生物医用高分子抗凝血材料

合集下载

生物医用抗凝性材料的研究进展

生物医用抗凝性材料的研究进展

生物医用抗凝性材料的研究进展摘要:在我国,重症肝病、肾功能不全患者都要经历接受血浆置换或血液滤过等治疗手段,血液需由体内引出经过置换装置或透析膜才能达到疗效。

目前还没有成功研制出抗凝血透析膜,但是血液在体外接触透析膜会诱发凝血机制导致治疗无法进行,临床医师会根据患者情况输注抗凝血药物,重症肝病及肾功能不全患者自身抗凝血功能已经很差,如果继续输注抗凝药物,可能会导致患者因出血而死亡。

因此,临床对抗凝血性的生物医用透析膜的需求十分紧迫,结合多年来抗凝血材料的研究发展,这一问题将会最终得到解决,为提高患者生命质量和保障患者健康发挥重大作用。

本文主要分析生物医用抗凝性材料的研究进展。

关键词:生物医用材料;血液相容性;凝血机制;抗凝血引言生物医用材料是一种与生物系统接触,对生物体病损组织、器官进行诊断,治疗、修复及诱导再生或增强其功能的高新技术材料。

生物医用材料可用于治疗心血管疾病患者,为其提供人工心脏或人工血管;还可用于控制药物和生物活性物质的释放;也能用于骨和牙齿等硬组织的更替和修复。

按照材料功能性,生物医用材料分为可降解材料、组织工程材料与人工器官、齿科材料、控释材料、仿生智能材料、临床诊断及生物传感器等。

最初生物医用材料的研究需满足治疗疾病的目的,而现在着重于改善材料生物相容性,从而减少并发症的发生,提高患者生命质量及医院医疗水平。

尽管功能性机械心脏瓣膜、血管支架、血液充氧器和血泵已经在临床上被广泛使用,但合成材料与血液之间产生的影响,如破坏红细胞、血小板,吸附血液中的蛋白和电解质,造成血栓形成和血栓栓塞事件,成为临床需要解决的难点。

1、与血液接触的生物医用材料的安全性能要点在临床应用和生物技术中,多数生物医用材料会涉及到与血液接触,如冠状动脉支架、生物心脏瓣膜、血液透析器、人工肺、导管等。

这些材料与血液接触后可能会产生一系列安全问题,例如诱导血栓形成,引起感染或其他并发症。

因此,涉及与血液接触的生物医用材料,需要重点关注材料的安全性能,主要包括抗菌性能、生物相容性、血液相容性等。

生物医用高分子材料

生物医用高分子材料

生物医用高分子材料————————————————————————————————作者:————————————————————————————————日期:生物医用高分子材料080804106 黄涛摘要:: 阐述了生物医用高分子材料的应用研究与发展状况,综述了生物医用高分子材料的分类、特性及研究成果,展望了未来的生物医用高分子材料的发展趋势。

关键词: 生物医用高分子材料分类进展综述发展趋势1 概述在功能高分子材料领域,生物医用高分子材料可谓异军突起,目前已成为发展最快的一个重要分支。

生物医用高分子材料指用于生理系统疾病的诊断、治疗、修复或替换生物体组织或器官,增进或恢复其功能的高分子材料。

研究领域涉及材料学、化学、医学、生命科学。

虽已有四十多年的研究历史,但蓬勃发展始于20世纪70年代。

简单地说,所谓生物医用高分子材料( Poly-mericbio - materials)是指在生理环境中使用的高分子材料,它们中有的可以全部植入体内,有的也可以部分植入体内而部分暴露在体外,或置于体外而通过某种方式作用于体内组织。

近十年来,由于生物医学工程、材料科学和生物技术的发展,医用高分子材料及其制品正以其特有的生物相容性、无毒性等优异性能而获得越来越多的医学临床应用。

2生物医用高分子材料分类生物医用高分子材料主要有天然生物材料和合成高分子材料。

2 . 1天然生物材料天然生物材料是并得到迅速推广应用的一类天然生物材料。

由 家蚕丝脱胶后可得到纯丝素蛋白成分,丝素蛋白是 一种优质的生物医学材料 ,具有无刺良好的2 . 2 合成高分子材料 合成高分子材料因与人体器官组织的天然高分子有着极其相似的化学结构和物理性能 ,因而可以 植入人体 ,部分或全部取代有关器官。

因此 ,在现代 医学领域得到了最为广泛的应用 ,成为现代医学的重要支柱材料。

与天然生物材料相比 ,合成高分 子材料具有优异的生物相容性 ,不会因与体液接触 而产生排斥和致癌作用 ,在人体环境中的老化不明 显。

PMAE抗凝血材料的研究进展与应用

PMAE抗凝血材料的研究进展与应用

PMAE抗凝血材料的研究进展与应用【摘要】聚甲基聚乙二醇丙烯酸酯(PMEA)类抗凝血涂层是一类重要的生物相容性材料。

因其结构中的PEG长链结构可以减少了蛋白质变性及血小板黏附,最终减缓了血栓的形成。

近年来,大量的动物实验和临床试验证明其有很好的临床效果。

而且在国外此类产品已经逐渐普及,但在国内尚很少使用。

【关键词】聚甲基聚乙二醇丙烯酸酯;抗凝血涂层;生物相容性0前言对抗凝血材料的研究可以追溯到上世纪40年代。

由于心血管手术的发展,需要大量与血液接触装置如:体外装置、血管移植物以及导管等。

但随后发现,这些高分子材料植入体内与血液接触后,会引起蛋白质分子在材料表面的吸附,进而诱发血液的凝固以致形成血栓[4、5] 。

因此,血液接触的生物医用材料表面的抗凝血处理就成为了一个研究热点。

要解决血液相容性问题首先要了解材料的凝血过程及机理。

1血液在材料表面的凝血机理当普通的生物医用材料与血液接触时,在1到2分钟内就会在材料表面产生凝血现象。

一般认为:血液的凝血分为两个过程。

[1-3]首先,血浆在几秒钟内蛋白吸附在材料表面,形成厚度大约20nm的蛋白质吸附层。

这一过程对血栓的形成起重要作用,而且与材料的表面性质密切相关。

其次,吸附在材料表面的蛋白质变性,在Ca2+存在的条件下,将引起血小板的粘附、聚集、释放反应,结果导致血小板血栓的形成。

与此同时,血液中的凝血酶原通过级联反应的方式被快速激活,生成凝血酶。

凝血酶催化可溶性的纤维蛋白原转化为不溶的纤维蛋白。

纤维蛋白自发地聚合形成纤维网,加上被吸附积淀下来的血小板,使血液的流动性下降,最后凝结成块状物即形成血栓。

在形成血栓的整个过程中,蛋白质的吸附和血小板的粘附、聚集及释放反应还有促凝酶的产生,协同作用,相互促进,不断加速血栓的形成。

因此其中最核心的过程是蛋白质吸附层的存在导致血小板粘附而出现的凝血[3-9]。

2PMEA结构与抗凝血性能的关系聚甲基聚乙二醇丙烯酸酯(PMEA)类抗凝血涂层是聚2-甲氧基丙烯酯和其他丙烯酸酯类的共聚而成的涂层,具有良好生物相容性、机械强度和加工成型性能。

生物医用高分子材料

生物医用高分子材料

胶原可以用于制造止血海绵、创伤辅料、人工 皮肤、手术缝合线、组织工程基质等。胶原在应用
时必须交联,以控制其物理性质和生物可吸收性。
戊二醛和环氧化合物是常用的交联剂。残留的戊二
醛会引起生理毒性反应,因此必须注意使交联反应
完全。胶原交联以后,酶降解速度显著下降。
6.3.2.2 甲壳素与壳聚糖
甲壳素是由β-(1, 4)-2-乙酰氨基-2- 脱氧-D-葡萄糖(N-乙酰-D-葡萄糖胺)组成 的线性多糖。昆虫壳皮、虾蟹壳中均含有丰富的甲
Me SiO Ph
Ph SiO Ph
CH3 SiO H
CH2CH2CF3 SiO Me
CH2CH2 SiO Me
CN
聚硅氧烷制备

通过烷基氯硅烷水解缩聚 RnSiXn-1
R: -CH3 , -C6H5, -CH=CH2
X: -Cl, -OCH3, -OCOCH3

环状单体通过阳离子或阴离子引发开环聚合 二甲基硅氧烷环状单体开环聚合
二:生物医用高分子的范畴
用于医疗目的:塑料针筒,合成纤维,纱布 和绷带。
塑料针筒
纱布
绷带
生物医用材料:药物释放体系,医用粘合剂, 固体化酶,隐形眼镜等。
隐形眼镜
固体化酶
三:生物医用高分子的要求
生物稳定性 物理和力学稳定性 易于加工成型 材料易得价格适当 便于消毒灭菌
无毒(化学惰性) 无热原反应 不致癌 不致畸 不引起过敏反应或干扰 机体的免疫机理 不破坏邻近组织,不发 生表面钙化沉积 血液相容性
表面的亲水性及自由能对血液成分的吸附,变性 等有密切联系。提高材料表面的亲水性,使表面 自由能降低到接近血管内膜的表面自由能值可取 得抗血栓性能。 具体操作中,可以通过在材料表面接枝亲水性强 的化合物来实现。EG:聚环氧乙烷(PEO)。 CH2—CH2 O 环氧乙烷 TURN BACK

生物医用高分子功能材料

生物医用高分子功能材料

题目:生物医用高分子功能材料学院:班级:指导老师:学号:姓名:起讫日期:2013.11.26 ——2013.12.5目录前言 (1)一、生物医用高分子功能材料的概念及其发展简史 (1)二、生物医用高分子功能材料在我国的市场需求 (3)三、生物医用高分子的分类 (3)(一)按材料的来源分类 (3)(二)按材料与活体组织的相互作用关系分类 (4)(三)按生物医学用途分类 (4)(四)按与肌体组织接触的关系分类 (4)四、对医用高分子材料的基本要求 (4)五、生物医用高分子功能材料的应用 (5)(一)与血液接触的高分子材料 (5)(二)组织工程用高分子材料 (5)(三)药用高分子材料 (5)(四)医药包装用高分子材料 (6)(五)眼科用高分子材料 (6)(六)医用粘合剂与缝合线 (6)六、高分子材料的生物组织相容性 (7)七、高分子材料的血液相容性 (8)(一)高分子材料的凝血作用 (8)(二)血液相容性高分于材料的制取 (9)八、几种重要的生物高分子材料 (10)(一)生物可降解高分子材料 (11)(二)生物可降解天然高分子材料 (12)(三)合成可降解高分子材料 (14)(四)非生物降解医用高分子 (18)九、生物医用高分子功能材料的展望 (18)十、生物医用高分子功能材料的研究和发展方向 (18)参考文献 (19)生物医用高分子功能材料前言随着高分子材料在社会的各个领域的广泛应用,尤其是在航天工程、医学等领域的应用。

功能高分子材料一般指具有传递、转换或贮存物质、能量和信息作用的高分子及其复合材料,或具体地指在原有力学性能的基础上,还具有化学反应活性、光敏性、导电性、催化性、生物相容性、药理性、选择分离性、能量转换性、磁性等功能的高分子及其复合材料。

医用高分子材料是用以制造人体内脏、体外器官、药物剂型及医疗器械的聚合物材料。

对医用高分子材料的目前需求作了简要分析,介绍了医用高分子材料的主要类别、用途及其特殊要求,并浅谈了医用高分子材料的发展及展望。

生物医用高分子抗凝血材料

生物医用高分子抗凝血材料

生物医用高分子材料的应用领域
生物医用高分子材料在医疗器械、人工器官、组织工程、药物传递系统等领域具 有广泛的应用。
医疗器械如导管、支架等,人工器官如人工心脏瓣膜、人工关节等,组织工程如 组织工程支架、细胞培养基质等,药物传递系统如药物载体、控释系统等。
02
抗凝血材料的基本概念
抗凝血材料的定义
抗凝血材料
天然高分子抗凝血材料的研究进展
01
天然高分子抗凝血材料的提取与纯化
研究者们从天然资源中提取和纯化出具有抗凝血性能的高分子材料,如
胶原、明胶、壳聚糖等。这些材料具有良好的生物相容性和止血性能,
可广泛应用于创伤止血、手术缝合线等领域。
02
天然高分子抗凝血材料的改性研究
为了提高天然高分子抗凝血材料的性能,研究者们对其进行改性研究。
02
这些材料需具备良好的生物相容 性、安全性和有效性,同时需满 足特定医疗应用的需求。
生物医用高分子材料的分类
根据材料的性质和应用,生物医用高 分子材料可分为天然和合成两大类。
合成高分子材料如聚乙烯、聚丙烯等, 具有优良的物理和化学性能,广泛应 用于医疗器械和药物传递系统。
天然高分子材料如胶原、明胶等,主 要用于制造人工器官和组织工程支架。
良好的化学稳定性
化学稳定性是指材料在生理环境中能够保持其结构和性质的稳定性。生物医用高分子抗凝血材料需要具备良好的化学稳定性 ,以避免在体内发生降解和变质。
化学稳定性的评价方法包括热重分析、差示扫描量热分析和核磁共振谱等。这些试验能够帮助评估材料的化学稳定性,确保 其安全性和有效性。
无毒、无致敏性、无致癌性
复合抗凝血材料
将天然和合成抗凝血材料 结合在一起,形成具有优 异性能的复合抗凝血材料。

医用生物材料抗凝血性能改善方法探讨

医用生物材料抗凝血性能改善方法探讨

摘要:本文主要介绍了医用高分子材料的凝血现象的原理,并介绍了材料结构的选择与表面修饰处理对医用高分子材料抗凝血性能的提高的研究。

关键词:医用高分子;抗凝血性能;材料结构;表面修饰医用高分子材料(biomedical polymeric materials,polymeric biomaterials),是和医学、生物学发展有关的高分子材料的总称,是以医用为目的,用于和活体组织接触,具有诊断、治疗或替换机体中组织、器官或增进其功能的无生命高分子材料。

随着医用高分子材料的开发研究,从20世纪70年代以来,高分子科学家和医学家积极开展合作研究,医用天然高分子材料(纤维素、明胶、甲壳素等)及医用合成高分子材料(聚乙烯醇、胶原等)越来越多用于外科手术中。

医用高分子材料研发过程中遇到的一个巨大难题是材料的问题——凝血。

1.凝血现象的产生原理凝血现象是血液在高分子材料表面上的凝固是材料与血液相互作用的结果。

当血液在以内皮细胞为内壁的血管中正常流动时,一般不出现凝血现象。

当高分子材料植入体内与血液相接触时,血液的流动状态和血管壁状态都发生了变化,材料被生物体作为异物而识别,二者界面在发生了一系列复杂的相互作用后,在1-2min之内就会在材料表面产生凝血现象,其产生于血浆蛋白质、凝血因子、血小板等多种血液成分有关,主要通过以下两种途径:(l)激活凝血因子(主要是内源性凝血因子),从而实现为蛋白原变成不溶性纤维蛋白,最后形成红血栓。

(2)材料与血液接触,在其表面立即粘附血浆蛋白,进而激活血小板,形成白血栓。

这两个过程的发生都来自吸附在异物表面的血浆蛋白质层的诱发。

现在医学的发展,越来越多的高分子材料用于人工脏器植入人体后,其必然要长时间与体内的血液接触。

因此,医用高分子对血液的相容性是所有性能中最重要的。

高分子材料的血液相容性问题是一个十分活跃的研究课题,但至今尚未制得一种能完全抗血栓的高分子材料。

这一问题的彻底解决,还有待于各国科学家的共同努力2提高医用高分子材料的两条路径一般来说,提高医用高分子材料的抗凝血性,一般从材料的选择和对其表面的处理两部分来研究。

聚氨酯抗凝血材料的研究进展

聚氨酯抗凝血材料的研究进展

聚氨酯抗凝血材料的研究进展摘要:聚氨酯由于其优良的抗凝血性能和良好的物理机械性能而成为目前研究和应用最广的一种生物医用高分子材料。

本文就经典聚氨酯材料、接枝型聚氨酯、离子型聚氨酯及其它具有良好发展前景的聚氨酯抗凝血材料的研究进展作扼要综述[6]。

关键词:抗凝血材料、聚氨酯、聚醚分子量1 引言人类使用天然高分子化合物,如丝、棉、麻、毛、胶、漆……等已有几千年的历史。

古代虽然没有现在化学知识,但许多天然高分子利用过程中都涉及到了化学过程,如大漆、桐油、骨胶、发酵等等[3]。

上百年前,人们已开始利用硫磺与天然橡胶形成弹性体,到了近代,人们开始利用化学知识进行高分子反应,比如,纤维素改性是典型的高分子化学反应,通过它获得了赛璐璐制作的乒乓球、炸药,以其他改性纤维素制作的织物和胶黏剂等,在特殊条件下的选择性高分子化学降解反应使人类得到甲醇、乙醇……在化学的各个领域中,高分子科学是相对年轻的学科。

它的发展,使人类通过合成化学,获得了社会发展必需的且不可替代的高分子,不仅丰富了化学科学,而且为材料科学、生命科学、凝聚态物理和信息科学与技术的发展做出了贡献。

高分子合成化学近年的一些重要进展包括: 可控自由基聚合、树枝状高分子、活性配位聚合、某些芳香化合物可控偶联或缩聚反应、易位( 开环) 聚合、二氧化碳与环氧烷类的交替聚合、点击聚合、动态聚合物等。

我国学者在这些领域都取得重要进展。

生物医用高分子领域是与人类健康与生活质量密切相关的分支学科。

利用合成高分子的特殊性能,研究医用高分子材料的工作已广泛受到重视。

牙科材料是最早研究并获得应用的医用高分子,其难点依然很多,生物相容性与力学性能仍是主要问题,快速光固化高分子单体或预聚物的研究还要求最好能消除聚合收缩,以避免形成缝隙。

从眼科材料来说,用于白内障患者的人工晶体是一种光学性能、生物相容性都很好的高分子材料,最好的是具有形状记忆功能的,只需几毫米的创口; 隐形眼镜也是特殊的合成高分子,至于广泛替换玻璃的树脂镜片,更是视力矫正的首选。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

研发途径
组织工程
组织工程
将自体细胞培养成组织器官,以替代功能丧失的 组织器官。
在一般环境中,孤立的细胞自己不可能形成组织器官,它 们必须依赖骨架作为模板来生长。骨架不仅为细胞繁殖和保持 它们各自功能提供保障,而且引导组织再生,控制组织结构。
常用的组织工程骨架材料有羰基磷灰石、聚乳酸类、聚酸 酐类等以及天然材料如:胶原、藻酸钠、甲壳素、壳聚糖类等
Thanks for listening! 汇报人: 赵新Leabharlann 抗凝血材料23
适合细胞生长的生物材 料的研究不仅对细胞材 料相互作用机制的深入 理解有着积极的科学意 义,而且对于加速组织 相容性和血液相容性材 料临床应用的突破也有 着巨大的价值。
2、根本途径
在材料表面种植、培养 细胞、制备适合细胞生 长的高分子材料是实现 材料良好生物相容性的 根本途径。
9
谢谢聆听!
6
研发途径
使聚合物分子 在氢键、静电 相互作用、疏 水亲脂作用、 范德华力等弱 相互作用下
表面改性
在其他性能都合 适的材料表面上 构建特定的分子 结构
表面接枝 对传统材料表面 化学处理、表面 物理和生物改性
自发地构 筑成具有 特殊结构 和形状的 集合体
自组装 单分子层
表面改性
表面涂层
在生物材料表 面涂覆抗凝血 涂层,使生物 材料表面钝化, 即不让血液与 材料表面直接 接触
生物医用高分子抗凝血材料
Biological medical polymer anti coagulation material 汇报人: 你的名字
目录
研发原因
研发途径
研发价值
1
目录
研发原因
研发途径
研发价值
2
研发原因
抗凝血材料的定义
当异物材料与血液接触时,血浆蛋白就会吸附到材料表面,随 后凝血因子的活化和血小板的粘附激活,最终导致凝血产生。
抗凝血材料是指与血液接触不会导致血液凝固、又可发挥
其性能或功能的一类生物材料。
溶血 现象
不同个体间组织或 器官移植时,供、 受体双方相互接受 的程度
组 织 相 容 性
血 液 相 容 性
形成 血栓
血小板 功能 蛋白质 变性
3
目录
研发原因
研发途径
研发价值
4
研发途径
两大途径
组织工程
表面改性
高分子生物材料的抗凝血性是由其表面与血液接触后所产 生的蛋白质吸附的组成结构所决定的,吸附层的组成和结构 又取决于材料表面的组成、化学结构和形态结构。 5
利用聚合物材料 中已存在的基团 的反应或通过主 链侧基上某些反 应活性高的基团 或原子的反应
直接改性
物理共混
将少量的抗凝血 添加剂与基材进 行共混,就可以 得到性能较好的 抗凝血材料
7
目录
研发原因
研发途径
研发价值
8
研发价值
1
1、研究热潮
3、临床应用
自从上个世纪四十年 代兴起人工器官研究 与发展的热潮以来, 抗凝血材料就一直成 为生物医学材料的研 发中的主要内容之一。
相关文档
最新文档