磁分离技术与应用#(精选.)

合集下载

环境工程污水处理技术分析_10

环境工程污水处理技术分析_10

环境工程污水处理技术分析发布时间:2021-09-17T06:40:23.176Z 来源:《科学与技术》2021年14期第5月作者:张丽[导读] 当前我国环境保护中水污染治理形势较为严峻,需要进一步加强污水治理和再生利用的重要性,针对污水治理中存在的现实问题张丽身份证号12022219761211****摘要:当前我国环境保护中水污染治理形势较为严峻,需要进一步加强污水治理和再生利用的重要性,针对污水治理中存在的现实问题,合理投入使用污水处理技术,提升污水处理效果,相关人员要积极探索污水处理的模式,提高污水处理质量,扩大污水处理转化率与处理量,为城市更加环保节能的生活提供重要的配套技术保障。

基于此,本文主要分析了环境工程污水处理技术。

关键词:环境工程;污水处理;水资源保护中图分类号:X784文献标志码:A引言生活污水和工业污水的排放已经严重污染了人类环境,使可用的水资源日益稀缺。

在环境工程将合理利用和保护自然资源作为研究的重点,环境工程将水污染作为重要的控制内容,通过对污水的处理能够实现对水污染的有效控制,污水处理能够促进环境工程的发展,具有重要的意义。

1城市污水处理在环境保护工程中的作用1.1促进对水环境的保护人们生存的环境中最关键的基础物质就是水资源,近年来工业领域在我国得到了快速发展,并且城市化进程越来越快,严重污染了水环境,并造成了一定的破坏。

通过对污水的有效处理,能够在污水中实现对营养物质的循环利用,实现对水环境的良好保护。

1.2污水处理可以有效避免资源浪费当前我国的水资源非常紧张,很多城市的地下水资源已经降到了警戒线以下,甚至一些城市还因为地下水的过度使用造成地面塌陷等问题。

水资源的循环利用已经成为了直接关系到人类生存的重大环境问题。

污水处理技术可以将人们的生活用水以及部分生产用水进行技术处理,从而实现污水净化再利用,从而有效的避免了资源的浪费[1]。

1.3促进城市的可持续发展环境工程中最为关键的就是对污染源的治理,水环境之污染多数是污水导致的,污水主要来自日常生活和工业生产中。

高梯度磁分离技术在水处理中的应用研究

高梯度磁分离技术在水处理中的应用研究
收 稿 日期 :2 2 0 — 9 01 — 6 1
钢 铁 工 业 废 水 中 由于 具 有 大 量 铁 磁 性 和 顺 磁 性 物 质 ,可
以直接采 用高梯 度磁分 离技术去除。处理流程一般采 用两级
磁 分 离 技 术 , 首 先 去 除磁 性 污 染 物 ,然 后 在 二 级 磁 分 离 中 投
图 1 高 梯 度 磁 分 离 技 术 给 水 处 理 流 程 1 7 年 , 大 利 亚 国 立研 究组 织 开 发 了基 于 磁 种 絮 凝 与 90 澳 磁 场 相 结 合 的给 水 处 理 工 艺 - S r f c 艺 ,通 过 调 节 p iol I o H值 实 现 污 染 物 在 磁 体 表 面 的 吸 附 和 脱 附 , 用 磁场 回 收磁 种 …】 利 。
滤 后 ,F 3 eO 颗粒 的 去 除率 可 达 9 % 。 9 餐 饮 费 水 一 般都 属 于 高 浓 度 有机 废 水 ,有 机 物 和 悬 浮 物 含 量 高 ,COD 值 高 ,易 腐败 , 使 水 体 富 营 养 化 ,对 环 境 的 能 污 染 比 较 严 重 。 磁 粉 类磁 种 ( 此 絮 凝 剂 ) 具 有 良好 的 吸 附 或 性 能 ,可 有 效 去 除污 染 物 ,并 在 高 梯 度 磁 场 的作 用下 从 水 中 得 到 更 高效 的去 处 。 朱 又 春 等 『】 用磁 粉 搅 拌 混 合 / 分 离 工 艺 流 程 处 理 餐 2采 磁 厅 厨 房含 油废 水 ,磁 粉 加 入 量 为 2 mg L,搅 拌 混合 时 间 为 / 5 2 ̄0 i 0 3 m n,磁 分 离 时 间为 3 m i 0 n,磁 分 离 法 对 油 和 C OD 的 去 除 率 分 别达 到 8 %和 7 % 以上 ,处 理 效 果 明显 优于 二 5 5 级 隔 油 池 或 其他 处理 方法 。 孙 鸿 燕 等 [_ 用 由 P S A 、磁 粉 复 合 而 成 的磁 絮 凝 2采 5 F 、P M 剂 处 理 高 浓 度 餐 饮 废 水 ,研 究 结 果 表 明 ,在 C OD 为 4 3 0 50 0 g L 的餐 饮 废 水 中 ,P S P ,0  ̄ ,0 m / F / AM 复 合 磁 絮 凝 剂 的性 能 明 显 高 于 P S P F / AM 复 合 絮 凝 剂 ,磁 絮 凝 不 但 能 提 高 絮 凝 效 果 ,缩 短 絮凝 与 沉 降 时 间 ,而 且能 使 絮 体 ( 泥 ) 污 体积减少约 1 2 /。 张 凤 娥 等 l 将 经 过 改 性 处 理 的廉 价 磁 粉 置 于 反 应 装 置 中 2 剐

磁分离技术原理及应用

磁分离技术原理及应用

磁分离技术原理及应用磁分离技术是一种利用物料的磁性差异进行分离和提取的物理分离技术。

其原理是根据物料在磁场中的磁化程度及磁性差异,利用磁力产生的作用力将磁性物料与非磁性物料分离开来。

磁分离技术广泛应用于矿石提炼、垃圾分类、废弃物处理、环境污染治理等领域。

磁分离技术的原理可以归结为两大类:高强度磁分离和低强度磁分离。

高强度磁分离利用强磁场作用下的磁力将磁性物料分离出来。

磁性物料受到磁场作用后,其内部的磁偶极子将重新组合,使得物料本身具有磁性,从而受到磁力的作用,沿磁力线的方向运动。

磁性物料在磁力作用下迅速沉积在磁体表面形成磁层,而非磁性物料则被抛离,从而实现物料的分离。

低强度磁分离利用磁性和非磁性物料在磁场下的磁化差异分离。

磁性物料在磁场中会形成磁矩,而非磁性物料则没有磁矩。

当物料进入磁场后,磁性物料会受到磁力的作用向磁场中心移动,而非磁性物料则受到剩余磁场的作用向外部移动,从而实现物料的分离。

磁分离技术具有以下几个主要的应用领域:1. 矿石提炼:磁分离技术广泛应用于矿石中铁、锰、钴、镍等磁性金属的提炼过程中。

通过磁性分离,可以将矿石中的有用金属与非磁性杂质进行有效分离,提高资源利用率。

2. 垃圾分类:磁分离技术在垃圾处理中可以将可燃垃圾与不可燃垃圾进行分离。

可燃垃圾中常含有大量不锈钢、铁铝合金等磁性物质,通过磁分离,可以将这些磁性物质分离出来,提高可燃垃圾的再利用价值。

3. 废弃物处理:磁分离技术在废弃物处理中可以实现有害物质的分离。

例如,在废弃电池中,通过磁性分离,可以将铁、锌等具有较高化学活性的有害物质与废旧电池的其他成分分离开来,便于进一步处理和回收利用。

4. 环境污染治理:磁分离技术在环境污染治理中可以将含有重金属等有害物质的废水进行分离。

通过将含有重金属离子的废水通过磁场处理,重金属离子会与磁性材料发生反应形成磁性沉淀物,从而实现废水中有害物质的分离和治理。

总之,磁分离技术是一种利用物料磁性差异进行分离和提取的物理分离技术。

超磁分离技术

超磁分离技术

超磁分离技术引言超磁分离技术是一种利用磁性材料和磁场来分离和提取目标物质的高效方法。

它在各个领域都具有广泛的应用,包括医学、环境工程、化学工程和生物技术等。

本文将介绍超磁分离技术的原理、应用和发展前景。

一、原理超磁分离技术的原理基于磁性材料的磁性特性和磁场的作用。

首先,选择具有高饱和磁化强度和高矫顽力的磁性材料,如铁磁材料、永磁材料或磁性纳米粒子。

然后,将这些磁性材料加工成合适的形状,如微球、纳米粒子或磁性珠子。

最后,利用外加磁场的作用,使目标物质与磁性材料发生相互作用,从而实现目标物质的分离和提取。

超磁分离技术的核心是控制磁性材料的磁场梯度和磁力大小。

通过调节外加磁场的强度和方向,可以实现对目标物质的选择性吸附和释放。

当目标物质在磁性材料的作用下被吸附时,可以通过改变磁场或磁性材料的形状来实现目标物质的释放。

这种基于磁性材料和磁场的相互作用的分离和提取方法具有高效、高选择性和易于操作的特点。

二、应用超磁分离技术在医学、环境工程、化学工程和生物技术等领域都有广泛的应用。

1. 医学领域超磁分离技术在医学领域的应用主要包括生物分子分离和靶向药物输送。

通过将磁性纳米粒子与特定的抗体、蛋白质或药物结合,可以实现对生物分子的选择性吸附和分离。

超磁分离技术可以用于体液分析、肿瘤标志物检测和药物输送等方面,具有快速、灵敏和可靠的优点。

2. 环境工程领域超磁分离技术在环境工程领域的应用主要集中在水处理和废物处理方面。

通过利用磁性材料对水中的污染物进行吸附和分离,可以实现高效、低成本和环境友好的水处理方法。

此外,超磁分离技术还可以用于废物处理和资源回收,如固体废物中有价值金属的提取和废水中有机物的去除等。

3. 化学工程领域超磁分离技术在化学工程领域的应用主要包括催化剂的分离和固定、分子分离和晶体纯化等。

通过利用磁性材料对催化剂进行吸附和分离,可以简化催化剂的回收和再利用过程,提高催化剂的利用率和反应效率。

此外,超磁分离技术还可以用于分离和提纯有机化合物、提取生物活性物质和分离固体混合物等。

免疫磁珠

免疫磁珠

三、免疫磁性微球的应用
1接从细胞混合液中分离出靶细胞的方
法,称为阳性分离;用免疫磁珠去除无关细胞,使靶细胞得以纯化的方法称为阴
性分离。免疫磁珠技术可用来分离人类各种细胞如红细胞、外周血嗜酸/碱性粒细 胞,神经干细胞、造血细胞、T淋巴细胞、γδT淋巴细胞,人类关节滑膜细胞,树 突状细胞,内皮细胞、及多种肿瘤细胞等。 2、体外细胞扩增 树突状细胞(Dendriticcells,DC)、造血干、祖细胞等细胞在科研及临床上都具 有巨大的应用价值,但是在体内含量较少而且分布广泛,难以获得大量高纯度的 细胞,限制了该领域的发展。体外扩增辅以免疫磁珠技术有望解决这一难题。在 这一过程中, 用免疫磁性微球分离纯化出待扩增的细胞, 用特定的因子组合培 养,许多研究者用这样的方法寻找扩增的最佳细胞因子组合和移植的最佳时机。
• 前言 • 免疫磁珠分离技术介绍 • 免疫磁分离技术的应用
一、前言
• 免疫磁珠分离技术(Immunomagnetic
beads sep—aration techniques,IMB) 是 将免疫学反应的高度特异性与磁珠特有的 磁响应性相结合的一种新的免疫学技术; 是一种特异性强、灵质纯化敏度高的免疫 学检测方法和抗原纯化手段。是近年来国 内外研究较多的一种新的免疫学技术。 • 目前该项技术在细胞分离、蛋白、免疫学 及微生物学检测等方面均取得了较大的进 展,是目前最有推广价值的技术之一。
二、免疫磁珠分离技术 1、免疫磁珠分离技术原理 利用人工合成的内含铁成分,可被磁铁磁力 所吸引,外有功能基团,可结合活性蛋白 质(抗体)的磁珠,作为抗体的载体。当磁珠 上的抗体与相应的微生物或特异性抗原物 质结合后,则形成抗原-抗体-磁珠免疫复合 物,这种复合物具有较高的磁响应性,在 磁铁磁力的作用下定向移动,使复合物与 其他物质分离,而达到分离、浓缩、纯化 微生物或特异性抗原物质的目的。

14类工业废水的9种常用处理技术

14类工业废水的9种常用处理技术

14类工业废水的9种常用处理技术一、工业废水处理技术1、膜技术膜分离法常用的有微滤、纳滤、超滤和反渗透等技术。

由于膜技术在处理过程中不引入其他杂质,可以实现大分子和小分子物质的分离,因此常用于各种大分子原料的回收,如利用超滤技术回收印染废水的聚乙烯醇浆料等。

2、铁炭微电解处理技术铁炭微电解法是利用Fe/C原电池反应原理对废水进行处理的良好工艺,又称内电解法、铁屑过滤法等。

铁炭微电解法是电化学的氧化还原、电化学电对对絮体的电富集作用、以及电化学反应产物的凝聚、新生絮体的吸附和床层过滤等作用的综合效应,其中主要是氧化还原和电附集及凝聚作用。

3、臭氧氧化臭氧是一种强氧化剂,与还原态污染物反应时速度快,使用方便,不产生二次污染,可用于污水的消毒、除色、除臭、去除有机物和降低COD等。

4、磁分离技术磁分离技术是近年来发展的一种新型的利用废水中杂质颗粒的磁性进行分离的水处理技术。

对于水中非磁性或弱磁性的颗粒,利用磁性接种技术可使它们具有磁性。

磁分离技术应用于废水处理有三种方法:直接磁分离法、间接磁分离法和微生物—磁分离法。

5、SCWO(超临界水氧化)技术SCWO是以超临界水为介质,均相氧化分解有机物。

可以在短时间内将有机污染物分解为CO2、H2O等无机小分子,而硫、磷和氮原子分别转化成硫酸盐、磷酸盐、硝酸根和亚硝酸根离子或氮气。

美国把SCWO法列为能源与环境领域最有前途的废物处理技术。

6、Fenton及类Fenton氧化法典型的Fenton试剂是由Fe2催化H2O2分解产生-OH,从而引发有机物的氧化降解反应。

由于Fenton法处理废水所需时间长,使用的试剂量多,而且过量的Fe2将增大处理后废水中的COD并产生二次污染。

Fenton法反应条件温和,设备较为简单,适用范围广;既可作为单独处理技术应用,也可与其他方法联用,如与混凝沉淀法、活性碳法、生物处理法等联用,作为难降解有机废水的预处理或深度处理方法。

7、电化学(催化)氧化电化学(催化)氧化技术通过阳极反应直接降解有机物,或通过阳极反应产生羟基自由基(-OH)、臭氧等氧化剂降解有机物。

18种常用工业废水处理方法

18种常用工业废水处理方法

18种常用工业废水处理方法1、多效蒸发结晶技术在工业含盐废水的处理过程中,工业含盐废水进入低温多效浓缩结晶装置,经过3—6效蒸发冷凝的浓缩结晶过程,分离为淡化水(淡化水可能含有微量低沸点有机物)和浓缩晶浆废液;无机盐和部分有机物可结晶分离出来,焚烧处理为无机盐废渣;不能结晶的有机物浓缩废液可采用滚筒蒸发器,形成固态废渣,焚烧处理;淡化水可返回生产系统替代软化水加以利用。

低温多效蒸发浓缩结晶系统不仅可以应用于化工生产的浓缩过程和结晶过程,还可以应用于工业含盐废水的蒸发浓缩结晶处理过程中。

多效蒸发流程只在第一效使用了蒸汽,故节约了蒸汽的需要量,有效地利用了二次蒸汽中的热量,降低了生产成本,提高了经济效益。

2、生物法生物处理是目前废水处理最常用的方法之一,它具有应用范围广、适应性强、经济高效无害等特点。

一般情况下,常用的生物法有传统活性污泥法和生物接触氧化法两种。

(1)传统活性污泥法活性污泥法是一种污水的好氧生物处理法,目前是处理城市污水最广泛使用的方法。

它能从污水中去除溶解性的和胶体状态的可生化有机物以及能被活性污泥吸附的悬浮固体和其他一些物质,同时也能去除一部分磷素和氮素。

活性污泥法去除率高,适用于处理水质要求高而水质比较稳定的废水。

但是不善于适应水质的变化,供氧不能得到充分利用;空气供应沿池水平均分布,造成前段氧量不足后段氧量过剩;曝气结构庞大,占地面积大。

(2)生物接触氧化法生物接触氧化法是主要利用附着生长于某些固体物表面的微生物(即生物膜)进行有机污水处理的方法。

生物接触氧化法是一种浸没生物膜法,是生物滤池和曝气池的综合体,兼有活性污泥法和生物膜法的特点,在水处理过程中有很好的效果。

生物接触氧化法有较高的容积负荷,对冲击负荷有较强的适应能力;污泥生成量少,运行管理简便,操作简单,耗能低,经济高效;具有活性污泥法的优点,生物活性高,净化效果好,处理效率高,处理时间短,出水水质好而稳定;能分解其它生物处理难分解的物质,具有脱氧除磷的作用,可作为三级处理技术。

磁珠分离技术

磁珠分离技术

磁珠分离技术摘要:磁珠分离技术是一种分子生物学分离技术, 它利用其表面修饰的磁性颗粒对生物分子或细胞的亲和结合而进行分离, 能对待分离或待检测的靶标进行高效富集, 是一种方便、快速、回收率高、选择性强的方法。

磁珠分离技术在生物学方面的应用始于20世纪70年代后期, 目前已经在分子生物学、细胞学、免疫学、微生物学、生物化学等领域取得一些令人瞩目的研究成果。

基本概念磁珠磁珠是一种通过一定方法将磁性无机粒子与有机高分子结合形成的具有一定磁性及特殊结构的体积在几纳米到几十微米之间的载体微球。

载体微球的核心为金属小颗粒, 常为铁的氧化物或铁的硫化物, 核心外包裹一层高分子材料, 最外层是功能基团, 载体微球表面可根据需要赋予不同的功能基团(如-OH、-COOH、-CHO、-NH2,—SH、—CONO2、—CONH2、—SO3H、—SiH3、—环氧基、—CHCl等),使其表现具有疏水-亲水、非极性-极性、带正电荷-带负电荷等不同物理性质。

同时具有磁响应性,在外磁场作用下具有磁导向性。

由于载体微球表现的物理性质不同, 可结合不同的免疫配基, 如抗体、抗原、DNA、RNA 等。

应用于磁分离技术的磁性载体微球应具备以下特点: 粒径比较小, 比表面积较大, 具有较大的吸附容量; 物理和化学性能稳定, 具有较高的机械强度, 使用寿命长; 具有可活化的反应基团, 以用于亲和配基的固定化; 粒径均一, 能形成单分散体系; 悬浮性好, 便于反应的有效进行。

载体微球有纳米级、微粒级的, 纳米级的载体微球与微粒级的载体微球相比具有以下优点: 尺寸小, 扩散速度快, 悬浮稳定性好; 比表面积大, 偶联容量大; 超顺磁性, 能快速实现磁性粒子的分散与回收。

磁珠的制备方法:共沉淀法、悬浮聚合法、乳液聚合法、分散聚合法、包埋法及原子转移自由基聚合法等。

免疫磁珠免疫磁珠(Immunomagnetic bead, IMB) 简称磁珠,免疫磁珠由载体微球和免疫配基结合而成。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

分离工程期末论文磁分离技术与应用Magnetic separation technology andapplication学院:化学工程学院专业班级:化学工程与工艺化工081学生姓名:樊波学号:050811101 指导教师:戴卫东(副教授)2011年6月磁分离技术1 引言磁化技术是将物质进行磁场处理,并导致物质的宏观性质发生某些变化,从而实现某种工程或工艺目的【1】。

液态物质磁场处理技术的研究工作起始于60年代,近半个世纪来获得飞速发展,给科技进步和社会经济的发展注入了新的活力。

随着强磁场、高梯度磁分离技术的问世,磁分离技术的应用已经从分离强磁性大颗粒到去除弱磁性及反磁性的细小颗粒、从最初的矿物分选、煤脱硫发展到工业水处理、从磁性与非磁性元素的分离发展到抗磁性流体均相混合物组分的分离。

2 正文2.1 磁分离技术研究历史采用超导磁体分离矿石、煤、高岭土等固体物质中磁性杂质在国内外已得到广泛应用,但用于废水分离净化尚少涉及。

主要原因是对于废水中的有机、无机污染物,由于这些污染物本身没有磁性,靠磁场产生的磁吸引力无法分离。

日本大阪大学Nshijima研究组最早开始超导磁分离污水处理研究,并建立了示范装置,用于分离造纸厂污水,分离后污水COD(化学需氧值)可由起始的110mg/L,降到25mg/L,去除率近80%。

他们采用的是预先在污水中添加Fe3O4"磁种子"颗粒和聚氯化铝絮凝剂,絮凝剂将污水中有害物质和Fe3O4磁性颗粒一起絮凝,这样通过超导磁体吸引分离。

尽管分离效果很好,但由于还需加入有机絮凝剂,没有完全摆脱因有机絮凝剂的加入带来的二次污染,此外超导磁体冷却采用的是液氦浸泡冷却,对于我国,氦资源贫乏,这将导致大规模应用推广的限制。

而李来凤的研究却克服了以上问题,采用等离子有机覆膜技术在Fe3O4磁性颗粒表面生长带活性基团的有机薄膜,这层纳米厚度的薄膜可以有效地捕捉污水中的有机物、无机离子,代替了有机絮凝剂的加入,而且由于有机膜与Fe3O4有很强的结合力,使得这种新型复合"磁种子"材料可以重复使用,较单纯的Fe3O4磁种子材料有明显优势【2】。

因此开展新型、高效、低成本超导磁分离工业废水处理技术的研究对我国节能减排具有重要意义,是未来极具潜在应用价值的技术。

2.2 磁分离技术的现状从1993年开始,洛阳石化总厂、洛阳石化工程公司炼制所和中南工业大学合作致力于FCC废催化剂磁分离技术的开发,到1995年底,在洛阳石化总厂建成了我国第一套用于回收利用FCC废催化剂的电磁式高梯度磁分离装置,由于国内无先例可供参考造成新建的磁分离装置存在一些事先没有预计到的技术难题,在通过攻关解决了存在的技术难题并加强内部沟通争取各方面支持后,我们于1999年1~3月份进行了工业应用实验,取得了节约新鲜催化剂20%以上的满意效果。

随后该装置一直在的FCC废催化剂回收利用方面发挥着积极而且重要的作用。

截止目前,共向催化装置提供低磁高活性剂 1200余t,仅节约新鲜催化剂的直接经济效益就达到800多万元[3]。

技术于2001年 4月获得中国石化集团公司科技进步奖三等奖,先后取得两项国家专利,分别是:ZL98 1 10319.7催化裂化废催化剂磁分离机与工艺流程及配套装置和ZL 98 2 21637.8催化裂化废催化剂磁分离装置。

1998年石家庄炼油厂与中科院电工所合作进行了永磁辊式FCC废催化剂磁分离技术研究,但没有达到最终成功。

武汉新通创科技有限公司从1997年开始研制废催化剂磁分离技术,成功地开发出永磁型磁分离装置,于2000年12月至2001年3月在济南炼油厂完成了该技术的工业应用实验[4]。

2.3 磁分离技术分离原理2.3.1催化裂化废催化剂磁分离技术工作原理由于原油性质的变重,为了增加轻质油品的产量,催化裂化工艺装置的数量和加工能力不断增加。

截止1999年底,我国炼油原油一次加工能力达到276 Mt/a,当年实际加工了176 Mt,我国石油、石化两大集团的催化裂化加工能力占原油一次加工能力的34.5%[3]。

催化裂化生产过程中,原料油在与催化剂混合反应时,原料油中所含的金属杂质连同生焦物质在高温条件下沉积在催化剂粒子上。

在再生过程中,催化剂粒子上的焦碳被烧掉,而金属杂质保留了下来,随着催化剂的不断循环使用,金属杂质就在催化剂粒子上积累增加,从而使催化剂的活性和选择性下降,因此为了保持催化剂具有适当的活性和选择性,生产过程中必须不断向装置补充新鲜催化剂并分离出一些已达平衡催化剂。

然而在分离出来的催化剂中含有部分未达平衡的催化剂,此部分催化剂仍然含有比较高的活性与选择性,如果将这些催化剂分离出来并重复使用就可达到节约成本的目的【5】。

实验显示:催化裂化催化剂主要受到铁、镍和钒等金属杂质污染,而这些金属均具有一定的磁性因此那些使用寿命短的催化剂粒子,由于铁、镍和钒杂质含量低,磁性就弱;而那些使用寿命长的催化剂粒子,由于铁、镍和钒杂质含量高,磁性就强。

在一定强度的磁场存在下,可以做到使后者吸着,而前者不被吸着,从而实现两者的分离,这就是磁分离技术的基本原理【6】。

2.3.2 高梯度磁分离工作原理[7]高梯度磁分离器由轭铁、电磁线圈和装填不锈钢毛的分离容器组成。

通电时,电磁线圈产生电磁场,流过分离器的废水中的颗粒物在磁场中受到磁力的作用,被基质──钢毛捕获。

磁力愈强,捕获颗粒物的可能性愈大。

在理论上,颗粒物所受的磁力(Fm)同磁场强度(H)、磁场梯度(dH/dx)和颗粒物的磁化率(x)和体积(V)等呈正相关关系,因此,在磁场强度相同的情况下,高梯度磁分离器的分离能力比常规磁分离器要高,梯度越高,分离能力越强。

所谓磁场梯度是指单位距离内磁场强度的变化。

在一定的磁场强度下,梯度的高低同基质的磁化强度、形状、直径、填装率等有关。

纤维状不锈钢毛基质磁化强度高,锐边多,直径小,填装率低(4~6%),梯度可高达1000高斯/微米,是普通的小铁球、齿板、钢针等基质所不能比拟的。

所以,采用钢毛基质的高梯度磁分离器可以分离一般磁分离器不能分离的磁化率低、体积小的弱磁性细颗粒物。

此外,钢毛基质还具有一定的物理和化学稳定性,矫顽力小,捕集点多,过水性能好,是目前公认的最好基质材料。

2.4 磁分离技术工艺流程2.4.1 电磁式磁分离工艺流程[8]1-催化剂原料2-原料罐3-阀门4-进料控制器5-空气流量计6-压缩风源7-磁分离机8-冷水线9-热水线10-冷却水源11-整流电源12-整流电负极返回13-直流电正极输出14-二次风风斗15-一次风风斗16-给料器17-清洗风风斗18-非磁性剂和风19-磁性剂和风20-非磁性剂罐21-由图1[9]可以看出,装置采用压缩风作为催化剂输送用风和其他工艺用风。

从催化裂化装置卸出的废催化剂运到磁分离装置后,用提升机将其提升到原料罐加料口,经过细筛过滤处理后进入原料罐2。

废催化剂经过阀门3和进料量调节器4,被来自压缩风源6并经空气流量计5控制风量后的压缩风送至磁分离机7的给料器,废催化剂从给料器进入到园环形钢板网位于强磁场区的部分,低活性的高磁性催化剂粒子便被吸着在钢板网上,随着钢板网转动到脱离高磁场区域被来自一次风风斗的压缩风吹离钢板网进入高磁性剂料斗21。

而低磁高活性的催化剂粒子不能被强磁场区的钢板网吸着,直接被输送风吹过钢板网进入低磁性剂料斗20。

为了控制粉尘污染,低磁性剂和高磁性剂料斗上均装有旋风分离器22,从旋风分离器出来的尾风吹入水封除尘器洗去尾风携带的少量粉尘。

分离废催化剂的高强磁场由直流电源11经过磁分离机内部的激磁线圈提供。

给装置提供循环冷却水用于不断除去整流电源和激磁线圈所产生的热量。

低磁高活性剂从罐20卸出送催化装置继续使用,而高磁低活性剂从罐21卸出并运到指定填埋场[10]。

2.4.2 永磁式磁分离工艺流程[11]试验型磁分离机的主要性能。

项目性能指标最大磁场强度/GS 12000最大磁场梯度/GS.cm-1 12000×105动力消耗/kW 1.7处理能力/t.d-1 2~3外型尺寸/mm(长×宽×高) 1140×700×1820总重量/t 0.7该技术于2000年12月至2001年3月在济南炼油厂进行了工业应用实验,实验过程共使用了采用实验室小型永磁型式磁分离机分离出的低磁高活性剂96t,取得了新鲜催化剂使用量下降、轻油收率增加、焦碳和干气产率降低的预期效果。

预计在2002年底,武汉新通创科技有限公司的第一套处理能力为6t/d~9t/d的工业化磁分离装置将在济南炼油厂安装投用。

2.5 磁分离技术在化工领域中的应用【12】2.5.1 乳浊液的分离在磁场作用下, 分离两相乳浊液用带磁性的萃取剂D-2EHPA 和T BP 从水性介质中提取Cu2+ , 试验结果显示, 由于磁场作用, 这两个系统的乳浊液分离比重力场中的分离提高160 倍。

乳化原油经磁化后脱水速度比未磁化原油脱水速度一般可快一倍以上, 脱水效率高出1/ 3~1/ 2。

此外, 用高梯度磁分离技术还可用于反应触媒氧化钴和镍的分离回收, 回收率均达95% 以上。

2.5.2 废水处理[13]日本大阪大学和京都工艺纤维大学共同开发了废纸造纸废水处理装置。

该装置是利用超导磁铁的高磁场、高梯度、高效率来分离造纸厂废水中含有的有机成分和悬浮物质,进行水再利用的装置。

在空气和水等介质中将具有悬浮磁性的微粒子利用磁力分离技术进行磁分离。

对废水中的悬浮物质(SS)和溶解于水的物质赋予磁性(担磁),利用超导磁铁,去除(磁分离技术)废水中的污染物,达到净化废水的目的。

2.5.3 稀土元素的萃取分离[14]磁场处理可以影响组分在萃取相中的分配系数, 如利用三价稀土离子磁矩的差别, 在用有机溶剂萃取稀土离子时, 借助外磁场可提高分离系数, 有利于萃取分离的进行。

例如, 在P350-HNO3 体系中萃取稀土元素时, 若外加( 0. 68~0. 72) T 的磁场, 除Y3+ 的分配比有所降低外,其余三价稀土离子的分配比都有所提高, 这样就使Y3+ 与Tb、Dy 、H0、Er 等的分离系数增大,有利于分离过程的进行。

2.5.4 磁性制氧利用空气中各种元素磁化率的差异, 可实现磁性制氧。

众所周知, 氧是顺磁性物质, 磁化率为正, 而空气中的氮、氢、氩及氦等属抗磁性元素, 磁化率为负。

当具有不同磁化率的气体通过高梯度磁场时, 顺磁性氧被磁化, 继而被吸附到磁场附近, 而其它抗磁性的未被磁化就已随气流离开磁场。

通过一定方式将束缚于磁场附近的氧取出。

利用几组制氧单元的串、并联组合,加以程序控制系统, 就可以连续获得一定产量的富氧气。

相关文档
最新文档