

实际工作中,经常是从总体中随机抽取一定数量的个体,作为样本,用样本信息来推断总体特征。

样本的指标为统计量。

由于总体中存在个体变异,抽样研究中所抽取的样本,只包含总体中一部分个体,这种由抽样引起的差异称为抽样误差。

抽样误差愈小,用样本推断总体的精确度愈高;反之,其精确度愈低。

某事件发生的可能性大小称为概率,用P表示,在0~1之间,0和1为肯定不发生和肯定发生,介于之间为偶然事件,<0.05或0.01为小概率事件。

二、变量的分类变量:观察单位的特征,分数值变量和分类变量。

第二节数值变量数据的统计描述(重要考点)一、描述计量资料的集中趋势的指标有1.均数均数是算术均数的简称,适用于正态或近似正态分布。

2.几何均数适用于等比资料,尤其是对数正态分布的计量资料。

对数正态分布即原始数据呈偏态分布,经对数变换后(用原始数据的对数值lgX代替X)服从正态分布,观察值不能为0,同时有正和负。

3.中位数一组按大小顺序排列的观察值中位次居中的数值。

可用于描述任何分布,特别是偏态分布资料的集中位置,以及分布不明或分布末端无确定数据资料的中心位置。

不能求均数和几何均数,但可求中位数。

百分位数是个界值,将全部观察值分为两部分,有X%比小,剩下的比大,可用于计算正常值范围。

二、描述计量资料的离散趋势的指标1.全距和四分位数间距。

2.方差和标准差最为常用,适于正态分布,既考虑了离均差(观察值和总体均数之差),又考虑了观察值个数,方差使原来的单位变成了平方,所以开方为标准差。

均为数值越小,观察值的变异度越小。

3.变异系数多组间单位不同或均数相差较大的情况。

变异系数计算公式为:CV=s/X ×100%,公式中s为样本标准差,X为样本均数。

三、标准差的应用表示观察值的变异程度(或离散程度)。

在两组(或几组)资料均数相近、度量单位相同的条件下,标准差大,表示观察值的变异度大,即各观察值离均数较远,均数的代表性较差;反之,表示各观察值多集中在均数周围,均数的代表性较好。

(常考!)四、医学参考值的计算方法,单双侧问题,医学为95%医学参考值是指正常人体或动物体的各种生理常数,由于存在变异,各种数据不仅因人而异,而且同一个人还会随机体内外环境的改变而改变,因而需要确定其波动的范围,即正常值范围。

医学参考值的计算公式:①正态分布资料95%医学参考值:X±1.96s(双侧);X+1.645s或X-1.645s(单侧),s为标准差。

②百分位数法P2.5和P97.5(双侧);P5或P95(单侧)。

第三节数值变量数据的统计推断(重要考点)一、标准误,标准误与标准差和样本含量的关系标准差和标准误的区别。

样本标准误等于样本标准差除以根号下样本含量。

标准误与标准差成正比;与样本含量的平方根成反比。

因此。

为减少抽样误差,应尽可能保证足够大的样本含量。

样本标准差与样本标准误是既有联系又有区别的两个统计量,二者的联系是公式:二者的区别在于:样本标准差是反映样本中各观测值X1,X2,……,X n变异程度大小的一个指标,它的大小说明了对该样本代表性的强弱。

样本标准误是样本平均数1,2,……的标准差,它是抽样误差的估计值,其大小说明了样本间变异程度的大小及精确性的高低。

(掌握!)二、t分布和标准正态u分布关系均以0为中心左右两侧完全对称的分布,只是t分布曲线顶端较u分布低,两端翘。

(v逐渐增大,t分布逐渐逼近u分布)。

正态分布的特点:①以均数为中心左右两侧完全对称分布;②两个参数,均数u(位置参数)和s(变异参数);③对称均数的两侧面积相等。

三、总体均数的估计样本统计量推算总体均数有两个重要方面:区间估计和假设检验。

样本均数估计总体均数称点估计。

总体均数区间估计(可信区间)的概念:按一定的可信度估计未知总体均数所在范围。

其统计上习惯用95%(或99%)可信区间表示总体均数μ有95%(或99%)的可能在某一范围。

可信区间的两个要素,一为准确度,反映在可信度1-α的大小,即区间包含总体均数的概率大小,当然愈接近1愈好;二是精度,反映在区间的长度,当然长度愈小愈好。

在样本例数确定的情况下,二者是矛盾的,需要兼顾。

总体均数可信区间的计算方法:1.当n小按t分布的原理用式计算可信区间为:X±tα/2,v S X2.当n足够大因n足够大时,t分布逼近μ分布,按正态分布原理。

用式估计可信区间为:X±μα/2SX可信区间与医学参考值范围的区别:二者的意义和算法不同。

四、假设检验的步骤1.建立假设:H0(无效,两样本代表的总体均数相同),H1(备择,两样本来自不同总体),当拒绝H0就接受H1,不拒绝就不接受H1。

2.确定显著性水平:区分大概率和小概率事件的标准,通常取α=0.05。

3.计算统计量:根据资料类型和分析目的选择适当的公式计算。

4.确定概率P值:将计算得到的t值或u值查界值表得到P值和α值比较。

5.做出推断结论。

五、两均数的假设检验(常考!)1.样本均数与总体均数比较 u 检验和t 检验用于样本均数与总体均数的比较。

理论上要求样本来自正态分布总体实际中,只要样本例数n 较大,或n 小但总体标准差σ已知,就选用u 检验。

n 较小且σ未知时,用于t 检验。

两样本均数比较时还要求两总体方差等。

X S t μ-=X以算得的统计量t ,按表所示关系作判断。

2.配对资料的比较 在医学研究中,常用配对设计。

配对设计主要有四种情况:①同一受试对象处理前后的数据;②同一受试对象两个部位的数据;③同一样品用两种方法(仪器等)检验的结果;④配对的两个受试对象分别接受两种处理后的数据。

情况①的目的是推断其处理有无作用;情况②、③、④的目的是推断两种处理(方法等)的结果有无差别。

nS S t d d /d 0d =-= v =对子数-1;如处理前后或两法无差别,则其差数d 的总体均数应为0,可看作样本均数d 和总体均数0的比较。

d 为差数的均数;d S 为差数均数的标准误,S d 为差数的标准差;n为对子数。

因计算的统计量是t,按表所示关系作判断。

3.完全随机设计的两样本均数的比较 亦称成组比较。

目的是推断两样本各自代表的总体均数μ1与μ2是否相等。

根据样本含量n的大小,分u 检验与t 检验。

t 检验用于两样本含量n 1、n 2较小时,且要求两总体方差相等,即方差齐。

若被检验的两样本方差相差显著则需用t ′检验。

u 检验:两样本量足够大,n>50。

2X X X X 211S t --= 21X X S -=)(21212C n n n n S + 2-1)-(1)-(211221212C n n n S n S S ++= v =(n 1-1)+(n 2-1)=n1+n 2-2 式中21X X S -,为两样本均数之差的标准误,Sc2为合并估计方差(co mbi ned estimatevariance )。

算得的统计量为t,按表所示关系做出判断。

4.Ⅰ型错误和Ⅱ型错误 弃真,拒绝正确的H0为Ⅰ型错误α表示,若显著性水平α定为0.05,则犯Ⅰ型错误的概率0.05;接受错误的H0为Ⅱ型错误,概率用β表示,β值的大小很难确切估计。

当样本含量一定时,两者反比,增大n,当α一定时,可减少β。

1-β称为检验效能或把握度,其统计意义是若两总体确有差别,按α水准能检出其差别的能力。

客观实际 拒绝H 0 ﻩﻩ不拒绝H 0H0成立 ﻩﻩⅠ型错误(α) ﻩﻩ推断正确1-αH0不成立 ﻩ推断正确(1-β) Ⅱ型错误(β)5.假设检验注意事项 保证组间可比性;根据研究目的、资料类型和设计类型选用适当的检验方法,熟悉各种检验方法的应用条件;“显著与否”是统计学术语,为“有无统计学意义”,不能理解为“差别是不是大”;结论不能绝对化。

第四节 分类变量资料的统计描述(一般考点)相对数是两个有关联事物数据之比。

常用的相对数指标有构成比、率、相对比等。

一、构成比表示事物内部各个组成部分所占的比重,通常以100为例基数,故又称为百分比。

其公式如下: 构成比=个体数总和事物内部各构成部分的的个体数事物内部某一构成部分×100% 该式可用符号表达如下: 构成比=⋯⋯+++C B A A ×100% 构成比有两个特点:(1)各构成部分的相对数之和为100%.(2)某一部分所占比重增大,其他部分会相应地减少。

二、率用以说明某种现象发生的频率或强度,故又称频率指标,以100,1000,10000或100000为比例基数(K)均可,原则上以结果至少保留一位整数为宜,其计算公式为:率和构成比不同之处:率的大小仅取决于某种现象的发生数和可能发生该现象的总数,不受其他指标的影响,并且各率之和一般不为1。

率=可能发生某现象的总数某现象实际发生例数×K 该式亦可用符号表达如下阳性率=)()()(-+++A A A ×K(若算阴性率则分子为A (-))式中A (+)为阳性人数,A(-)为阴性人数。

三、相对比表示有关事物指标之对比,常以百分数和倍数表示,其公式为:相对比:甲指标/乙指标(或×100%)或用符号表示为:A/B ×K四、注意事项①构成比和率的不同,不能以比代率;②计算相对数时,观察例数不宜过小;③率的比较注意可比性,特别是混杂因素的问题,有的话,可用标准化法和分层分析消除;④观察单位不同的几个率的平均率不等于几个率的算术均数;⑤样本率或构成比的比较应做假设检验。

第五节 分类变量资料的统计推断(非常重要)一、率的抽样误差用抽样方法进行研究时,必然存在抽样误差。

率的抽样误差大小可用率的标准误来表示,计算公式如下:σp=nπ)π(1+ 式中:σp 为率的标准误,π为总体阳性率,n为样本含量。

因为实际工作中很难知道总体阳性率π,故一般采用样本率P 来代替,而上式就变为S p=nP)P(1- 二、总体率的可信区间由于样本率与总体率之间存在着抽样误差,所以也需根据样本率来推算总体率所在的范围,根据样本含量n 和样本率P 的大小不同,分别采用下列两种方法:(一)正态近似法(常考!)当样本含量n 足够大,且样本率P 和(1-P)均不太小,如n P或n(1-P )均≥5时,样本率的分布近似正态分布。

则总体率的可信区间可由下列公式估计:总体率(π)的95%可信区间:p ±1.96s p总体率(π)的99%可信区间:p ±2.58s p(二)查表法 当样本含量n 较小,如n ≤50,特别是P 接近0或1时,则按二项分布原理确定总体率的可信区间,其计算较繁,读者可根据样本含量n 和阳性数x 参照专用统计学介绍的二项分布中95%可信限表。

相关文档
最新文档