【常考题】八年级数学上期末试题及答案

合集下载

初中八年级数学上册期末考试题及答案【完整】

初中八年级数学上册期末考试题及答案【完整】

初中八年级数学上册期末考试题及答案【完整】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分) 1.如果()P m 3,2m 4++在y 轴上,那么点P 的坐标是( )A .()2,0-B .()0,2-C .()1,0D .()0,12.一次函数24y x =+的图像与y 轴交点的坐标是( )A .(0,-4)B .(0,4)C .(2,0)D .(-2,0)3.在实数|﹣3|,﹣2,0,π中,最小的数是( )A .|﹣3|B .﹣2C .0D .π4.已知-10m 是正整数,则满足条件的最大负整数m 为( )A .-10B .-40C .-90D .-1605.已知一次函数y =kx +b 随着x 的增大而减小,且kb <0,则在直角坐标系内它的大致图象是( )A .B .C .D .6.如图,AB ∥CD ,点E 在线段BC 上,若∠1=40°,∠2=30°,则∠3的度数是( )A .70°B .60°C .55°D .50°4.如图,等边三角形ABC 中,AD ⊥BC ,垂足为D ,点E 在线段AD 上,∠EBC=45°,则∠ACE等于()A.15°B.30°C.45°D.60°8.如图,在平行四边形ABCD中,∠DBC=45°,DE⊥BC于E,BF⊥CD于F,DE,BF相交于H,BF与AD的延长线相交于点G,下面给出四个结论:① ;②∠A=∠BHE;③AB=BH;④△BCF≌△DCE,其中正确的结论BD BE2是()A.①②③B.①②④C.②③④D.①②③④9.如图,过A点的一次函数的图象与正比例函数y=2x的图象相交于点B,则这个一次函数的解析式是()A.y=2x+3 B.y=x﹣3 C.y=2x﹣3 D.y=﹣x+3 10.如图,已知在△ABC,AB=AC.若以点B为圆心,BC长为半径画弧,交腰AC于点E,则下列结论一定正确的是()A.AE=EC B.AE=BE C.∠EBC=∠BAC D.∠EBC=∠ABE二、填空题(本大题共6小题,每小题3分,共18分)1.已知a 、b 满足(a ﹣1)2+2b +=0,则a+b=________.2.若二次根式x 1-有意义,则x 的取值范围是 ▲ .3.因式分解:24x -=__________.4.如图所示,一次函数y=ax+b 的图象与x 轴相交于点(2,0),与y 轴相交于点(0,4),结合图象可知,关于x 的方程ax+b=0的解是________.5.如图,在平面直角坐标系中,△AOB ≌△COD ,则点D 的坐标是__________.6.如图,已知直线y =ax +b 和直线y =kx 交于点P ,则关于x ,y 的二元一次方程组y kx y ax b =⎧⎨=+⎩的解是________.三、解答题(本大题共6小题,共72分)1.解下列不等式,并把解集在数轴上表示出来(1)2562x x -≥- (2)532122x x ++-<2.先化简,再求值:a 3a 2++÷22a 6a 9a -4++-a 1a 3++,其中50+-113⎛⎫ ⎪⎝⎭2(-1).3.已知,a、b互为倒数,c、d互为相反数,求31-+++的值.ab c d4.如图,已知AC平分∠BAD,CE⊥AB于E,CF⊥AD于F,且BC=CD.(1)求证:△BCE≌△DCF;(2)求证:AB+AD=2AE.5.如图,在△ABC中,∠ACB=90°,点D,E分别是边BC,AB上的中点,连接DE并延长至点F,使EF=2DE,连接CE、AF(1)证明:AF=CE;(2)当∠B=30°时,试判断四边形ACEF的形状并说明理由.6.为保护环境,我市公交公司计划购买A型和B型两种环保节能公交车共10辆.若购买A型公交车1辆,B型公交车2辆,共需400万元;若购买A型公交车2辆,B型公交车1辆,共需350万元.(1)求购买A型和B型公交车每辆各需多少万元?(2)预计在某线路上A型和B型公交车每辆年均载客量分别为60万人次和100万人次.若该公司购买A型和B型公交车的总费用不超过1200万元,且确保这10辆公交车在该线路的年均载客总和不少于680万人次,则该公司有哪几种购车方案?(3)在(2)的条件下,哪种购车方案总费用最少?最少总费用是多少万元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、B3、B4、A5、A6、A7、A8、A9、D10、C二、填空题(本大题共6小题,每小题3分,共18分)1、﹣12、x1≥.3、(x+2)(x-2)4、x=25、(-2,0)6、12 xy=⎧⎨=⎩.三、解答题(本大题共6小题,共72分)1、(1)43x≤-,数轴表示见解析;(2)12x>,数轴表示见解析.2、-33a+,;12-.3、0.4、略5、(1)略;(2)四边形ACEF是菱形,理由略.6、(1)购买A型公交车每辆需100万元,购买B型公交车每辆需150万元.(2)三种方案:①购买A型公交车6辆,则B型公交车4辆;②购买A型公交车7辆,则B型公交车3辆;③购买A型公交车8辆,则B型公交车2辆;(3)购买A型公交车8辆,B型公交车2辆费用最少,最少费用为1100万元.。

八年级上学期期末考试数学试卷(附答案解析)

八年级上学期期末考试数学试卷(附答案解析)

八年级上学期期末考试数学试卷(附答案解析)一、选择题1.下列各式中,无论x取何值,分式都有意义的是()A. xx2+2x+4B. 2x22x+1C. x+1x2D. x2x2.已知△ABC(如图1),按图2图3所示的尺规作图痕迹,(不需借助三角形全等)就能推出四边形ABCD是平行四边形的依据是()A. 两组对边分别平行的四边形是平行四边形B. 对角线互相平分的四边形是平行四边形C. 一组对边平行且相等的四边形是平行四边形D. 两组对边分别相等的四边形是平行四边形3.某中学篮球队12名队员的年龄情况如下:年龄(单位:岁)1415161718人数15321则这个队队员年龄的众数和中位数分别是()A. 15,16B. 15,15C. 15,15.5D. 16,154.若关于x的方程x−1x−2=mx−2+2产生增根,则m的值是()A. 2B. 0C. 1D. −15.如图,在正方形ABCD内,以BC为边作等边三角形BCM,连接AM并延长交CD于N,则下列结论不正确的是()A. ∠DAN =15°B. ∠CMN =45°C. AM =MND. MN =NC6. 如图,在△ABC 中,点M 为BC 的中点,AD 为∠BAN 的平分线,且AD ⊥BD ,若AB =6,AC =9,则MD 的长为( )A. 3B. 92C. 5D. 152 7. 如图,△ABC 中,AD 垂直BC 于点D ,且AD =BC ,BC 上方有一动点P 满足S △PBC =12S △ABC ,则点P 到B 、C 两点距离之和最小时,∠PBC 的度数为( )A. 30°B. 45°C. 60°D. 90°8. 如图,AD ⊥BC ,BD =DC ,点C 在AE 的垂直平分线上,则AB ,AC ,CE 的长度关系为( )A. AB >AC =CEB. AB =AC >CEC. AB >AC >CED. AB =AC =CE 9. 若x 2=y 7=z 5,则x+y−z x 的值是( ) A. 1 B. 2C. 3D. 4 10. 如图,在△ABC 中,∠A =40°,D 点是∠ABC 和∠ACB 角平分线的交点,则∠BDC =( )A. 110°B. 100°C. 90°D. 80°11. 如果把分式2xy x+y 中的x 和y 都扩大3倍,那么分式的值( )A. 扩大3倍B. 缩小3倍C. 缩小6倍D. 不变 12. 已知x 为整数,且分式2x−2x 2−1的值为整数,满足条件的整数x 的个数有( )A. 1个B. 2个C. 3个D. 4个13. 如图,在△ABC 中,D 、E 分别是AB 、AC 的中点,BC =16,F 是线段DE 上一点,连接AF 、CF ,DE =4DF ,若∠AFC =90°,则AC 的长度是( )A. 6B. 8C. 10D. 12二、填空题14.数学老师计算同学们一学期的平均成绩时,将平时、期中和期末的成绩按3:3:4计算,若小红平时、期中和期末的成绩分别是90分、100分、90分,则小红一学期的数学平均成绩是______分.15.如图(1)是长方形纸带,∠DEF=20°,将纸带沿EF折叠图(2)形状,则∠FGD等于______度.16.若a:b=1:3,b:c=2:5,则a:c=______.17.已知点A(a,1)与点B(5,b)关于y轴对称,则ba +ab=______.18.如图,在梯形ABCD中,AD//BC,若AB=AD=DC=3,∠A=120°,则梯形ABCD的周长为______.19.如图,依据尺规作图的痕迹,计算∠α=______°.三、解答题(20.(1)计算:1−x−2yx+y ÷x2−4xy+4y2x2−y2(2)先化简,再求值:(9x+3+x−3)÷(xx2−9),其中x=−2.21.过矩形ABCD的对角线AC的中点O作EF⊥AC,交BC边于点E,交AD边于点F,分别连接AE,CF.(1)求证:四边形AECF是菱形;(2)若AB=6,AC=10,EC=254,求EF的长.参考答案和解析1.【答案】A【解析】解:A、xx2+2x+4=x(x+1)2+3,(x+1)2≥0,则(x+1)2+3≥3,无论x取何值,分式都有意义,故此选项正确;B、当x=−12时,分式分母=0,分式无意义,故此选项错误;C、x=0时,分式分母=0,分式无意义,故此选项错误;D、x=0时,分式分母=0,分式无意义,故此选项错误;故选:A.2.【答案】B【解析】解:由图可知先作AC的垂直平分线,再连接AC的中点O与B点,并延长使BO=OD,可得:AO=OC,BO=OD,进而得出四边形ABCD是平行四边形,故选:B.3.【答案】C【解析】解:∵这组数据中15出现5次,次数最多,∴众数为15岁,中位数是第6、7个数据的平均数,=15.5岁,∴中位数为15+162故选:C.4.【答案】C【解析】解:分式方程去分母得:x−1=m+2x−4,根据题意得:x−2=0,即x=2,代入整式方程得:2−1=m+4−4,解得:m=1.故选C5.【答案】D【解析】解:作MG⊥BC于G.∵四边形ABCD是正方形,∴BA=BC,∠ABC=∠DAB=°∠DCB=90°∵△MBC是等边三角形,∴MB=MC=BC,∠MBC=∠BMC=60°,∵MG⊥BC,∴BG=GC,∵AB//MG//CD,∴AM=MN,∴∠ABM=30°,∵BA=BM,∴∠MAB=∠BMA=75°,∴∠DAN=90°−75°=15°,∠CMN=180°−75°−60°=45°,故A,B,C正确,故选:D.6.【答案】D【解答】解:延长BD交CA的延长线于E,∵AD为∠BAE的平分线,BD⊥AD,∴BD=DE,AB=AE=6,∴CE=AC+AE=9+6=15,又∵M为△ABC的边BC的中点,∴DM是△BCE的中位线,∴MD=12CE=12×15=7.5.故选:D.7.【答案】B【解析】解:∵S△PBC=12S△ABC,∴P在与BC平行,且到BC的距离为12AD的直线l上,∴l//BC,作点B关于直线l的对称点B′,连接B′C交l于P,如图所示:则BB′⊥l,PB=PB′,此时点P到B、C两点距离之和最小,作PM⊥BC于M,则BB′=2PM=AD,∵AD⊥BC,AD=BC,∴BB′=BC,BB′⊥BC,∴△BB′C是等腰直角三角形,∴∠B′=45°,∵PB=PB′,∴∠PBB′=∠B′=45°,∴∠PBC=90°−45°=45°;故选:B.8.【答案】D【解答】解:∵AD⊥BC,BD=DC,∴AD垂直平分BC,∴AB=AC,又∵点C在AE的垂直平分线上,∴AC=EC,∴AB=AC=CE.故选D.9.【答案】B【解答】解:设x2=y7=z5=k,则x=2k,y=7k,z=5k,把x=2k,y=7k,z=5k代入x+y−zx =2k+7k−5k2k=2,故选B.10.【答案】A【解析】解:∵D点是∠ABC和∠ACB角平分线的交点,∴∠CBD=∠ABD=12∠ABC,∠BCD=∠ACD=12∠ACB,∴∠ABC+∠ACB=180°−40°=140°,∴∠DBC+∠DCB=70°,∴∠BDC=180°−70°=110°,故选:A.11.【答案】A【解析】解:把原分式中的x换成3x,把y换成3y,那么2⋅3x⋅3y 3x+3y =6xyx+y=3×2xyx+y.故选:A.12.【答案】C【解析】解:∵原式=2(x−1)(x+1)(x−1)=2x+1,∴x+1为±1,±2时,2x+1的值为整数,∵x2−1≠0,∴x≠±1,∴x为−2,0,−3,个数有3个.故选:C.13.【答案】D【解析】解:∵D、E分别是AB、AC的中点,BC=8,∴DE=12∵DE=4DF,DE=2,∴DF=14∴EF=DE−DF=6,∵∠AFC=90°,点E是AC的中点,∴AC=2EF=12,故选:D.14.【答案】93【解析】解:根据题意得:90×3+100×3+90×4=93(分),3+3+4答:小红一学期的数学平均成绩是93分;故答案为:93.15.【答案】40【解析】解:根据折叠可知:∠AEG=180°−20°×2=140°,∵AE//BF,∴∠EGB=180°−∠AEG=40°,∴∠FGD=40°.故答案为:40.16.【答案】2:15【解析】解:∵a:b=1:3=2:6,b:c=2:5=6:15,∴a:c=2:15,故答案为:2:1517.【答案】−265【解析】解:∵点A(a,1)与点A′(5,b)关于y轴对称,∴a=−5,b=1,∴ba +ab=−15+(−5)=−265,故答案为:−265.18.【答案】15【解析】解:过点A作AE//CD,交BC于点E,∵AD//BC,∴四边形AECD是平行四边形,∠B=180°−∠BAD=180°−120°=60°,∴AE=CD,CE=AD=3,∵AB=DC,∴△ABE是等边三角形,∴BE=AB=3,∴BC=BE+CE=6,∴梯形ABCD的周长为:AB+BC+CD+AD=15.故答案为:15.首先过点A作AE//CD,交BC于点E,由AB=AD=DC=2,∠A=120°,易证得四边形AECD 是平行四边形,△ABE是等边三角形,继而求得答案.19.【答案】56【分析】本题考查的是作图−基本作图,熟知角平分线及线段垂直平分线的作法是解答此题的关键.先根据矩形的性质得出AD//BC,故可得出∠DAC的度数,由角平分线的定义求出∠EAF的度数,再由EF是线段AC的垂直平分线得出∠AEF的度数,根据三角形内角和定理得出∠AFE的度数,进而可得出结论.【解答】解:∵四边形ABCD是矩形,∴AD//BC,∴∠DAC=∠ACB=68°.∵由作法可知,AF是∠DAC的平分线,∴∠EAF=12∠DAC=34°.∵由作法可知,EF是线段AC的垂直平分线,∴∠AEF=90°,∴∠AFE=90°−34°=56°,∴∠α=56°.故答案为:56.20.【答案】解:(1)原式=1−x−2yx+y ⋅(x+y)(x−y)(x−2y)2=1−x−yx−2y=x−2yx−2y−x−yx−2y=−y2x−y;(2)原式=(9x+3+x2−9x+3)÷x(x+3)(x−3)=x2x+3⋅(x+3)(x−3)x=x(x−3),当x=−2时,原式=(−2)×(−2−3)=10.【解析】(1)根据分式的混合运算顺序和运算法则计算可得;(2)先根据分式的混合运算顺序和运算法则化简原式,再将x的值代入计算可得.21.【答案】解:(1)∵四边形ABCD是矩形,∴AD//BC,∴∠ACB=∠DAC,∵O是AC的中点,∴AO =CO ,在△AOF 和△COE 中,{∠ACB =∠DACAO =CO ∠AOF =∠COE,∴△AOF ≌△COE(ASA),∴OE =OF ,且AO =CO ,∴四边形AECF 是平行四边形,又∵EF ⊥AC ,∴四边形AECF 是菱形;(2)∵菱形AECF 的面积=EC ×AB =12AC ×EF ,又∵AB =6,AC =10,EC =254, ∴254×6=12×10×EF ,解得EF =152.【解析】(1)由矩形的性质可得∠ACB =∠DAC ,然后利用“ASA ”证明△AOF 和△COE 全等,根据全等三角形对应边相等可得OE =OF ,即可证四边形AECF 是菱形;(2)由菱形的性质可得:菱形AECF 的面积=EC ×AB =12AC ×EF ,进而得到EF 的长.。

人教版八年级上册数学期末考试试卷及答案

人教版八年级上册数学期末考试试卷及答案

人教版八年级上册数学期末考试试题一、单选题1.下列文字中,是轴对称图形的是()A .我B .爱C .中D .国2.用科学记数法表示0.0000003是()A .60.310-⨯B .70.310-⨯C .6310-⨯D .7310-⨯3.等腰三角形的两边长为2cm ,5cm ,则该等腰三角形的周长为()A .9cmB .12cmC .9cm 或12cmD .6cm 或12cm4.下列各式运算正确的是()A .326a a a ⨯=B .()428=a aC .()220a a -+=D .()23622a a =5.点A (-2,3)向右平移3个单位后得到点B ,那么点B 关于x 轴对称的点的坐标是A .(1,-3)B .(1,3)C .(-1,3)D .(-1,-3)6.如图,在△ABC 与△ADC 中,若BAC DAC ∠=∠,则下列条件不能判定△ABC 与△ADC 全等的是()A .B D∠=∠B .BCA DCA ∠=∠C .BC DC =D .AB AD =7.已知()()222x m x x x +-=--,那么m 的值是()A .1B .-1C .2D .-28.如图,在Rt △ABC 中,90C = ∠,AD 平分∠BAC ,交BC 于点D ,若20AB =,△ABD 的面积为60,则CD 长()A .12B .10C .6D .49.如图,在△ABC 中,AB AC =,BD CD =,边AB 的垂直平分线交AC 于点E ,连接BE ,交AD 于点F ,若66C ∠=︒,则∠AFE 的度数为()A .60B .62°C .66D .7210.如图,数轴上点A 、B 、C 、D 分别表示数0、1、2、3,若x 为整数(0x ≠),则分式21x x -表示的点落在哪条线段上?()A .ACB .BC C .BD D .CD11.如图,把一块等腰直角三角尺放在直角坐标系中,直角顶点A 落在第二象限,锐角顶点B 、C 分别落在x 轴、y 轴上,已知点A (-2,2)、C (0,-3),则点B 的坐标为()A .(-4,0)B .(-5,0)C .(-7,0)D .(-8,0)12.如图,有10个形状大小一样的小长方形①,将其中的3个小长方形①放入正方形②中,剩余的7个小长方形①放入长方形③中,其中正方形②中的阴影部分面积为21,长方形③中的阴影部分面积为93,那么一个小长方形①的面积为()A .5B .6C .9D .10二、填空题13.分解因式26m m +=_________.14.计算:3242a b ab ÷=______.15.已知:26910a a b -+++=,那么22a b +=______.16.当=a ___________时,关于x 的方程12325x a x a +-=-+的解为零.17.如图,点D 、A 、B 、C 是正十边形依次相邻的顶点,分别连接AC 、BD 相交于点P ,则∠DPC =______度.18.等腰直角三角形ABC 中,AB AC =,90BAC ∠= ,且△ABC 的面积为16,过点B 作直线EF AC ∥,点G 是直线EF 上的一个动点,连接AG ,将AG 绕点A 顺时针旋转90 ,得到线段AH ,连接BH ,则线段BH 的最小值为______.19.如图,已知AE =BE ,DE 是AB 的垂线,F 为DE 上一点,BF =11cm ,CF =3cm ,则AC =_______.20.如图,在等腰△ABC 中,AB=AC=13,BC=10,D 是BC 边上的中点,M 、N 分别是AD 和AB 上的动点.则BM+MN 的最小值是_________________.三、解答题21.计算:(1)02312020222--++⨯(2)()()()22a b a b a b +--+22.化简求值:2222m n mn n m m m ⎛⎫--÷- ⎪⎝⎭,其中3,1m n ==-.23.解分式方程:2231022x x x x-=+-24.如图,四边形ABED 中,90B E ACD ∠=∠=∠= ,BC DE =.(1)求证:ABC CED ∆=∆.(2)发现:若AB a =,BC b =,AC c =,请用两种方法计算四边形ABCD 的面积,并探究a 、b 、c 之间有什么数量关系?(3)应用:①根据(2)中的发现,当8AB =,6BC =时,AC 的长为___;②如图,若30P ∠= ,4PM =,7PN =,点F 在PN 上,点G 在射线PM 上连接FM 、FG 、NG ,求MF FG GN ++的最小值.25.为了进一步丰富校园文体活动,学校准备购进一批篮球和足球,已知每个篮球的进价比每个足球的进价多20元,用1800元购进篮球的数量是用700元购进足球的数量的2倍,求每个篮球和足球的进价各是多少元?26.如图,90ACB ∠=︒,AC BC =,AD CE ⊥,BE CE ⊥,垂足分别为D ,E .(1)求证:ACD CBE △△≌;(2)试探究线段AD ,DE ,BE 之间有什么样的数量关系,请说明理由.27.如图,Rt △ABC 与Rt △DEF 中,点B 、E 、C 、F 在一条直线上,AC 与DE 相交于点O ,90BAC EDF ∠=∠=︒,AB DE =,BE CF =,则:(1)求证:AC DE ⊥;(2)连接AD 、AE 、DC ,若12,5AC AB ==,求四边形AECD 的面积.28.如图是33⨯的网格,网格中每个小正方形的顶点叫做格点,当三角形的三个顶点是格点时,这个三角形叫做格点三角形,图中阴影部分的三角形就是格点三角形.(1)请在图一、图二中分别作出与阴影部分成轴对称的格点三角形,要求所作格点三角形在33⨯的网格内且位置不同;(2)思考:在33⨯的网格内一共可以作___个符合(1)中要求的格点三角形.参考答案1.C2.D3.B4.B5.A6.C7.A8.C9.D10.C11.C12.Am m+13.(6)14.22a b15.1016.1517.144【详解】解:∵DAB ∠和ABC ∠是正十边形的两个内角,∴(102)18014410DAB ABC -⨯︒∠=∠==︒,DA AB BC ==,∴180********,22DAB ABD ︒-∠︒-︒∠===︒1801801441822ABC BCA ︒-∠︒-︒∠===︒,∴14418126PBC ABC ABD ∠=∠-∠=︒-︒=︒,∴12618144DPC PBC PCB ∠=∠+∠=︒+︒=︒,故答案为:144【点睛】可不是主要考查了正多边形内角和问题,解题的关键是熟练掌握基本知识.18.【分析】如图所示:连接CG .由旋转的性质可知AG AH =,90GAH ∠=︒,再由90BAC ∠=︒,可知HAB CAG ∠=∠.可证ABH ACG ≅ .可得BH CG =.BH 最小转化成求CG 最小.只需CG BG ⊥就可以了.由此可得四边形ABGC 是正方形.由ABC 的面积是16,可求BH 的值为【详解】如图所示:连接CG .由旋转的性质可知:AG AH =,90GAH ∠=︒.∵90BAC ∠=︒∴BAC BAG GAH BAG ∠-∠=∠-∠,即HAB CAH ∠=∠.在ABH 和ACG 中,AB AC HAB CAH AH AG =⎧⎪∠=∠⎨⎪=⎩ABH ACG≅ ∴BH CG=要让BH 最小,也就是要CG 最小,∴CG BG ⊥时,CG 最小.∵EF AC ∥,90BAC ∠=︒,∴90ABG BAC ∠=∠=︒∵CG BG⊥∴四边形ABGC 时矩形,∵AB AC=∴矩形ABGC 是正方形.∴AB BG CG AC ===.∵△ABC 的面积为16,∴•162AB AC =,解得:AB AC ==.∴AB AC CG BH ====故答案为:【点睛】本题考查了全等三角形的性质和判定定理、矩形的性质和判定定理、正方形的性质和判定定理、等腰直角三角形的性质等知识.证得三角形全等,由求BH 转化成求CG ,和让CG BG ⊥时,CG 最短是解决本题的关键.19.14cm【分析】由AE =BE ,DE 是AB 的垂线得出DE 是AB 的中线,进而可得DE 是AB 的垂直平分线,由此即可得到AF =BF ,再根据线段的和差即可得解.【详解】解:∵AE =BE ,DE 是AB 的垂线,∴DE 是AB 的中线,∴DE是AB的垂直平分线,∵F为DE上一点,∴AF=BF,∴AC=AF+CF=BF+CF,∵BF=11cm,CF=3cm,∴AC=14cm,故答案为:14cm.【点睛】此题考查了等腰三角形的三线合一以及垂直平分线的性质,熟练掌握等腰三角形的三线合一以及垂直平分线的性质是解此题的关键.20.120 13【分析】作BH⊥AC,垂足为H,交AD于M′点,过M′点作M′N′⊥AB,垂足为N′,然后根据轴对称的性质可知BM′+M′N′为所求的最小值.【详解】解:如图,作BH⊥AC,垂足为H,交AD于M′点,过M′点作M′N′⊥AB,垂足为N′,则BM′+M′N′为所求的最小值.∵AB=AC,D是BC边上的中点,∴AD是∠BAC的平分线,∴M′H=M′N′,∴BH是点B到直线AC的最短距离(垂线段最短),∵AB=AC=13,BC=10,D是BC边上的中点,∴AD⊥BC,∴AD=12,∵S△ABC=12AC×BH=12BC×AD,∴13×BH=10×12,解得:BH=120 13;故答案为12013.21.(1)2(2)233ab b --【分析】(1)根据零次幂、负指数幂可进行求解;(2)根据完全平方公式及多项式乘以多项式可进行求解.(1)解:原式=111428++⨯11122=++=2;(2)解:原式=()222222a ab b a ab b ---++=222222a ab b a ab b -----=233ab b --.22.2m n -;12【分析】先根据分式混合运算法则进行化简,然后再代入求值即可.【详解】解:原式22222m n m mn n m m m ⎛⎫--=÷- ⎝⎭22222m n m mn n m m--+=÷()()22m n mm m n -=⋅-2m n=-把m=3,n=−1代入得:原式()231=--231=+24=12=23.4x =【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】2231022x x x x-=+-解:方程可变为:()()31022x x x x -=+-,方程两边同乘以x (x+2)(x ﹣2)得:3(x ﹣2)﹣(x+2)=0,解得,x =4,检验:当x =4时,x (x+2)(x ﹣2)≠0,所以,原分式方程的解为x =4.24.(1)见解析;(2)第一种方法:S 四边形ABCD=2ab +22c ,第二种方法:22222a b ab ++;a 、b 、c 之间的数量关系是222+=a b c ;(3)①10【分析】(1)根据BAC ECD ∠=∠,B E ∠=∠,BC ED =即可证明两个三角形全等;(2)第一种面积求法直接是S △ABC+S △ACD ,代入表示即可;第二种面积表示用S 梯形ABED-S △CED 来表示,就可以得到a 、b 、c 之间的数量关系;(3)①根据(2)中的结论,代入数值即可计算;②作点M 关于PN 的对称点1M ,作点N 关于PM 的对称点1N ,连接11M N ,线段11M N 与PN 的交点即为F ,与PM 的交点即为点G ,连接P 1M ,P 1N ,此时MF FG GN ++的值最小,代入(2)中的结论,即可算出这个最小值;【详解】(1)∵∠B=∠E=∠ACD=90°,∴∠DCE+∠ACB=90°,∠ACB+∠BAC=90°,∴∠BAC=∠DCE ,在△ABC 和△CED 中,BAC ECD B E BC ED ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABC ≌△CED ;(2)第一种方法:S 四边形ABCD=S △ABC+S △ACD=2ab +22c ,第二种方法:由(1)可知,△ABC ≌△CED ,∴CD=c ,DE=b ,CE=a ,S 四边形ABCD =S 梯形ABED-S △CED=22a b a b ab ++-()(),=22222a b ab ++,∴2ab +22c =22222a b ab ++,∴222+=a b c ,即a 、b 、c 之间的数量关系是222+=a b c ;(3)①∵AB=8,BC=6,∴22268AC =+=100,∴AC=10,②作点M 关于PN 的对称点1M ,作点N 关于PM 的对称点1N ,连接11M N ,线段11M N 与PN 的交点即为F ,与PM 的交点即为点G ,连接P 1M ,P 1N ,此时MF FG GN ++的值最小;如图所示:∵点M 与1M 关于PN 对称,点N 与1N 关于PM 对称,∴1M F=MF ,PM=P 1M =4,∴GN=G 1N ,PN=P 1N =7,∠1M PF=∠FPM=∠MP 1N =30°,∴∠11M PN =3×30°=90°∴MF+FG+GN=M 1F+FG+N 1G≥M 1N 1,当点M 1、F 、G 、N 1四点共线时最短,在△11M PN 中,∠11M PN =90°,PM=4,P 1N =7,∴由(2)可知,211M N =2247+=65,∴11M N∴MF FG GN ++25.每个足球的进价是70元,每个篮球的进价是90元【详解】解:设每个足球的进价是x 元,则每个篮球的进价是()20x +元.由题意得:1800700220x x=⨯+.解得:70x =.检验:当70x =时,()200x x +≠,所以,原方程的解为70x =.∴2090x +=.答:每个足球的进价是70元,每个篮球的进价是90元.【点睛】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.26.(1)见解析(2)BE DE AD +=,见解析【分析】(1)由“AAS”可证ACD CBE △△≌;(2)由全等三角形的性质可得CD BE =,AD CE =,即可求解.【详解】(1)证明:∵AD CE ⊥,BE CE ⊥,∴90E ADC ∠=∠=︒,∴1290∠+∠=︒,∵90ACB ∠=︒,∴3290∠+∠=︒,∴13∠=∠,在ACD 和CBE △中,13ADC E AC CB ∠=∠⎧⎪∠=∠⎨⎪=⎩∴ACD CBE △△≌(AAS ).(2)解:BE DE AD +=,理由如下:∵ACD CBE △△≌,∴CD BE =,AD CE =.∵CD DE CE +=,∴BE DE AD +=.27.(1)见详解(2)四边形AECD 的面积为30【分析】(1)由题意易得BC EF =,然后根据“HL”可证ABC DEF ≌△△,则有//AB DE ,进而问题可求证;(2)由(1)可知△DEF 是由△ABC 向右平移所得到,则根据平移的性质可得AD=BE ,然后根据勾股定理可得BC=13,进而问题可求解.(1)证明:∵BE CF =,∴BE EC CF EC +=+,即BC EF =,∵90BAC EDF ∠=∠=︒,AB DE =,∴ABC DEF ≌△△(HL ),∴B DEF ∠=∠,∴//AB DE ,∴90EOC A ∠=∠=︒,∴AC DE ⊥;(2)解:由(1)可知△DEF 是由△ABC 向右平移所得到,则根据平移的性质可得AD=BE ,//AD EC ,∴四边形AECD 是梯形,∵12,5AC AB ==,90BAC ∠=︒,∴13BC ==,设△ABC 边BC 上的高为h ,∴6013AB AC h BC ⋅==,∴()()1111601330222213AECD S AD EC h BE EC h BC h =+=+=⋅=⨯⨯=四边形.【点睛】本题主要考查勾股定理、平移的性质及全等三角形的性质与判定,勾股定理、平移的性质及全等三角形的性质与判定是解题的关键.28.(1)见解析(2)3【分析】(1)根据轴对称图形的性质作出轴对称图形即可;(2)作出所有轴对称图形即可得到答案.(1)如图一、二,即为所作图形,(虚线为对称轴)(2)可以作出3个符合(1)中要求的格点三角形.第3个如图所示,故答案为:3。

部编人教版八年级数学(上册)期末试题及答案(必考题)

部编人教版八年级数学(上册)期末试题及答案(必考题)

部编人教版八年级数学(上册)期末试题及答案(必考题)班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.若分式211x x -+的值为0,则x 的值为( ) A .0 B .1 C .﹣1 D .±12.将抛物线23y x =-平移,得到抛物线23(1)2y x =---,下列平移方式中,正确的是( )A .先向左平移1个单位,再向上平移2个单位B .先向左平移1个单位,再向下平移2个单位C .先向右平移1个单位,再向上平移2个单位D .先向右平移1个单位,再向下平移2个单位3.已知点()()121,,2,A y B y 在抛物线2(1)2y x =-++上,则下列结论正确的是( )A .122y y >>B .212y y >>C .122y y >>D .212y y >>4.如果a b -=22()2a b a b a a b+-⋅-的值为( )AB .C .D .5A(a,b)在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限6.菱形的两条对角线长分别为6,8,则它的周长是( )A .5B .10C .20D .247.如图,将矩形ABCD 沿GH 折叠,点C 落在点Q 处,点D 落在AB 边上的点E处,若∠AGE=32°,则∠GHC 等于( )A .112°B .110°C .108°D .106°8.三个全等三角形按如图的形式摆放,则∠1+∠2+∠3的度数是( )A .90B .120C .135D .1809.如图,菱形ABCD 的周长为28,对角线AC ,BD 交于点O ,E 为AD 的中点,则OE 的长等于( )A .2B .3.5C .7D .1410.已知:如图,∠1=∠2,则不一定能使△ABD ≌△ACD 的条件是 ( )A .AB =AC B .BD =CD C .∠B =∠C D .∠BDA =∠CDA二、填空题(本大题共6小题,每小题3分,共18分)1.已知a 、b 满足(a ﹣1)22b +,则a+b=________.2.分解因式:22a 4a 2-+=__________.3.33x x -=-,则x 的取值范围是________.4.如图,已知△ABC 的周长是21,OB ,OC 分别平分∠ABC 和∠ACB ,OD ⊥BC 于D ,且OD =4,△ABC 的面积是________.5.如图,直线AB ,CD 被BC 所截,若AB ∥CD ,∠1=45°,∠2=35°,则∠3= _________度。

人教版八年级上学期期末考试数学试卷(附带答案)精选全文

人教版八年级上学期期末考试数学试卷(附带答案)精选全文

精选全文完整版(可编辑修改)人教版八年级上学期期末考试数学试卷(附带答案)学校:___________班级:___________姓名:___________考号:___________一.选择题(共10小题,满分40分,每小题4分)1.(4分)下列图形中,是轴对称图形的是()A.B.C.D.2.(4分)下列式子中是分式的是()A.B.C.D.3.(4分)下列各式中,由左向右的变形是分解因式的是()A.x2﹣2x+1=x(x﹣2)+1B.x2y﹣xy2=xy(x﹣y)C.﹣x2+(﹣2)2=(x﹣2)(x+2)D.(x+y)2=x2+2xy+y24.(4分)(mx+8)(2﹣3x)展开后不含x的一次项,则m为()A.3 B.0 C.12 D.245.(4分)下列选项中,能使分式值为0的x的值是()A.1 B.0 C.1或﹣1 D.﹣16.(4分)如图,在Rt△ACB中,∠ACB=90°,∠A=35°,点D是AB上一点,将Rt△ABC沿CD折叠,使点B落在AC边上B′处,则∠ADB′的度数为()A.25°B.30°C.35°D.20°7.(4分)若多项式4x2﹣(k﹣1)x+9是一个完全平方式,则k的值是()A.13 B.13或﹣11 C.﹣11 D.±118.(4分)若关于x的分式方程有增根,则m的值是()A.0 B.1 C.2 D.﹣19.(4分)如图,在△ABC中,AB=AC、BC=6,AF⊥BC于F,BE⊥AC于E,且点D是AB的中点,连接DE、EF、DF,△DEF的周长是11,则AB的长度为()A.5 B.6 C.7 D.810.(4分)已知两个分式:将这两个分式进行如下操作:第一次操作:将这两个分式作和,结果记为f1;作差,结果记为g1;(即,)第二次操作:将f1,g1作和,结果记为f2;作差,结果记为g2;(即f2=f1+g1,g2=f1﹣g1)第三次操作;将f2,g2作和,结果记为f3;作差,结果记为g3;(即f3=f2+g2,g3=f2﹣g2)…(依此类推)将每一次操作的结果再作和,作差,继续依次操作下去,通过实际操作,有以下结论:①g7=8g1;②当x=2时;③若f8=g4,则x=2;④在第2n(n为正整数)次操作的结果中:.以上结论正确的个数有()个.A.4 B.3 C.2 D.1二.填空题(共8小题,满分32分,每小题4分)11.(4分)计算:+(﹣2013)0+()﹣2+|2﹣|+(﹣2)2×(﹣3)=.12.(4分)若一个正多边形的一个内角与它相邻的一个外角的差是100°,则这个多边形的边数是.13.(4分)若5x﹣3y﹣2=0,则25x÷23y﹣1=.14.(4分)已知x2+y2=8,x﹣y=3,则xy的值为.15.(4分)已知,则代数式的值为.16.(4分)若关于x的不等式组有4个整数解,且关于y的分式方程=1的解为正数,则满足条件所有整数a的值之和为17.(4分)如图,在△ABC中,∠ACB=90°,CD为AB边上的中线,过点A作AE⊥CD于点E,过点B作CD 平行线,交AE的延长线于点F,在延长线上截得FG=CD,连接CG、DF.若BG=11,AF=8,则四边形CGFD的面积等于.18.(4分)对于一个各位数字都不为零的四位正整数N,若千位数字比十位数字大3,百位数字是个位数字的3倍,那么称这个数N为“三生有幸数”,例如:N=5321,∵5=2+3,3=1×3,∴5321是个“三生有幸数”;又如N=8642,∵8≠4+3,∴8642不是一个“三生有幸数”.则最小的“三生有幸数”是.若将N 的千位数字与个位数字互换,百位数字与十位数字互换,得到一个新的四位数,那么称这个新的数为数N的“反序数”,记作N',例如:N=5321,其“反序数”N′=1235.若一个“三生有幸数”N的十位数字为x,个位数字为y,设P(N)=,若P(N)除以6余数是1,则所有满足题意的四位正整数N的最大值与最小值的差是.三.解答题(共9小题,满分78分)19.(8分)计算:(1)(﹣3x+2)(﹣3x﹣2)﹣5x(1﹣x)+(2x+1)(x﹣5)(2).20.(8分)解方程:(1);(2).21.(8分)将下列各式因式分解(1)x2(m﹣2)+y2(2﹣m)(2)x2+2x﹣1522.(8分)先化简,再求值:(﹣)÷.其中a是x2﹣2x=0的根.23.(8分)重庆市2023年体育中考已经结束,现从某校初三年级随机抽取部分学生的成绩进行统计分析(成绩得分用x表示,共分成4个等级,A:30≤x<35,B:35≤x<40,C:40≤x<45,D:45≤x≤50),绘制了如下的统计图,请根据统计图信息解答下列问题:(1)本次共调查了名学生;(2)请补全条形统计图;(3)在扇形统计图中,m的值是;B对应的扇形圆心角的度数是;(4)若该校初三年级共有2000名学生,估计此次测试成绩优秀(45≤x≤50)的学生共有多少人?24.(8分)在学习了角平分线的性质后,小明想要去探究直角梯形的两底边与两非直角顶点所连腰的数量关系,于是他对其中一种特殊情况进行了探究:在直角梯形ABCD中,∠B=∠C=90°,AE平分∠BAD交BC于点E,连接DE,当DE平分∠ADC时,探究AB、CD与AD之间的数量关系.他的思路是:首先过点E作AD的垂线,将其转化为证明三角形全等,然后根据全等三角形的对应边相等使问题得到解决.请根据小明的思路完成下面的作图与填空:证明:用直尺和圆规,过点E作AD的垂线,垂足为点F.(只保留作图痕迹)∵∠B=90°∴EB⊥AB∵AE平分∠BAD,EF⊥AD∴(角平分线的性质)在Rt△ABE和Rt△AFE中∵∴Rt△ABE≌Rt△AFE(HL).∴同理可得:DC=DF∴AB+CD=即AB+CD=AD.25.(10分)为落实“双减政策”,某校购进“红色教育”和“传统文化”两种经典读本,花费分别是14000元和7000元,已知“红色教育”经典读本的订购单价是“传统文化”经典读本的订购单价的 1.4倍,并且订购的“红色教育”经典读本的数量比“传统文化”经典读本的数量多300本.(1)求该学校订购的两种经典读本的单价分别是多少元;(2)该学校拟计划再订购这两种经典读本共1000本,其中“传统文化”经典读本订购数量不超过400本且总费用不超过12880元,求该学校订购这两种读本的最低总费用.26.(10分)如图1,点A(0,a),B(b,0),且a,b满足|a﹣4|+=0.(1)求A,B两点的坐标.(2)如图2,点C(﹣3,n)在线段AB上,点D在y轴负半轴上,连接CD交x轴负半轴于点M,且S△MBC =S△MOD,求点D的坐标.(3)平移直线AB,交x轴正半轴于点E,交y轴于点F,P为直线EF上的第三象限内的一点,过点P作PG⊥x轴于点G,若S△P AB=20,且GE=12,求点P的坐标.27.(10分)△ABC中,点D为AC边上一点,连接BD,在线段BD上取一点E,连接EC.(1)如图1,若∠BAC=90°,BC=AB,tan∠ABC=2,点D,E分别为AC,BD中点,BC=a,求△CDE的面积(结果用含a的代数式表示);(2)如图2,若EB=EC,过点E作EF⊥AC于点F,F在线段AD上(F与A,D不重合),过点E作EG∥AC交BC于点G,∠ABD=30°,AF=CF,求证:2CG+EG=BC;(3)如图3,若△ABC是等边三角形,且AE⊥BD,∠DEC=60°,AB=2,直接写出线段DE的长.参考答案一.选择题(共10小题,满分40分,每小题4分)1.(4分)下列图形中,是轴对称图形的是()A.B.C.D.【答案】C2.(4分)下列式子中是分式的是()A.B.C.D.【答案】B3.(4分)下列各式中,由左向右的变形是分解因式的是()A.x2﹣2x+1=x(x﹣2)+1B.x2y﹣xy2=xy(x﹣y)C.﹣x2+(﹣2)2=(x﹣2)(x+2)D.(x+y)2=x2+2xy+y2【答案】B4.(4分)(mx+8)(2﹣3x)展开后不含x的一次项,则m为()A.3 B.0 C.12 D.24【答案】C5.(4分)下列选项中,能使分式值为0的x的值是()A.1 B.0 C.1或﹣1 D.﹣1【答案】D6.(4分)如图,在Rt△ACB中,∠ACB=90°,∠A=35°,点D是AB上一点,将Rt△ABC沿CD折叠,使点B落在AC边上B′处,则∠ADB′的度数为()A.25°B.30°C.35°D.20°【答案】D7.(4分)若多项式4x2﹣(k﹣1)x+9是一个完全平方式,则k的值是()A.13 B.13或﹣11 C.﹣11 D.±11【答案】B8.(4分)若关于x的分式方程有增根,则m的值是()A.0 B.1 C.2 D.﹣1【答案】D9.(4分)如图,在△ABC中,AB=AC、BC=6,AF⊥BC于F,BE⊥AC于E,且点D是AB的中点,连接DE、EF、DF,△DEF的周长是11,则AB的长度为()A.5 B.6 C.7 D.8【答案】D10.(4分)已知两个分式:将这两个分式进行如下操作:第一次操作:将这两个分式作和,结果记为f1;作差,结果记为g1;(即,)第二次操作:将f1,g1作和,结果记为f2;作差,结果记为g2;(即f2=f1+g1,g2=f1﹣g1)第三次操作;将f2,g2作和,结果记为f3;作差,结果记为g3;(即f3=f2+g2,g3=f2﹣g2)…(依此类推)将每一次操作的结果再作和,作差,继续依次操作下去,通过实际操作,有以下结论:①g7=8g1;②当x=2时③若f8=g4,则x=2;④在第2n(n为正整数)次操作的结果中:以上结论正确的个数有()个.A.4 B.3 C.2 D.1【答案】B二.填空题(共8小题,满分32分,每小题4分)11.(4分)计算:+(﹣2013)0+()﹣2+|2﹣|+(﹣2)2×(﹣3)=.【答案】见试题解答内容12.(4分)若一个正多边形的一个内角与它相邻的一个外角的差是100°,则这个多边形的边数是9.【答案】见试题解答内容13.(4分)若5x﹣3y﹣2=0,则25x÷23y﹣1=8.【答案】见试题解答内容14.(4分)已知x2+y2=8,x﹣y=3,则xy的值为﹣.【答案】见试题解答内容15.(4分)已知,则代数式的值为﹣2.【答案】﹣2.16.(4分)若关于x的不等式组有4个整数解,且关于y的分式方程=1的解为正数,则满足条件所有整数a的值之和为2【答案】见试题解答内容17.(4分)如图,在△ABC中,∠ACB=90°,CD为AB边上的中线,过点A作AE⊥CD于点E,过点B作CD 平行线,交AE的延长线于点F,在延长线上截得FG=CD,连接CG、DF.若BG=11,AF=8,则四边形CGFD的面积等于20.【答案】见试题解答内容18.(4分)对于一个各位数字都不为零的四位正整数N,若千位数字比十位数字大3,百位数字是个位数字的3倍,那么称这个数N为“三生有幸数”,例如:N=5321,∵5=2+3,3=1×3,∴5321是个“三生有幸数”;又如N=8642,∵8≠4+3,∴8642不是一个“三生有幸数”.则最小的“三生有幸数”是4311.若将N的千位数字与个位数字互换,百位数字与十位数字互换,得到一个新的四位数,那么称这个新的数为数N的“反序数”,记作N',例如:N=5321,其“反序数”N′=1235.若一个“三生有幸数”N的十位数字为x,个位数字为y,设P(N)=,若P(N)除以6余数是1,则所有满足题意的四位正整数N的最大值与最小值的差是2729.【答案】4311;3331.三.解答题(共9小题,满分78分)19.(8分)计算:(1)(﹣3x+2)(﹣3x﹣2)﹣5x(1﹣x)+(2x+1)(x﹣5)(2).【答案】16x2-14x-9;20.(8分)解方程:(1);(2).【答案】(1)x=4;(2)无解.21.(8分)将下列各式因式分解(1)x2(m﹣2)+y2(2﹣m)(2)x2+2x﹣15【答案】(m-2)(x+y)(x-y);(x+5)(x-3).22.(8分)先化简,再求值:(﹣)÷.其中a是x2﹣2x=0的根.【答案】见试题解答内容23.(8分)重庆市2023年体育中考已经结束,现从某校初三年级随机抽取部分学生的成绩进行统计分析(成绩得分用x表示,共分成4个等级,A:30≤x<35,B:35≤x<40,C:40≤x<45,D:45≤x≤50),绘制了如下的统计图,请根据统计图信息解答下列问题:(1)本次共调查了50名学生;(2)请补全条形统计图;(3)在扇形统计图中,m的值是10;B对应的扇形圆心角的度数是108°;(4)若该校初三年级共有2000名学生,估计此次测试成绩优秀(45≤x≤50)的学生共有多少人?【答案】(1)50;(3)10,108°;(4)估计此次测试成绩优秀(45≤x≤50)的学生共有800人.24.(8分)在学习了角平分线的性质后,小明想要去探究直角梯形的两底边与两非直角顶点所连腰的数量关系,于是他对其中一种特殊情况进行了探究:在直角梯形ABCD中,∠B=∠C=90°,AE平分∠BAD交BC于点E,连接DE,当DE平分∠ADC时,探究AB、CD与AD之间的数量关系.他的思路是:首先过点E作AD的垂线,将其转化为证明三角形全等,然后根据全等三角形的对应边相等使问题得到解决.请根据小明的思路完成下面的作图与填空:证明:用直尺和圆规,过点E作AD的垂线,垂足为点F.(只保留作图痕迹)∵∠B=90°∴EB⊥AB∵AE平分∠BAD,EF⊥AD∴①(角平分线的性质)在Rt△ABE和Rt△AFE中∵∴Rt△ABE≌Rt△AFE(HL).∴③同理可得:DC=DF∴AB+CD=④即AB+CD=AD.【答案】①EB=EF,②AE=AE③.AB=AF,④AF+FD.25.(10分)为落实“双减政策”,某校购进“红色教育”和“传统文化”两种经典读本,花费分别是14000元和7000元,已知“红色教育”经典读本的订购单价是“传统文化”经典读本的订购单价的 1.4倍,并且订购的“红色教育”经典读本的数量比“传统文化”经典读本的数量多300本.(1)求该学校订购的两种经典读本的单价分别是多少元;(2)该学校拟计划再订购这两种经典读本共1000本,其中“传统文化”经典读本订购数量不超过400本且总费用不超过12880元,求该学校订购这两种读本的最低总费用.【答案】(1)“红色教育”的订购单价是14元,“传统文化”经典读本的单价是10元;(2)12400元26.(10分)如图1,点A(0,a),B(b,0),且a,b满足|a﹣4|+=0.(1)求A,B两点的坐标.(2)如图2,点C(﹣3,n)在线段AB上,点D在y轴负半轴上,连接CD交x轴负半轴于点M,且S△MBC =S△MOD,求点D的坐标.(3)平移直线AB,交x轴正半轴于点E,交y轴于点F,P为直线EF上的第三象限内的一点,过点P作PG⊥x轴于点G,若S△P AB=20,且GE=12,求点P的坐标.【答案】(1)A(0,4),B(﹣6,0);(2)D(0,﹣4);(3)(﹣8,﹣8).27.(10分)△ABC中,点D为AC边上一点,连接BD,在线段BD上取一点E,连接EC.(1)如图1,若∠BAC=90°,BC=AB,tan∠ABC=2,点D,E分别为AC,BD中点,BC=a,求△CDE的面积(结果用含a的代数式表示);(2)如图2,若EB=EC,过点E作EF⊥AC于点F,F在线段AD上(F与A,D不重合),过点E作EG∥AC交BC于点G,∠ABD=30°,AF=CF,求证:2CG+EG=BC;(3)如图3,若△ABC是等边三角形,且AE⊥BD,∠DEC=60°,AB=2,直接写出线段DE的长.【答案】(1)a2;(3).。

八年级上册数学期末考试卷附答案

八年级上册数学期末考试卷附答案

八年级上册数学期末考试卷附答案一、选择题1. 下列哪个数是素数?A. 11B. 15C. 18D. 20答案:A2. 下列哪个数是合数?A. 7B. 13C. 17D. 21答案:D3. 下列哪个数是偶数?A. 5B. 9C. 12D. 15答案:C4. 下列哪个数是奇数?A. 8B. 10C. 14D. 16答案:A5. 下列哪个数是整数?A. 3.5B. 4.8C. 5.6D. 6.7答案:D二、填空题6. 3的平方是_________。

答案:97. 4的立方是_________。

答案:648. 5的平方根是_________。

答案:±√59. 6的立方根是_________。

答案:∛610. 7的平方根是_________。

答案:±√7三、解答题11. 解方程:2x + 3 = 9。

答案:x = 312. 解方程:3x 2 = 8。

答案:x = 313. 解方程:4x + 5 = 17。

答案:x = 314. 解方程:5x 6 = 19。

答案:x = 515. 解方程:6x + 7 = 23。

答案:x = 216. 解方程:7x 8 = 21。

答案:x = 517. 解方程:8x + 9 = 35。

答案:x = 418. 解方程:9x 10 = 29。

答案:x = 519. 解方程:10x + 11 = 41。

答案:x = 320. 解方程:11x 12 = 39。

答案:x = 5八年级上册数学期末考试卷附答案四、应用题21. 小华买了5个苹果,每个苹果重200克,请问小华买的苹果总重量是多少克?答案:1000克22. 小红家有一个长方形花园,长为10米,宽为5米,请问花园的面积是多少平方米?答案:50平方米23. 小刚骑自行车去学校,速度为每小时15公里,请问他从家到学校需要多长时间?答案:30分钟24. 小丽去超市购物,买了3个苹果、2个香蕉和1个橙子,苹果的价格为每个5元,香蕉的价格为每个3元,橙子的价格为每个2元,请问小丽一共花费了多少元?答案:24元五、简答题25. 请简述勾股定理的内容。

八年级(上)期末数学试卷(附答案解析)

八年级(上)期末数学试卷(附答案解析)

八年级(上)期末数学试卷一、选择题(每小题3分,共30分)1.下面四个交通标志图中为轴对称图形的是()A.B.C.D.2.使分式有意义的x的取值范围为()A.x>0 B.x≠﹣1 C.x≠1 D.任意实数3.下列计算正确的是()A.3a×2b=5ab B.﹣a2×a=﹣a2C.(﹣x)9÷(﹣x)3=x3D.(﹣2a3)2=4a6 4.已知△ABC中,AB=7,BC=4,那么边长AC的长不可能是()A.11 B.9 C.7 D.45.若等腰三角形的顶角为40°,则它的底角度数为()A.40°B.50°C.60°D.70°6.下列多边形中,内角和是外角和的两倍的是()A.四边形B.五边形C.六边形D.八边形7.如图,若△ABE≌△ACF,且AB=5,AE=2,则EC的长为()A.2 B.3 C.4 D.58.如图,已知AB=AD,那么添加下列一个条件后,仍无法判定△ABC≌△ADC 的是()A.CB=CD B.∠BAC=∠DAC C.∠BCA=∠DCA D.∠B=∠D=90°9.如图,在等边三角形ABC中,BC边上的高AD=6,E是高AD上的一个动点,F是边AB的中点,在点E运动的过程中,存在EB+EF的最小值,则这个最小值是()A.5 B.6 C.7 D.810.A、B两地相距80km,已知乙的速度是甲的1.5倍,甲先由A去B,1小时后,乙再从A地出发去追甲,追到B地时,甲已早到20分钟,则甲的速度为()A.40km/h B.45km/h C.50km/h D.60km/h二、填空题(每小题3分,共24分)11.计算:(π﹣2)0=.12.多项式3x2﹣6x的公因式为.13.若a2﹣b2=,a﹣b=,则a+b的值为.14.如图,已知△ABC的周长为27cm,AC=9cm,BC边上中线AD=6cm,△ABD 周长为19cm,AB=.15.某厂接到加工720件衣服的订单,预计每天做48件,正好按时完成,后来客户要求提前5天交货,为保证按时完成任务,则每天应多做件.16.已知关于x的分式方程的解是非负数,则m的取值范围是.17.若m为正实数,且m2﹣m﹣1=0,则m2+=.18.如图,在△ABC中,∠A:∠ABC:∠ACB=3:5:10,B′为AC延长线上一点,A′是B′B延长线上一点,且△A′B′C≌△ABC,则∠BCA′:∠BCB′=.三、解答题(共66分)19.分解因式:(1)4a2﹣36(2)(x﹣2y)2+8xy.20.先化简,再求值:÷(x+1+),其中x=2018.21.解方程:(1)﹣=1(2)=﹣1.22.如图,点B、E、C、F在同一条直线上,∠A=∠D,∠B=∠DEF,BE=CF.求证:AB=DE.23.如图,已知△ABC的三个顶点的坐标为A(﹣1,2),B(﹣4,1),C(﹣2,﹣2).(1)请在图中作出△ABC关于y轴对称的△A′B′C′;(2)分别写出点A′、B′、C′的坐标.24.2015年5月,某县突降暴雨,造成山林滑坡,桥梁垮塌,房屋大面积受损,该省民政厅急需将一批帐篷送往灾区,现有甲、乙两种货车,乙知甲种货车比乙种货车每辆车多装20件帐篷,且甲种货车装运1000件帐篷所用的车辆与乙车货车装运800件帐篷所用车辆相等.(1)求甲、乙两种货车每辆车可装多少件帐篷?(2)如果这批帐篷有1490件,用甲、乙两种汽车共16辆来装运,甲种车辆刚好装满,乙种车辆最后一辆只装了50件,其它装满,求甲、乙两辆汽车各有多少辆?25.如图,△ABC是等边三角形,D是三角形外一动点,满足∠ADB=60°,(1)当D点在AC的垂直平分线上时,求证:DA+DC=DB;(2)当D点不在AC的垂直平分线上时,(1)中的结论是否仍然成立?请说明理由;(3)当D点在如图的位置时,直接写出DA,DC,DB的数量关系,不必证明.26.在平面直角坐标系中,点A(0,a)、B(b,0)且a>|b|.(1)若a、b满足a2+b2﹣8a﹣4b+20=0.①求a、b的值;②如图1,在①的条件下,第一象限内以AB为斜边作等腰Rt△ABC,请求四边形AOBC的面积S;(2)如图2,若将线段AB沿x轴向正方向移动a个单位得到线段DE(D对应A,E对应B)连接DO,作EF⊥DO于F,连接AF、BF,判断AF与BF的关系,并说明理由.参考答案与试题解析一、选择题(每小题3分,共30分)1.下面四个交通标志图中为轴对称图形的是()A.B.C.D.【考点】P3:轴对称图形.【分析】根据轴对称图形的概念对各选项分析判断即可得解.【解答】解:A、不是轴对称图形,故本选项不符合题意;B、是轴对称图形,故本选项符合题意;C、不是轴对称图形,故本选项不符合题意;D、不是轴对称图形,故本选项不符合题意.故选B.2.使分式有意义的x的取值范围为()A.x>0 B.x≠﹣1 C.x≠1 D.任意实数【考点】62:分式有意义的条件.【分析】直接利用分式有意义则分母不为零,进而得出答案.【解答】解:要使分式有意义,则x﹣1≠0,解得:x≠1.故选:C.3.下列计算正确的是()A.3a×2b=5ab B.﹣a2×a=﹣a2C.(﹣x)9÷(﹣x)3=x3D.(﹣2a3)2=4a6【考点】49:单项式乘单项式;46:同底数幂的乘法;47:幂的乘方与积的乘方;48:同底数幂的除法.【分析】根据单项式的乘法,同底数幂的除法,积的乘方,可得答案.【解答】解:A、3a×2b=6ab,故A不符合题意;B、﹣a2×a=﹣a3,故B不符合题意;C、(﹣x)9÷(﹣x)3=(﹣x)3,故C不符合题意;D、积的乘方等于乘方的积,故D符合题意;故选:D.4.已知△ABC中,AB=7,BC=4,那么边长AC的长不可能是()A.11 B.9 C.7 D.4【考点】K6:三角形三边关系.【分析】根据三角形的三边关系定理:三角形两边之和大于第三边.三角形的两边差小于第三边可得AC的取值范围,即可求解.【解答】解:根据三角形的三边关系定理可得:7﹣4<AC<7+4,即3<AC<11,故选:A.5.若等腰三角形的顶角为40°,则它的底角度数为()A.40°B.50°C.60°D.70°【考点】KH:等腰三角形的性质.【分析】根据等腰三角形的性质和三角形内角和定理可直接求出其底角的度数.【解答】解:因为等腰三角形的两个底角相等,又因为顶角是40°,所以其底角为=70°.故选:D.6.下列多边形中,内角和是外角和的两倍的是()A.四边形B.五边形C.六边形D.八边形【考点】L3:多边形内角与外角.【分析】根据多边形的内角和公式(n﹣2)•180°以及多边形的外角和等于360°列方程求出边数,从而得解.【解答】解:设多边形边数为n,由题意得,(n﹣2)•180°=2×360°,解得n=6,所以,这个多边形是六边形.故选C.7.如图,若△ABE≌△ACF,且AB=5,AE=2,则EC的长为()A.2 B.3 C.4 D.5【考点】KA:全等三角形的性质.【分析】根据全等三角形的对应边相等解答即可.【解答】解:∵△ABE≌△ACF,∴AC=AB=5,∴EC=AC﹣AE=3,故选:B.8.如图,已知AB=AD,那么添加下列一个条件后,仍无法判定△ABC≌△ADC 的是()A.CB=CD B.∠BAC=∠DAC C.∠BCA=∠DCA D.∠B=∠D=90°【考点】KB:全等三角形的判定.【分析】本题要判定△ABC≌△ADC,已知AB=AD,AC是公共边,具备了两组边对应相等,故添加CB=CD、∠BAC=∠DAC、∠B=∠D=90°后可分别根据SSS、SAS、HL能判定△ABC≌△ADC,而添加∠BCA=∠DCA后则不能.【解答】解:A、添加CB=CD,根据SSS,能判定△ABC≌△ADC,故A选项不符合题意;B、添加∠BAC=∠DAC,根据SAS,能判定△ABC≌△ADC,故B选项不符合题意;C、添加∠BCA=∠DCA时,不能判定△ABC≌△ADC,故C选项符合题意;D、添加∠B=∠D=90°,根据HL,能判定△ABC≌△ADC,故D选项不符合题意;故选:C.9.如图,在等边三角形ABC中,BC边上的高AD=6,E是高AD上的一个动点,F是边AB的中点,在点E运动的过程中,存在EB+EF的最小值,则这个最小值是()A.5 B.6 C.7 D.8【考点】PA:轴对称﹣最短路线问题;KK:等边三角形的性质.【分析】先连接CF,再根据EB=EC,将FE+EB转化为FE+CE,最后根据两点之间线段最短,求得CF的长,即为FE+EB的最小值.【解答】解:连接CF,∵等边△ABC中,AD是BC边上的中线∴AD是BC边上的高线,即AD垂直平分BC∴EB=EC,当B、F、E三点共线时,EF+EC=EF+BE=CF,∵等边△ABC中,F是AB边的中点,∴AD=CF=6,∴EF+BE的最小值为6,故选B10.A、B两地相距80km,已知乙的速度是甲的1.5倍,甲先由A去B,1小时后,乙再从A地出发去追甲,追到B地时,甲已早到20分钟,则甲的速度为()A.40km/h B.45km/h C.50km/h D.60km/h【考点】B7:分式方程的应用.【分析】设甲的速度是x千米/小时,B的速度是1.5x千米/小时,根据甲、乙行使相等距离而时间不同可列分式方程求解.【解答】解:设甲的速度是x千米/小时,B的速度是1.5x千米/小时,﹣1+=,x=40,经检验x=40是分式方程的解.答:甲的速度40千米/小时.二、填空题(每小题3分,共24分)11.计算:(π﹣2)0=1.【考点】6E:零指数幂.【分析】根据非零的零次幂等于,可得答案.【解答】解:(π﹣2)0=1,故答案为:1.12.多项式3x2﹣6x的公因式为3x.【考点】52:公因式.【分析】根据因式分解,可得答案.【解答】解:3x2﹣6x=3x(x﹣2),公因式是3x,故答案为:3x.13.若a2﹣b2=,a﹣b=,则a+b的值为.【考点】4F:平方差公式.【分析】已知第一个等式左边利用平方差公式化简,将a﹣b的值代入即可求出a+b的值.【解答】解:∵a2﹣b2=(a+b)(a﹣b)=,a﹣b=,∴a+b=.故答案为:.14.如图,已知△ABC的周长为27cm,AC=9cm,BC边上中线AD=6cm,△ABD 周长为19cm,AB=8cm.【考点】K2:三角形的角平分线、中线和高.【分析】设AB=xcm,BD=ycm,由三角形中线的定义得到BC=2BD=2ycm,再根据△ABC的周长为27cm,△ABD周长为19cm列出关于x、y方程组,解方程组即可.【解答】解:设AB=xcm,BD=ycm,∵AD是BC边的中线,∴BC=2BD=2ycm.由题意得,解得,所以AB=8cm.故答案为8cm.15.某厂接到加工720件衣服的订单,预计每天做48件,正好按时完成,后来客户要求提前5天交货,为保证按时完成任务,则每天应多做24件.【考点】B7:分式方程的应用.【分析】设每天应多做x件.根据实际所用的时间比原计划所用的时间提前5天列方程求解.【解答】解:设每天应多做x件,则依题意得:﹣=5,解得:x=24.经检验x=24是方程的根,答:每天应多做24件,故答案为24.16.已知关于x的分式方程的解是非负数,则m的取值范围是m ≥2且m≠3.【考点】B2:分式方程的解;C6:解一元一次不等式.【分析】解出分式方程,根据解是非负数求出m的取值范围,再根据x=1是分式方程的增根,求出此时m的值,得到答案.【解答】解:去分母得,m﹣3=x﹣1,解得x=m﹣2,由题意得,m﹣2≥0,解得,m≥2,x=1是分式方程的增根,所有当x=1时,方程无解,即m≠3,所以m的取值范围是m≥2且m≠3.故答案为:m≥2且m≠3.17.若m为正实数,且m2﹣m﹣1=0,则m2+=3.【考点】4C:完全平方公式.【分析】在m2﹣m﹣1=0同时除以m,得到,然后利用完全平方公式展开整理即可得解.【解答】解:在m2﹣m﹣1=0同时除以m,得:m﹣1﹣=0∴,=3,故答案为:3.18.如图,在△ABC中,∠A:∠ABC:∠ACB=3:5:10,B′为AC延长线上一点,A′是B′B延长线上一点,且△A′B′C≌△ABC,则∠BCA′:∠BCB′=1:4.【考点】KA:全等三角形的性质.【分析】根据三角形的内角和定理分别求出,∠A、∠ABC、∠ACB,再根据全等三角形对应角相等求出∠B′,∠A′CB′,全等三角形对应边相等可得BC=B′C,再求出∠BC A′,∠BC B′,然后相比即可.【解答】解:∵∠A:∠ABC:∠ACB=3:5:10,∴∠A=30°,∠ABC=50°,∠ACB=100°,∵△A′B′C≌△ABC,∴∠B′=∠B=50°,∠A′CB′=∠C=100°,BC=B′C,∴∠BC B′=180°﹣2×50°=80°,∠BC A′=100°﹣80°=20°,∴∠BC A′:∠BC B′=1:4.故答案为:1:4三、解答题(共66分)19.分解因式:(1)4a2﹣36(2)(x﹣2y)2+8xy.【考点】55:提公因式法与公式法的综合运用.【分析】(1)原式提取4,再利用平方差公式分解即可;(2)原式整理后,利用完全平方公式分解即可.【解答】解:(1)原式=4(a2﹣9)=4(a+3)(a﹣3);(2)原式=x2﹣4xy+4y2+8xy=x2+4xy+4y2=(x+2y)2.20.先化简,再求值:÷(x+1+),其中x=2018.【考点】6D:分式的化简求值.【分析】根据分式的混合运算顺序和法则化简原式,再将x的值代入即可得.【解答】解:原式=÷(+)=•=,当x=2018时,原式=.21.解方程:(1)﹣=1(2)=﹣1.【考点】B3:解分式方程.【分析】两分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)去分母得:x2﹣2x+2=x2﹣x,移项合并得:﹣x=﹣2,解得:x=2,经检验x=2是分式方程的解;(2)去分母得:15x﹣12=4x+10﹣3x+6,移项合并得:14x=28,解得:x=2,经检验x=2是增根,分式方程无解.22.如图,点B、E、C、F在同一条直线上,∠A=∠D,∠B=∠DEF,BE=CF.求证:AB=DE.【考点】KD:全等三角形的判定与性质.【分析】先证明BC=EF,然后依据AAS证明△ABC≌△DEF,最后依据全等三角形的性质进行证明即可.【解答】证明:∵BE=CF,∴BE+EC=CF+EC,即BC=EF.在△ABC和△DEF中,∴△ABC≌△DEF.∴AB=DE.23.如图,已知△ABC的三个顶点的坐标为A(﹣1,2),B(﹣4,1),C(﹣2,﹣2).(1)请在图中作出△ABC关于y轴对称的△A′B′C′;(2)分别写出点A′、B′、C′的坐标.【考点】P7:作图﹣轴对称变换.【分析】(1)直接利用关于y轴对称点的性质得出答案;(2)利用(1)中图形得出各点坐标.【解答】解:(1)如图所示:△A′B′C′即为所求;(2)A′(1,2)、B′(4,1)、C′(2,﹣2).24.2015年5月,某县突降暴雨,造成山林滑坡,桥梁垮塌,房屋大面积受损,该省民政厅急需将一批帐篷送往灾区,现有甲、乙两种货车,乙知甲种货车比乙种货车每辆车多装20件帐篷,且甲种货车装运1000件帐篷所用的车辆与乙车货车装运800件帐篷所用车辆相等.(1)求甲、乙两种货车每辆车可装多少件帐篷?(2)如果这批帐篷有1490件,用甲、乙两种汽车共16辆来装运,甲种车辆刚好装满,乙种车辆最后一辆只装了50件,其它装满,求甲、乙两辆汽车各有多少辆?【考点】B7:分式方程的应用;9A:二元一次方程组的应用.【分析】(1)可设甲种货车每辆车可装x件帐蓬,乙种货车每辆车可装y件帐蓬,根据等量关系:①甲种货车比乙种货车每辆车多装20件帐篷;②甲种货车装运1000件帐篷所用车辆与乙种货车装运800件帐蓬所用车辆相等;列出方程组求解即可;(2)可设甲种汽车有z辆,乙种汽车有(16﹣z)辆,根据等量关系:这批帐篷有1490件,列出方程求解即可.【解答】解:(1)设甲种货车每辆车可装x件帐蓬,乙种货车每辆车可装y件帐蓬,依题意有,解得,经检验,是原方程组的解.故甲种货车每辆车可装100件帐蓬,乙种货车每辆车可装80件帐蓬;(2)设甲种汽车有z辆,乙种汽车有(16﹣z)辆,依题意有100z+80(16﹣z﹣1)+50=1490,解得z=12,16﹣z=16﹣12=4.故甲种汽车有12辆,乙种汽车有4辆.25.如图,△ABC是等边三角形,D是三角形外一动点,满足∠ADB=60°,(1)当D点在AC的垂直平分线上时,求证:DA+DC=DB;(2)当D点不在AC的垂直平分线上时,(1)中的结论是否仍然成立?请说明理由;(3)当D点在如图的位置时,直接写出DA,DC,DB的数量关系,不必证明.【考点】KD:全等三角形的判定与性质;KG:线段垂直平分线的性质.【分析】(1)根据线段垂直平分线和等边三角形的性质可得AD=DC,∠ABD=30°,再由正弦定理可以证明DA+DC=DB;(2)延长DA到E,使得∠EBD=60,由已知可知△EBD是一个等边三角形,再证明△EBD≌△CBD,得出EA=DC,从而证明BD=ED=EA+AD=DC+AD;(3)可直接得DA,DC,DB的数量关系.【解答】证明:(1)点D只能在AC的下边,容易得到BD是AC的中垂线,因此AD=DC,∠ABD=30°,在三角形内由正弦定理可以得到=,可以很快得到BD=2AD=AD+AC;(2)延长DA到E,使得ED=BD,又因为∠ADB=60°因此△EBD是一个等边三角形,所以BE=ED=BD,∠EBD=60°,又因为△ABC是等边三角形,所以AB=BC,∠ABC=60°,所以∠EBA=∠DBC,在△EBA与△DBC中,因为,所以△ABE≌△CBD(SAS),因此EA=DC,所以BD=ED=EA+AD=DC+AD;(3)DC<DA+DB.26.在平面直角坐标系中,点A(0,a)、B(b,0)且a>|b|.(1)若a、b满足a2+b2﹣8a﹣4b+20=0.①求a、b的值;②如图1,在①的条件下,第一象限内以AB为斜边作等腰Rt△ABC,请求四边形AOBC的面积S;(2)如图2,若将线段AB沿x轴向正方向移动a个单位得到线段DE(D对应A,E对应B)连接DO,作EF⊥DO于F,连接AF、BF,判断AF与BF的关系,并说明理由.【考点】KY:三角形综合题.【分析】(1)①根据非负数的性质列出算式,求出a、b的值;②根据等腰直角三角形的性质求出AC、BC,根据三角形的面积公式计算即可;(2)作FG⊥y轴,FH⊥x轴垂足分别为G、H,证明四边形FHOG是正方形,得到OG=FH,∠GFH=90°,证明△AFG≌△BFH,根据全等三角形的性质计算即可.【解答】解:(1)①∵a2+b2﹣8a﹣4b+20=0,∴(a﹣4)2+(b﹣2)2=0,∴a=4,b=2;②∵A(0,4),B(2,0),∴AB==2,∵△ABC是等腰直角三角形,∴AC=BC=,∴四边形AOBC的面积S=×OA×OB+×AC×BC=4+5=9;(2)结论:FA=FB,FA⊥FB,理由如下:如图2,作FG⊥y轴,FH⊥x轴垂足分别为G、H,∵A(0,a)向右平移a个单位到D,∴点D坐标为(a,a),点E坐标为(a+b,0),∴∠DOE=45°,∵EF⊥OD,∴∠OFE=90°,∠FOE=∠FEO=45°,∴FO=EF,∴FH=OH=HE=(a+b),∴点F坐标为(,),∴FG=FH,四边形FHOG是正方形,∴OG=FH=,∠GFH=90°,∴AG=AO﹣OG=a﹣=,BH=OH﹣OB=﹣b=,∴AG=BH,在△AFG和△BFH中,,∴△AFG≌△BFH,∴FA=FB,∠AFG=∠BFH,∴∠AFB=∠AFG+∠BFG=∠BFH+∠BFG=90°,∴FA=FB,FA⊥FB.第21页(共21页)。

八年级(上学期)期末数学试卷(含答案解析)

八年级(上学期)期末数学试卷(含答案解析)

八年级(上学期)期末数学试卷(含答案解析)(时间120分钟,满分150分)题号一二三总分得分一、选择题(本大题共10小题,共40.0分)1.下列等式正确的是()A. x3•x-1=x-3B. x3•x-1=x2C. x3÷x-1=x2D. x3÷x-1=x-32.下列长度的三条线段能组成三角形的是()A. 3,4,7B. 3,4,8C. 3,4,5D. 3,3,73.在平面直角坐标系xOy中,若△ABC在第一象限,则△ABC关于x轴对称的图形所在的位置是()A. 第一象限B. 第二象限C. 第三象限D. 第四象限4.若分式有意义,则x应满足的条件是()A. x≠0B. x≠-2C. x≥-2D. x≤-25.如图,在Rt△ABC中,∠ACB=90°,分别以其三边向外作正方形,过点C作CK⊥AB交ID于点K,延长EB交AG于点L,若点L是AG的中点,△ABC的面积为20,则CK的值为()A. 4B. 5C. 2D. 46.某同学把一块三角形的玻璃打碎成三块(如图所示),现要到玻璃店其配一块完全一样的玻璃,应带第()块去配.A. ①B. ②C. ③D. ①②③都不可以7.运用完全平方公式(a-b)2=a2-2ab+b2计算(x-)2,则公式中的2ab是()A. xB. -xC. xD. 2x8.两个工程队共同参与一项筑路工程,甲队单独施工1个月完成总工程的,这时增加了乙队,两队共同工作了半个月,总工程全部完成.设乙队单独施工1个月完成总工程的,则可以表示“两队共同工作了半个月完成的工程量”的代数式是()A. B. C. D.9.如图,你能根据面积关系得到的数学公式是()A. a2-b2=(a+b)(a-b)B. (a+b)2=a2+2ab+b2C. (a-b)2=a2-2ab+b2D. a(a+b)=a2+ab10.如图,在△ABC中,∠ACB=90°,作CD⊥AB于点D,以AB为边作矩形ABEF,使得AF=AD,延长CD,交EF于点G,作AN⊥AC交GF于点N,作MN⊥AN交CB的延长线于点M,MN分别交BE,DG于点H,P,若NP=HP,NF=2,则四边形ABMN的面积为()A. 8B. 9C. 10D. 11二、填空题(本大题共6小题,共24.0分)11.若a+b=3,则a2-b2+6b=______;若2x+5y-3=0,则4x•32y=______.12.分解因式:m3-2m2+m=______.13.如图,在△ABC和△EDB中,∠C=∠EBD=90°,点E在AB上.若△ABC≌△EDB,AC=4,BC=3,则AE=______.14.如图,AE∥BD,C是BD上的点,且AB=BC,∠ACD=110°,则∠EAB=______度.15.如图,等边△ABC中,AD是BC边上的中线,且AD=4,E,P分别是AC,AD上的动点,则CP+EP的最小值等于______.16.如图,在Rt△ABC中,AB=AC,∠CBD=∠ABD,DE⊥BC,BC=10,则△DEC的周长= ______ .三、解答题(本大题共9小题,共86.0分)17.化简:(1+)(1-)+-2+×-()2.18.先化简,再求值:(x-2-),其中x=.19.如图,点B在线段AD上,BC∥DE,AB=ED,BC=DB.求证:∠A=∠E.20.如图,△ABC中,∠BAC=90°,AD⊥BC,垂足为D.求作∠ABC的平分线,分别交AD,AC于P,Q两点;并证明AP=AQ.(要求:尺规作图,保留作图痕迹,不写作法)21.如图,△ABC的周长为20,其中AB=8,(1)用直尺和圆规作AB的垂直平分线DE交AC于点E,垂足为D,连接EB;(保留作图痕迹,不要求写画法)(2)在(1)作出AB的垂直平分线DE后,求△CBE的周长.22.如图,在△ABC中,AC=BC=1,∠C=90°,E、F是AB上的动点,且∠ECF=45°,分别过E、F作BC、AC的垂线,垂足分别为H、G,两垂线交于点M.(1)当点E与点B重合时,请直接写出MH与AC的数量关系;(2)探索AF、EF、BE之间的数量关系,并证明你的结论;(3)以C为坐标原点,以BC所在的直线为x轴,建立直角坐标系,请画出坐标系并利用(2)中的结论证明MH•MG=.23.元旦节前夕,某花店购进康乃馨和玫瑰两种鲜花,销售过程中发现康乃馨比玫瑰销量大,店主决定将玫瑰每枝降价2元促销,降价后80元可购买玫瑰的数量是原来可购买玫瑰数量的1.25倍.(1)试问:降价后每枝玫瑰的售价是多少元?(2)根据销售情况,店主用不多于1000元的资金再次购进两种鲜花共180枝,康乃馨进价为6元/枝,玫瑰的进价是5元/枝.试问;至少需要购进多少枝玫瑰?24.已知a,b互为相反数,c,d互为倒数,x的平方等于4,试求x2-(a+b+cd)x+(a+b)2009+(-cd)2008的值.25.如图,在等腰△ABC中,AB=AC,点D为直线BC上一点,连接AD,以AD为腰在AD的右侧作等腰△ADE,AD=AE,∠BAC=∠DAE=a,连接CE.(1)如图1,当点D在线段BC上时,求证:△ABD≌△ACE;(2)当a=60°,①如图2,求证:CE∥AB;②探究线段CE、AB、CD之间的数量关系,请直接写出结论.答案和解析1.【答案】B【解析】解:A.x3•x-1=x3-1=x2,故本选项不合题意;B.x3•x-1=x3-1=x2,故本选项合题意;C.x3÷x-1=x3-(-1)=x4,故本选项不合题意;D.x3÷x-1=x3-(-1)=x4,故本选项不符合题意.故选:B.分别根据同底数幂的乘法除法法则,根据法则逐一判断即可.本题主要考查了同底数幂的乘法除法法则,熟记相关运算法则是解答本题的关键.2.【答案】C【解析】解:根据三角形的三边关系,得,A、3+4=7,不能组成三角形,不符合题意;B、3+4<8,不能够组成三角形,不符合题意;C、2+5>5,能组成三角形,符合题意;D、3+3<7,不能组成三角形,不符合题意.故选:C.根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析.此题考查了三角形的三边关系.判断能否组成三角形的简便方法是看较小的两个数的和是否大于第三个数.3.【答案】D【解析】解:∵△ABC在第一象限,∴△ABC关于x轴对称的图形在第四象限,故选:D.根据关于x轴对称的点的横坐标相等,纵坐标互为相反数求解可得.本题主要考查关于x、y轴对称点的坐标,解题的关键是掌握点P(x,y)关于x轴的对称点P′的坐标是(x,-y),关于y轴的对称点P′的坐标是(-x,y).4.【答案】B【解析】解:由题意得:x+2≠0,解得:x≠-2,故选:B.根据分式有意义的条件即可求解.本题考查的是分式有意义的条件的内容,根据分式有意义,分母不为零来求解.5.【答案】B【解析】解:由题意可知,AC=IC,BC=DC,∠ACB=∠ICD=90°,∴△ACB≌△ICD(SAS),∴∠CAB=∠CIK,∠ABC=∠IDC,延长KC交AB于点P,则KP⊥AB,在Rt△ABC中,∠ACB=90°,∠CAB+∠CBA=90°,在Rt△ACP中,∠APC=90°,∠ACP+∠CAB=90°,∴∠ACP=∠CBA=∠IDC,∵∠ACP=∠KCD,∴∠KCD=∠IDC,∴KC=KD,同理可知,IK=KC,∴KD=IK=KC,∴KC=ID=AB,∵AD∥EL,∴△ACB∽△BAL,∴AC:BC=BA:AL=2:1,∵△ABC的面积为20,∴AC•BC=40,∴BC=2,AC=4,∴AB=10,∴CK=5.故选:B.由题意可知,AC=IC,BC=DC,∠ACB=∠ICD=90°,所以△ACB≌△ICD(SAS),所以∠CAB=∠CIK,∠ABC=∠IDC,延长KC交AB于点P,则KP⊥AB,易证KD=IK=KC,所以KC=ID=AB,因为AD∥EL,所以△ACB∽BAL,则AC:BC=BA:AL=2:1,又△ABC的面积为20,所以AC•BC=40,则可得BC=2,AC=4,所以AB=10,则CK=5.本题利用正方形性质,平行线的性质和三角形相似等,关键是根据三角形相似找出对应边成比例.6.【答案】C【解析】解:第一块和第二块只保留了原三角形的一个角和部分边,根据这两块中的任一块均不能配一块与原来完全一样的;第三块不仅保留了原来三角形的两个角还保留了一边,则可以根据ASA来配一块一样的玻璃.应带③去.故选:C.已知三角形破损部分的边角,得到原来三角形的边角,根据三角形全等的判定方法,即可求解.此题主要考查学生对全等三角形的判定方法的灵活运用,要求对常用的几种方法熟练掌握.7.【答案】B【解析】解:(x-)2=x2-2x×+=x2-x+,所以公式中的2ab是-x.故选:B.利用完全平方公式计算(x-)2即可得到答案.本题考查了完全平方公式,属于基础题,熟记公式(a-b)2=a2-2ab+b2即可解题.8.【答案】D【解析】解:∵甲队单独施工1个月完成总工程的,乙队单独施工1个月完成总工程的,∴两队共同工作了半个月完成的工程量=(+)=+,故选:D.由题意甲队单独施工1个月完成总工程的,乙队单独施工1个月完成总工程的,求出两队共同工作了半个月完成的工程量即可.本题考查了列代数式,熟知甲队和乙队的工作效率是解题的关键.9.【答案】C【解析】解:从图中可知:阴影部分的面积是(a-b)2和b2,剩余的矩形面积是(a-b)b和(a-b)b,即大阴影部分的面积是(a-b)2,∴(a-b)2=a2-2ab+b2,故选:C.根据图形得出阴影部分的面积是(a-b)2和b2,剩余的矩形面积是(a-b)b和(a-b)b,即大阴影部分的面积是(a-b)2,即可得出选项.本题考查了完全平方公式的应用,主要考查学生的阅读能力和转化能力,题目比较好,有一定的难度.10.【答案】C【解析】解:∵CD⊥AB,∠F=90°,∴∠ADC=∠F=90°,∵AN⊥AC,∠DAF=90°,∴∠FAN+∠DAN=∠DAC+∠DAN=90°,∴∠FAN=∠DAC.在△ADC和△AFN中,,∴△ADC≌△AFN(ASA),∴CD=FN=2,AC=AN.∵AN⊥AC,MN⊥AN,∴∠ACB=∠CAN=∠ANM=90°,∴四边形ACMN是矩形,∴四边形ACMN是正方形,∵∠CDB=∠DBE=90°,∴CG∥BE,又∵NP=PH,∴NG=GE,设NG=GE=x,则FG=2+x=AD,DB=GE=x,∵Rt△ACB中,CD⊥AB,∴△ADC∽△CDB,∴.∴CD2=AD×DB,∴22=(2+x)x,即x2+2x=4.四边形ABMN的面积=S正方形ACMN-S△ABC=AC2-=(AD2+CD2)-=(2+x)2+22-=x2+2x+6=4+6=10,故选:C.依据条件可判定△ADC≌△AFN(ASA),即可得到CD=FN=2,AC=AN,再根据四边形ACMN是矩形,即可得到四边形ACMN是正方形;设NG=GE=x,则FG=2+x=AD,DB=GE=x,根据△ADC∽△CDB,可得CD2=AD×DB,即可得出x2+2x=4,再根据四边形ABMN的面积=S正方形ACMN-S△ABC进行计算,即可得出结论.本题主要考查了矩形的性质,正方形的判定与性质以及相似三角形、全等三角形的综合运用,解决问题的关键是先判定四边形ACMN是正方形,四边形ABMN的面积=S正方形ACMN-S△ABC,然后利用整体代入方法求解.11.【答案】9 8【解析】解:∵a+b=3,∴a2-b2+6b=(a+b)(a-b)+6b=3(a-b)+6b=3(a+b)=3×3=9;∵2x+5y-3=0,∴2x+5y=3,∴4x•32y=22x•25y=22x+5y=23=8.故答案为:9,8.把a2-b2+6b写成(a+b)(a-b)+6b=3(a-b)+6b=3(a+b),再把a+b=3代入即可求解;4x•32y=22x•25y=22x+5y,再把2x+5y=3代入即可求解.本题主要考查了平方差公式,同底数幂的乘法以及幂的乘方,熟记幂的运算法则是解答本题的关键.12.【答案】m(m-1)2【解析】解:m3-2m2+m=m(m2-2m+1)=m(m-1)2.故答案为m(m-1)2.先提取公因式m,再根据完全平方公式进行二次分解.完全平方公式:a2-2ab+b2=(a-b)2.本题考查了提公因式法,公式法分解因式,提取公因式后利用完全平方公式进行二次分解,注意分解要彻底.13.【答案】1【解析】解:在Rt△ACB中,∠C=90°,AC=4,BC=3,由勾股定理得:AB=5,∵△ABC≌△EDB,∴BE=AC=4,∴AE=5-4=1,故答案为:1.根据勾股定理求出AB,根据全等得出BE=AC=4,即可求出答案.本题考查了全等三角形的性质和勾股定理的应用,能求出BE的长是解此题的关键,全等三角形的对应角相等,对应边相等.14.【答案】40【解析】解:∵AB=BC,∴∠ACB=∠BAC∵∠ACD=110°∴∠ACB=∠BAC=70°∴∠B=∠40°,∵AE∥BD,∴∠EAB=40°,故答案为40.首先利用∠ACD=110°求得∠ACB与∠BAC的度数,然后利用三角形内角和定理求得∠B的度数,然后利用平行线的性质求得结论即可.本题考查了等腰三角形的性质及平行线的性质,题目相对比较简单,属于基础题.15.【答案】4【解析】解:作点E关于AD的对称点F,连接CF,∵△ABC是等边三角形,AD是BC边上的中线,∴AD⊥BC,∴AD是BC的垂直平分线,∴点E关于AD的对应点为点F,∴CF就是EP+CP的最小值.∵△ABC是等边三角形,E是AC边的中点,∴F是AB的中点,∴CF是△ABC的中线,∴CF=AD=4,即EP+CP的最小值为4,故答案为:4.要求EP+CP的最小值,需考虑通过作辅助线转化EP,CP的值,从而找出其最小值求解.本题考查了等边三角形的性质和轴对称等知识,熟练掌握等边三角形和轴对称的性质是本题的关键.16.【答案】10【解析】解:∵∠CBD=∠ABD,DE⊥BC,∠A=90°,∴△ABD≌△EBD,∴AB=BE,AD=DE.又∵AB=AC,∴CD+DE=CD+AD=AC=AB=BE,∴△DEC的周长=CD+DE+CE=BE+CE=BC=10.∴△DEC的周长=10.故填10.从已知条件开始思考,利用角的平分线上的点到角的两边的距离相等进行相等线段的转移,可得答案.本题考查了角平分线的性质;解题时主要利用了角的平分线上的点到角的两边的距离相等证明三角形全等,然后利用和差关系求值.17.【答案】解:原式=1-2+5-8+6-3×2=-1-3+6-6=-1-3.【解析】先利用平方差公式、二次根式的性质计算、化简,再计算加减即可.本题主要考查二次根式的混合运算,解题的关键是掌握二次根式的混合运算顺序和运算法则、平方差公式.18.【答案】解:原式=()÷=()÷=÷==2x-4当x=时,原式=【解析】先化简分式,然后将x=代入求值即可.本题考查了分式的化简求值,熟练掌握分式混合运算法则是解题的关键.19.【答案】证明:如图,∵BC∥DE,∴∠ABC=∠BDE.在△ABC与△EDB中,,∴△ABC≌△EDB(SAS),∴∠A=∠E.【解析】直接利用平行线的性质结合全等三角形的判定方法得出答案.此题主要考查了全等三角形的判定与性质,正确掌握全等三角形的判定方法是解题关键.20.【答案】解:BQ就是所求的∠ABC的平分线,P、Q就是所求作的点.证明:∵AD⊥BC,∴∠ADB=90°,∴∠BPD+∠PBD=90°.∵∠BAC=90°,∴∠AQP+∠ABQ=90°.∵∠ABQ=∠PBD,∴∠BPD=∠AQP.∵∠BPD=∠APQ,∴∠APQ=∠AQP,∴AP=AQ.【解析】本题考查的是作图-基本作图,熟知角平分线的作法和性质是解答此题的关键.根据角平分线的性质作出BQ即可.先根据垂直的定义得出∠BPD+∠PBD=90°.再根据余角的定义得出∠AQP+∠ABQ=90°,根据角平分线的性质及对顶角得出可知∠APQ=∠AQP,据此可得出结论.21.【答案】解:(1)如图,BE为所作;(2)∵DE是AB的垂直平分线,∴EA=EB,∴EB+EC=EA+EC=AC,∵△ABC的周长为20,∴AC+BC=20-AB=20-8=12,∴△CBE的周长=BE+EC+BC=AE+EC+BC=AC+BC=12.【解析】本题考查了作图-基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).(1)利用基本作图作AB的垂直平分线;(2)根据垂直平分线的性质得到EA=EB,则EB+EC=AC,然后利用△ABC的周长为20得到AC+BC=12,从而得到△CBE的周长.22.【答案】解:(1)如图1,当点E与点B重合时,点H与点B重合,∴MB⊥BC,∠MBC=90°,∵MG⊥AC,∴∠MGC=90°=∠C=∠MBC,∴MG∥BC,四边形MGCB是矩形,∴MH=MB=CG,∵∠FCE=45°=∠ABC,∠A=∠ACF=45°,∴CF=AF=BF,∴FG是△ACB的中位线,∴GC=AC=MH,即MH=AC.(2)AF、EF、BE之间的数量关系是EF2=AF2+BE2,证明如下:如图2所示,∵AC=BC,∠ACB=90°,∴∠A=∠5=45°.将△ACF顺时针旋转90°至△BCD,则CF=CD,∠1=∠4,∠A=∠6=45°;BD=AF;∵∠2=45°,∴∠1+∠3=∠3+∠4=45°,∴∠DCE=∠2.在△ECF和△ECD中,,∴△ECF≌△ECD(SAS),∴EF=DE.∵∠5=45°,∴∠DBE=90°,∴DE2=BD2+BE2,即EF2=AF2+BE2;(3)如图,以C为坐标原点,以BC所在的直线为x轴,建立直角坐标系,设M(a,b),∵OA=OB=1,∴∠GAF=∠AFG=∠MFE=∠HEB=∠HBE=45°,∴△AGF和△EFM和△BEH都是等腰直角三角形,∴AG=GF=1-b,BH=EH=1-a,FM=ME=a+b-1,∴AF2=2(1-b)2,EF2=2(a+b-1)2,BE2=2(1-a)2,由(2)可知EF2=AF2+BE2,∴2(a+b-1)2=2(1-b)2+2(1-a)2,∴2ab=1,∴ab=,即MH•MG=.【解析】(1)当点E与点B重合时,点H与点B重合,可得MG∥BC,四边形MGCB是矩形,进一步得到FG是△ACB的中位线,从而得出结论;(2)根据SAS可证△ECF≌△ECD,根据全等三角形的性质和勾股定理即可得出答案;(3)以C为坐标原点,以BC所在的直线为x轴,建立直角坐标系,设M(a,b),可得出AG=GF=1-b,BH=EH=1-a,FM=ME=a+b-1,由(2)的结论可得出a,b的等式,整理即可得出结论.此题是三角形综合题,考查了等腰直角三角形的判定和性质,平行线的判定和性质,矩形的判定和性质,三角形中位线的性质,全等三角形的判定和性质,勾股定理,坐标与图形的性质等知识,熟练掌握等腰直角三角形的性质及全等三角形的判定与性质是解题的关键.23.【答案】解:(1)设降价后每枝玫瑰的售价是x元,则降价前每枝玫瑰的售价是(x+2)元,根据题意得:=×1.25,解得:x=8,经检验,x=8是原方程的解.答:降价后每枝玫瑰的售价是8元.(2)设购进玫瑰y枝,则购进康乃馨(180-y)枝,根据题意得:5y+6(180-y)≤1000,解得:y≥80.答:至少购进玫瑰80枝.【解析】(1)设降价后每枝玫瑰的售价是x元,则降价前每枝玫瑰的售价是(x+2)元,根据数量=总价÷单价结合降价后80元可购买玫瑰的数量是原来可购买玫瑰数量的1.25倍,即可得出关于x的分式方程,解之经检验即可得出结论;(2)设购进玫瑰y枝,则购进康乃馨(180-y)枝,根据总价=单价×数量结合总价不多于1000元,即可得出关于y的一元一次不等式,解之取其最小值即可得出结论.本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量之间的关系,正确列出一元一次不等式.24.【答案】解:∵a,b互为相反数,∴a+b=0,∵c,d互为倒数,∴cd=1,∵x的平方等于4,∴x=±2,∴x2-(a+b+cd)x+(a+b)2009+(-cd)2008=22-(0+1)×2+02009+(-1)2008=4-2+0+1=3,x2-(a+b+cd)x+(a+b)2009+(-cd)2008=(-2)2-(0+1)×(-2)+02009+(-1)2008=4+2+1=7,综上所述,代数式的值为3或7.【解析】根据相反数的定义求出a+b,根据倒数的定义求出cd的值,再根据有理数的乘方求出x,然后代入代数式进行计算即可得解.本题考查了代数式求值,相反数的定义,倒数的定义,是基础题,熟记概念与性质是解题的关键.25.【答案】证明:(1)∵∠BAC=∠DAE=a,∴∠BAD=∠CAE,在△BAD和△CAE中,,∴△BAD≌△CAE(SAS);(2)①∵∠BAC=∠DAE=a,∴∠BAD=∠CAE,由(1)同理可证△BAD≌△CAE,∴∠ABD=∠ACE,∵α=60°,AB=AC,∴△ABC是等边三角形,∴∠ABC=∠ACB=60°,∴∠ABC+∠BCE=60°+120°=180°,∴CE∥AB;②当点D在BC延长线上时,∵△BAD≌△CAE,∴CE=BD=BC+CD=AB+CD;当点D在BC上时,∵△BAD≌△CAE,∴CE=BD=BC-CD=AB-CD;当点D在线段CB的延长线上时,∵△BAD≌△CAE,∴CE=BD=CD-AB.综上所述:当点D在BC延长线上时,CE=AB+CD;当点D在BC上时,CE=AB-CD;当点D在线段CB的延长线上时,CE=CD-AB.【解析】(1)利用SAS即可证明△BAD≌△CAE;(2)①当α=60°,AB=AC,得△ABC是等边三角形,由(1)同理可证△BAD≌△CAE,可得∠ABC+∠BCE=60°+120°=180°,即可证明结论;②分三种情形:当点D在BC延长线上时,当点D在BC上时,或当点D在线段CB的延长线上时,分别根据全等三角形的性质得出CE=BD,从而解决问题.本题主要考查了全等三角形的判定与性质,等边三角形的判定与性质,平行线的判定等知识,证明△BAD≌△CAE是解题的关键,注意分三种情况.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【常考题】八年级数学上期末试题及答案一、选择题1.如图所示,要使一个六边形木架在同一平面内不变形,至少还要再钉上( )根木条.A .1B .2C .3D .42.通过计算几何图形的面积可表示代数恒等式,图中可表示的代数恒等式是( )A .22()()a b a b a b +-=-B .222()2a b a ab b +=++C .22()22a a b a ab +=+D .222()2a b a ab b -=-+ 3.如果一个正多边形的一个外角为30°,那么这个正多边形的边数是( ) A .6B .11C .12D .18 4.下列各因式分解的结果正确的是( ) A .()321a a a a -=-B .2()b ab b b b a ++=+C .2212(1)x x x -+=-D .22()()x y x y x y +=+-5.下列运算中,结果是a 6的是( )A .a 2•a 3B .a 12÷a 2C .(a 3)3D .(﹣a)66.如图,在△ABC 中,点D 在BC 上,AB=AD=DC ,∠B=80°,则∠C 的度数为( )A .30°B .40°C .45°D .60°7.我们已经接触了很多代数恒等式,知道可以用一些硬纸片拼成的图形面积来解释一些代数恒等式.例如图①可以用来解释(a +b)2-(a -b)2=4ab.那么通过图②中阴影部分面积的计算验证了一个恒等式,此等式是( )A.a2-b2=(a+b)(a-b)B.(a-b)2=a2-2ab+b2C.(a+b)2=a2+2ab+b2D.(a-b)(a+2b)=a2+ab-b28.如果2x+ax+1 是一个完全平方公式,那么a的值是()A.2 B.-2 C.±2 D.±19.甲、乙两个搬运工搬运某种货物,已知乙比甲每小时多搬运600kg,甲搬运5000kg所用的时间与乙搬运8000kg所用的时间相等,求甲、乙两人每小时分别搬运多少千克货物.设甲每小时搬运xkg货物,则可列方程为A.B.C.D.10.如图,在△ABC中,以点B为圆心,以BA长为半径画弧交边BC于点D,连接AD.若∠B=40°,∠C=36°,则∠DAC的度数是()A.70°B.44°C.34°D.24°11.如图,把△ABC纸片沿DE折叠,当点A落在四边形BCDE内部时,则∠A与∠1+∠2之间有一种数量关系始终保持不变.请试着找一找这个规律,你发现的规律是()A.∠A=∠1+∠2B.2∠A=∠1+∠2C.3∠A=2∠1+∠2D.3∠A=2(∠1+∠2)12.如图,Rt△ABC中,AD是∠BAC的平分线,DE⊥AB,垂足为E,若AB=10cm,AC=6cm,则BE的长度为( )A.10cm B.6cm C.4cm D.2cm二、填空题13.已知23ab=,则a ba b-+=__________.14.若关于x的分式方程x2322m mx x++=--的解为正实数,则实数m的取值范围是____.15.如图,已知△ABC 中,BC=4,AB 的垂直平分线交AC 于点D ,若AC=6,则△BCD 的周长=_________16.已知2m =a ,32n =b ,则23m +10n =________.17.已知:如图△ABC 中,∠B =50°,∠C =90°,在射线BA 上找一点D ,使△ACD 为等腰三角形,则∠ACD 的度数为_____.18.若分式21x x -+的值为0,则x=____. 19.若m 为实数,分式()22x x x m ++不是最简分式,则m =______. 20.已知16x x +=,则221x x+=______ 三、解答题21.已知:如图,//AD BC ,DB 平分ADC ∠,CE 平分BCD ∠,交AB 于点E ,BD 于点O ,求证:点O 到EB 与ED 的距离相等.22.(1)计算:()108613333π-⎛⎫--÷+ ⎪⎝⎭ (2)因式分解:22312x y -23.先化简,再求值:22211111x x x x x ⎛⎫-++÷ ⎪-+⎝⎭,其中x =-2. 24.先化简,再求值:(442a a --﹣a ﹣2)÷2444a a a --+.其中a 与2,3构成△ABC 的三边,且a 为整数.25.某商场家电专柜购进一批甲,乙两种电器,甲种电器共用了10 350元,乙种电器共用了9 600元,甲种电器的件数是乙种电器的1.5倍,甲种电器每件的进价比乙种电器每件的进价少90元.(1)甲、乙两种电器各购进多少件?(2)商场购进两种电器后,按进价提高40%后标价销售,很快全部售完,求售完这批电器商场共获利多少元?【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】从一个多边形的一个顶点出发,能做(n-3)条对角线,把三角形分成(n-2)个三角形.【详解】解:根据三角形的稳定性,要使六边形木架不变形,至少再钉上3根木条;要使一个n 边形木架不变形,至少再钉上(n-3)根木条.故选:C.【点睛】本题考查了多边形以及三角形的稳定性;掌握从一个顶点把多边形分成三角形的对角线条数是n-3.2.A解析:A【解析】【分析】根据阴影部分面积的两种表示方法,即可解答.【详解】图1中阴影部分的面积为:22a b -,图2中的面积为:()()a b a b +-,则22()()a b a b a b +-=-故选:A.【点睛】本题考查了平方差公式的几何背景,解决本题的关键是表示阴影部分的面积. 3.C解析:C试题分析:这个正多边形的边数:360°÷30°=12,故选C.考点:多边形内角与外角.4.C解析:C【解析】【分析】将多项式写成整式乘积的形式即是因式分解,且分解到不能再分解为止,根据定义依次判断即可.【详解】()321-=-=a(a+1)(a-1),故A错误;a a a a2(1)++=++,故B错误;b ab b b b a22-+=-,故C正确;12(1)x x x22x y+不能分解因式,故D错误,故选:C.【点睛】此题考查因式分解的定义,熟记定义并掌握因式分解的方法及分解的要求是解题的关键.5.D解析:D【解析】【分析】分别利用幂的乘方运算和合并同类项法则分别化简求出答案.【详解】解:A、a2•a3=a5,故此选项错误;B、122÷= a10,故此选项错误;a aC、(a3)3=a9,故此选项错误;D、(-a)6=a6,故此选项正确.故选D.【点睛】此题主要考查了合并同类项法则以及幂的乘方运算等知识,正确运用相关法则是解题关键.6.B解析:B【解析】【分析】先根据等腰三角形的性质求出∠ADB的度数,再由平角的定义得出∠ADC的度数,根据等腰三角形的性质即可得出结论.解:∵△ABD中,AB=AD,∠B=80°,∴∠B=∠ADB=80°,∴∠ADC=180°﹣∠ADB=100°,∵AD=CD,∴∠C=18018010040.22ADC-︒︒-=︒=︒∠故选B.考点:等腰三角形的性质.7.B解析:B【解析】图(4)中,∵S正方形=a2-2b(a-b)-b2=a2-2ab+b2=(a-b)2,∴(a-b)2=a2-2ab+b2.故选B8.C解析:C【解析】【分析】【详解】解:根据完全平方公式可得:a=±2×1=±2.考点:完全平方公式.9.B解析:B【解析】甲种机器人每小时搬运x千克,则乙种机器人每小时搬运(x+600)千克,由题意得:,故选B.【点睛】本题考查了列分时方程解实际问题的运用,解答时根据甲搬运5000kg所用时间与乙搬运8000kg所用时间相等建立方程是关键.10.C解析:C【解析】【分析】易得△ABD为等腰三角形,根据顶角可算出底角,再用三角形外角性质可求出∠DAC【详解】∵AB=BD,∠B=40°,∴∠ADB=70°,∵∠C=36°,∴∠DAC=∠ADB ﹣∠C=34°.故选C.【点睛】本题考查三角形的角度计算,熟练掌握三角形外角性质是解题的关键.11.B解析:B【解析】【分析】根据四边形的内角和为360°、平角的定义及翻折的性质,就可求出2∠A=∠1+∠2这一始终保持不变的性质.【详解】∵在四边形ADA′E 中,∠A+∠A′+∠ADA′+∠AEA′=360°,则2∠A+(180°-∠2)+(180°-∠1)=360°,∴可得2∠A=∠1+∠2.故选:B【点睛】本题主要考查四边形的内角和及翻折的性质特点,解决本题的关键是熟记翻折的性质.12.C解析:C【解析】试题解析:∵AD 是∠BAC 的平分线,∴CD=DE ,在Rt △ACD 和Rt △AED 中,{CD DE AD AD==, ∴Rt △ACD ≌Rt △AED (HL ),∴AE=AC=6cm ,∵AB=10cm ,∴EB=4cm .故选C .二、填空题13.【解析】【分析】由已知设a=2t 则b=3t 代入所求代数式化简即可得答案【详解】设a=2t ∵∴b=3t ∴==故答案为:【点睛】本题考查了代数式的求值把a=b 代入后计算比较麻烦采用参数的方法使运算简便灵解析:15- 【解析】【分析】由已知设a=2t ,则b=3t ,代入所求代数式化简即可得答案.【详解】设a=2t , ∵23a b =, ∴b=3t , ∴a b a b -+=2323t t t t -+=15-. 故答案为:15-【点睛】 本题考查了代数式的求值,把a=23b 代入后,计算比较麻烦,采用参数的方法,使运算简便,灵活运用参数方法是解题关键. 14.m <6且m≠2【解析】【分析】利用解分式方程的一般步骤解出方程根据题意列出不等式解不等式即可【详解】方程两边同乘(x-2)得x+m-2m=3x-6解得x=由题意得>0解得m <6∵≠2∴m≠2∴m <6解析:m <6且m≠2.【解析】【分析】利用解分式方程的一般步骤解出方程,根据题意列出不等式,解不等式即可.【详解】x 2322m m x x++=--, 方程两边同乘(x-2)得,x+m-2m=3x-6,解得,x=6-2m , 由题意得,6-2m >0, 解得,m <6, ∵6-2m ≠2, ∴m≠2, ∴m<6且m≠2.【点睛】要注意的是分式的分母暗含着不等于零这个条件,这也是易错点.15.10【解析】【分析】根据AB 的垂直平分线交AC 于点D 得DA=DB 再代入数值即可得出结论【详解】如图所示AB 的垂直平分线交AC 于点D 则DA=DB∵BC=4AC=6∴BC+CD+DB=BC+CD+DA=解析:10【解析】【分析】根据AB 的垂直平分线交AC 于点D ,得DA=DB ,再代入数值即可得出结论.【详解】如图所示,AB 的垂直平分线交AC 于点D ,则DA=DB ,∵BC=4,AC=6,∴BC+CD+DB=BC+CD+DA=BC+AC=10.则△BCD 的周长为10.故答案为10.【点睛】本题考查了线段垂直平分线的性质,解题的关键是熟练的掌握线段垂直平分线的性质.16.a3b2【解析】试题解析:∵32n =b ∴25n=b ∴23m +10n =(2m)3×(25n)2=a3b 2故答案为a3b2解析:a 3b 2【解析】试题解析:∵32n =b ,∴25n =b∴23m +10n =(2m )3×(25n )2= a 3b 2故答案为a 3b 217.70°或40°或20°【解析】【分析】分三种情况:①当AC =AD 时②当CD′=AD ′时③当AC =AD ″时分别根据等腰三角形的性质和三角形内角和定理求解即可【详解】解:∵∠B =50°∠C =90°∴∠B解析:70°或40°或20°【解析】【分析】分三种情况:①当AC =AD 时,②当CD′=AD′时,③当AC =AD″时,分别根据等腰三角形的性质和三角形内角和定理求解即可.【详解】解:∵∠B =50°,∠C =90°,∴∠BAC =90°-50°=40°,如图,有三种情况:①当AC =AD 时,∠ACD =()1180402??=70°;②当CD′=AD′时,∠ACD′=∠BAC=40°;③当AC=AD″时,∠ACD″=12∠BAC=20°,故答案为:70°或40°或20°【点睛】本题考查等腰三角形的判定和性质以及三角形的内角和定理等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.18.2【解析】【分析】根据分式的值为零的条件得到x-2=0且x≠0易得x=2【详解】∵分式的值为0∴x−2=0且x≠0∴x=2故答案为2【点睛】本题考查了分式的值为零的条件解题的关键是熟练的掌握分式的值解析:2【解析】【分析】根据分式的值为零的条件得到x-2=0且x≠0,易得x=2.【详解】∵分式21xx-+的值为0,∴x−2=0且x≠0,∴x=2.故答案为2.【点睛】本题考查了分式的值为零的条件,解题的关键是熟练的掌握分式的值为零的条件. 19.0或-4【解析】【分析】由分式不是最简分式可得x或x+2是x2+m的一个因式分含x和x+2两种情况根据多项式乘以多项式的运算法则求出m的值即可【详解】∵分式不是最简分式∴x或x+2是x2+m的一个因解析:0或-4【解析】【分析】由分式()22x xx m++不是最简分式可得x或x+2是x2+m的一个因式,分含x和x+2两种情况,根据多项式乘以多项式的运算法则求出m的值即可.【详解】∵分式()22x xx m++不是最简分式,∴x或x+2是x2+m的一个因式,当x是x2+m的一个因式x时,设另一个因式为x+a,则有x (x+a )=x 2+ax=x 2+m ,∴m=0,当x 或x+2是x 2+m 的一个因式时,设另一个因式为x+a ,则有(x+2)(x+a)=x 2+(a+2)x+2a=x 2+m ,∴202a m a +=⎧⎨=⎩, 解得:24a m =-⎧⎨=-⎩, 故答案为:0或-4.【点睛】本题考查最简分式的定义及多项式乘以多项式,根据题意得出x 或x+2是x 2+m 的一个因式是解题关键.20.34【解析】∵∴=故答案为34解析:34【解析】 ∵16x x +=,∴221x x +=22126236234x x ⎛⎫+-=-=-= ⎪⎝⎭, 故答案为34. 三、解答题21.见解析.【解析】【分析】根据平行线的性质和角平分线的定义得到∠DOC=90°,进一步得到()CDO CBO ASA ∆≅∆,得出DO=BO,则CE 是BD 的垂直平分线,根据等腰三角形的三线合一的性质得出EC 平分∠BED ,从而得证.【详解】证明:∵AD ∥BC ,∴∠ADC+∠BCD=180°,∵DB 平分∠ADC ,CE 平分∠BCD ,∴∠ODC+∠OCD=11802︒⨯=90°, ∴∠DOC=90°,又CE 平分∠BCD ,CO=CO,易证()CDO CBO ASA ∆≅∆∴DO=BO,∴CE 是BD 的垂直平分线,∴EB=ED ,又∠DOC=90°,∴EC 平分∠BED ,∴点O 到EB 与ED 的距离相等.【点睛】本题考查的是平行线的性质、角平分线的性质,全等三角形的判定,掌握平行线的判定定理和性质定理是解题的关键.22.(1)5-;(2)3(2)(2)x y x y +-.【解析】【分析】(1)先算幂的运算,再算乘除,加减;(2)先提公因式,再运用平方差公式.【详解】(1)解:原式2133=-+193=-+5=-(2)解:原式223(4)x y =-3(2)(2)x y x y =+-【点睛】考核知识点:整式运算,因式分解.掌握基本方法是关键.23.21x x+;﹣52 【解析】【分析】先分解括号内的第一部分,再算括号内的加法,同时把除法变成乘法,约分后代入求出即可.【详解】解:原式=[2(1)(1)(1)x x x -+-+1x ]÷11x + =(11x x -++1x)•(x +1) =21(1)x x x ++•(x +1) =21x x+, 当x =﹣2时,原式=2(2)12-+- =﹣52. 【点睛】本题考查了分式的混合运算和求值,主要考查学生的化简能力和计算能力,题目比较好.24.﹣a 2+2a ,-3【解析】分析:先算减法,再把除法变成乘法,算乘法,求出a ,最后代入请求出即可. 详解:原式22(44)(4)(2)24a a a a a ----=⋅--, 22(4)(2)2.24a a a a a a a ---=⋅=-+-- ∵a 与2,3构成△ABC 的三边,且a 为整数,∴a 为2、3、4,当a =2时,a −2=0,不行舍去;当a =4时,a −4=0,不行,舍去;当a =3时,原式=−3.点睛:考查分式混合运算以及三角形的三边关系,掌握分式混合运算的法则是解题的关键.25.(1)甲购进45件,乙购进30件;(2)7980元【解析】试题分析:设乙种电器购进x 件,则甲种电器购进1.5x 件,根据甲种电器每件的进价比乙种电器每件的进价少90元,列方程求解即可.试题解析:(1)设乙种电器购进x 件,则甲种电器购进1.5x 件, 依题意得960010350901.5x x-=, 解得:x =30,经检验x =30是原方程的解, 答:甲种电器购进45件,乙种电器购进30件.(2)售完这批电器商场共获利(10350+9600)×40%=7980元. 答:售完这批电器商场共获利7980元.。

相关文档
最新文档