2013年中考数学专题二 分类讨论思想复习题及答案
中考数学复习专题-开放性问题(含详细参考答案)

中考数学复习专题-开放性问题一、中考专题诠释开放型问题是相对于有明确条件和明确结论的封闭型问题而言的,它是条件或结论给定不完全、答案不唯一的一类问题.这类试题已成为近年中考的热点,重在考查同学们分析、探索能力以及思维的发散性,但难度适中.根据其特征大致可分为:条件开放型、结论开放型、方法开放型和编制开放型等四类.二、解题策略与解法精讲解开放性的题目时,要先进行观察、试验、类比、归纳、猜测出结论或条件,然后严格证明;同时,通常要结合以下数学思想方法:分类讨论,数形结合,分析综合,归纳猜想,构建数学模型等。
三、中考考点精讲考点一:条件开放型条件开放题是指结论给定,条件未知或不全,需探求与结论相对应的条件.解这种开放问题的一般思路是:由已知的结论反思题目应具备怎样的条件,即从题目的结论出发,逆向追索,逐步探求.例1 (义乌市)如图,在△ABC中,点D是BC的中点,作射线AD,在线段AD及其延长线上分别取点E、F,连接CE、BF.添加一个条件,使得△BDF≌△CDE,并加以证明.你添加的条件是.(不添加辅助线).考点:全等三角形的判定。
810360专题:开放型。
分析:由已知可证∠ECD﹦∠FBD,又∠EDC﹦∠FDB,因为三角形全等条件中必须是三个元素,并且一定有一组对应边相等.故添加的条件是:DE=DF(或CE∥BF或∠ECD=∠DBF 或∠DEC=∠DFB等);解答:解:(1)添加的条件是:DE=DF(或CE∥BF或∠ECD=∠DBF或∠DEC=∠DFB等).(2)证明:在△BDF和△CDE中∵∴△BDF≌△CDE.点评:三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.考点二:结论开放型:给出问题的条件,让解题者根据条件探索相应的结论并且符合条件的结论往往呈现多样性,这些问题都是结论开放问题.这类问题的解题思路是:充分利用已知条件或图形特征,进行猜想、类比、联想、归纳,透彻分析出给定条件下可能存在的结论,然后经过论证作出取舍.例2 (宁德)如图,点E、F分别是AD上的两点,AB∥CD,AB=CD,AF=DE.问:线段CE、BF有什么数量关系和位置关系?并加以证明.考点:全等三角形的判定与性质;平行线的性质;平行线的判定与性质。
2013年浙江省宁波地区中考数学复习专题讲座六:数学思想方法(二)(含详细参考答案)

2013年中考数学复习专题讲座六:数学思想方法(二)一、中考专题诠释数学思想方法是指对数学知识和方法形成的规律性的理性认识,是解决数学问题的根本策略。
数学思想方法揭示概念、原理、规律的本质,是沟通基础知识与能力的桥梁,是数学知识的重要组成部分。
数学思想方法是数学知识在更高层次上的抽象和概括,它蕴含于数学知识的发生、发展和应用的过程中。
抓住数学思想方法,善于迅速调用数学思想方法,更是提高解题能力根本之所在.因此,在复习时要注意体会教材例题、习题以及中考试题中所体现的数学思想和方法,培养用数学思想方法解决问题的意识.二、解题策略和解法精讲数学思想方法是数学的精髓,是读书由厚到薄的升华,在复习中一定要注重培养在解题中提炼数学思想的习惯,中考常用到的数学思想方法有:整体思想、转化思想、函数与方程思想、数形结合思想、分类讨论思想等.在中考复习备考阶段,教师应指导学生系统总结这些数学思想与方法,掌握了它的实质,就可以把所学的知识融会贯通,解题时可以举一反三。
三、中考考点精讲考点四:方程思想从分析问题的数量关系入手,适当设定未知数,把所研究的数学问题中已知量和未知量之间的数量关系,转化为方程或方程组的数学模型,从而使问题得到解决的思维方法,这就是方程思想。
用方程思想解题的关键是利用已知条件或公式、定理中的已知结论构造方程(组)。
这种思想在代数、几何及生活实际中有着广泛的应用。
例1 (2012•广东)据媒体报道,我国2009年公民出境旅游总人数约5000万人次,2011年公民出境旅游总人数约7200万人次,若2010年、2011年公民出境旅游总人数逐年递增,请解答下列问题:(1)求这两年我国公民出境旅游总人数的年平均增长率;(2)如果2012年仍保持相同的年平均增长率,请你预测2012年我国公民出境旅游总人数约多少万人次?考点:一元二次方程的应用。
专题:增长率问题。
分析:(1)设年平均增长率为x.根据题意2010年公民出境旅游总人数为 5000(1+x)万人次,2011年公民出境旅游总人数 5000(1+x)2 万人次.根据题意得方程求解;(2)2012年我国公民出境旅游总人数约7200(1+x)万人次.解答:解:(1)设这两年我国公民出境旅游总人数的年平均增长率为x.根据题意得5000(1+x)2 =7200.解得 x1 =0.2=20%,x2 =﹣2.2 (不合题意,舍去).答:这两年我国公民出境旅游总人数的年平均增长率为20%.(2)如果2012年仍保持相同的年平均增长率,则2012年我国公民出境旅游总人数为 7200(1+x)=7200×120%=8640万人次.答:预测2012年我国公民出境旅游总人数约8640万人次.点评:方程是解决应用题、实际问题和许多方面的数学问题的重要基础知识,应用范围非常广泛。
中考数学专题复习《圆中的分类讨论、存在性问题》测试卷(附带答案)

中考数学专题复习《圆中的分类讨论 存在性问题》测试卷(附带答案)学校:___________班级:___________姓名:___________考号:___________一 单选题1.如图 点A B C 是O 上的三个点 若76AOB ∠=︒ 则C ∠的度数是( )A .76︒B .38︒C .24︒D .33︒2.如图 ⊙O 是ABC 的内切圆 点D E 分别为边AB AC 、上的点 且DE 为⊙O 的切线 若ABC 的周长为25 BC 的长是9 则ADE 的周长是( )A .7B .8C .9D .163.如图 若O 是ABC 的内切圆 且50A ∠=︒ 则BOC ∠的度数为( )A .100︒B .105︒C .115︒D .130︒4.同一个圆的内角正三角形 正方形 正六边形的边心距的比为( )A .23B 32C .1:2:3D .3:2:15.如图 四边形ABCD 内接于O 若它的一个外角6568DCE ABC ∠=︒∠=︒, 则A ∠的度数为( )A .112︒B .68︒C .65︒D .52︒6.如图 线段AB 为O 的直径 点C 在AB 的延长线上 4AB = 2BC = 点P 是O 上一动点 连接CP 以CP 为斜边在PC 的上方作Rt PCD 且使60DCP ∠=︒ 连接OD 则OD 长的最大值为( )A B .C .1 D .4二 填空题7.已知O 的半径为3 且A B 是O 上不同的两点 则弦AB 的范围是 . 8.一个圆锥的轴截面平行于投影面 圆锥的正投影是边长为2的等边三角形 那这个圆锥的表面积是 .9.如图 四边形ABCD 内接于O AB 是O 的直径 过C 点的切线与AB 的延长线交于P 点.若40CPA ∠︒= 则ADC ∠的度数为 .10.如图 已知ABC 内接于O BC 是O 的直径 AD 平分BAC ∠ 交O 于D 若4BC = 则CD 的长为 .11.如图 在等腰直角三角形ABC 中 90BAC ∠=︒ 4AB AC == 点D 是AC 边上一动点 连结BD 以AD 为直径的圆交BD 于点E 则CE 长度的最小值是 .12.如图 在ABC 中 90C ∠=︒ 3AC = 4BC = 则ABC 的内切圆半径r = .三 解答题13.如图 在O 中 AB AC = 120A ∠=︒ 求ABC ∠的度数.14.如图 在O 中 D E 分别为半径OA OB 、上的点 且AD BE =.C 为弧AB 上一点 连接CD CE CO 、、 且CD CE =.求证:C 为 AB 的中点.15.如图 O 的半径OD ⊥弦AB 于点C 连接AO 并延长交O 于点E 连接EC .若82AB CD ==,,求EC 的长.16.如图 AB 是O 的直径 点C 是劣弧BD 中点 AC 与BD 相交于点E .连接BC BCF BAC ∠=∠ CF 与AB 的延长线相交于点F .(1)求证:CF 是O 的切线(2)求证:ACD F ∠=∠(3)若10AB = 6BC = 请直接写出AD =_____. 17.如图 AB 是O 的直径 AC 是O 的弦 2AB = 30BAC ∠=︒.在图中作弦AD 使1AD = 并求CAD ∠的度数.18.如图 在平面直角坐标系中 O 为坐标原点 点A B 的坐标分别为()()8006,、,.动点Q 从点O 动点P 从点A 同时出发 分别沿着OA 方向 AB 方向均以1个单位长度/秒的速度匀速运动 运动时间为()()s 05t t <≤.以点P 为圆心 PA 长为半径的P 与AB OA的另一个交点分别为C D 连接CD QC 、.(1)求t 为何值时 点Q 与点D 重合(2)若P 与线段QC 只有一个公共点 请直接写出t 的取值范围. 参考答案: 1.B2.A3.C4.A5.C6.C7.06AB <≤8.3π9.115︒/115度10.211.252/225-+12.113.30︒15.1316.(3)145.17.CAD ∠的度数为30︒或90︒18.(1)4013t =时 点Q 与点D 重合 (2)0167t <≤或40513t <≤。
中考数学复习题方法技巧专题二分类讨论思想训练(含答案)

方法技巧专题 ( 二) 分类议论思想训练【方法解读】 当数学识题中的某一条件模糊而不确准时 , 需要对这一条件进行分类议论, 而后逐个解决 . 常有的分类议论有观点的分类、解题方法的分类和图形地点关系的分类等.1. 点 A , B , C 在☉ O 上 , ∠ AOB=100°, 点 C 不与 A , B 重合 , 则∠ ACB 的度数为 ( )A . 50°B . 80°或 50°C . 130°D . 50°或 130°2 [2018 ·山西威望展望 ] 已知一等腰三角形的两边长 , y 知足方程则此等腰三角形的周长为().xA .5B .4C .3D .5或 43. [2018 ·枣庄 ] 如图 F2- 1 是由 8 个全等的矩形构成的大正方形 , 线段 AB 的端点都在小矩形的极点上 , 假如点 P 是某个小矩形的极点 , 连接 PA , PB , 那么使△ ABP 为等腰直角三角形的点 P 有 ()图 F2-1A .2个B .3个C .4个D .5个4 [2018 ·鄂州 ] 如图 F2 2, 已知矩形 中 ,4 cm,8 cm, 动点P 在边上从点B 向点C 运动 , 速度为 1 cm/s,.-ABCD AB= BC=BC同时动点从点C 出发 , 沿折线→ →A 运动 , 速度为 2 cm/s 当一个点抵达终点时 , 另一个点随之停止运动.设点P 运动QC D.时间为t (s), △的面积为(cm 2), 则描绘 (cm 2) 与时间 t (s) 的函数关系的图象大概是()BPQ SS图 F2-2图 F2-35. [2018 ·聊城 ]假如一个正方形被截掉一个角后, 获得一个多边形, 那么这个多边形的内角和是.6. [2018 ·安徽 ]矩形ABCD中,AB=6,BC=8.点P在矩形ABCD的内部,点E在边BC上,知足△ PBE∽△ DBC,若△ APD是等腰三角形 , 则PE的长为.7.如图 F2- 4, 已知点A(1,2)是反比率函数y= 图象上的一点,连接 AO并延伸交双曲线的另一分支于点B,点 P 是 x 轴上一动点 , 若△是等腰三角形 , 则点P 的坐标是.PAB图 F2-48. [2017 ·齐齐哈尔 ]如图F2-5,在等腰三角形纸片ABC中, AB=AC=10, BC=12,沿底边 BC上的高 AD剪成两个三角形, 用这两个三角形拼成平行四边形, 则这个平行四边形较长的对角线的长是.图 F2-59 [2017 ·义乌 ] 如图 F2 6, ∠45°, 点,在边上 ,,4, 点P 是边上的点 , 若使, , 构成等腰三角.-AOB=M N OA OM=xON=x+OB P M N 形的点 P 恰巧有3个 , 则x的值是.图 F2-6参照答案1. D2. A [ 分析 ]解方程组得当2作为腰长时,等腰三角形的周长为5; 当 1 作为腰长时 , 由于 1+1=2, 不知足三角形的三边关系 . 故等腰三角形的周长为5.3. B [ 分析 ]以下列图,设每个小矩形的长与宽分别为x, y,则有2x=x+2y,进而 x=2y. 由于线段 AB是长与宽为2∶1的矩形对角线 , 所以依据网格作垂线可知, 过点B与AB垂直且相等的线段有BP1和 BP2,过点 A 与 AB垂直且相等的线段有AP3,且 P1, P2, P3都在极点上,所以知足题意的点P 共有3个 . 应选B.4. A [ 分析 ]由题意可知,0≤ t≤4,当0≤ t<2时,以下列图,S= BP· CQ=t· 2t=t2;当 t= 2时,以下列图,点 Q与点 D重合,则 BP=2, CQ=4,故 S= BP· CQ=×2×4=4;当 2<t≤ 6 时 , 以下列图 , 点Q在AD上运动 , S= BP·CD=t· 4=2t.应选 A.5. 180°或 360°或 540°[ 分析 ]如图,一个正方形被截掉一个角后, 可能获得以下的多边形:∴这个多边形的内角和是180°或 360°或 540°.6. 3 或[ 分析 ]由题意知,点P在线段BD上.(1)如图,若PD=PA,则点P在AD的垂直均分线上, 故点P为BD 的中点 , PE⊥BC,故 PE∥ CD,故 PE=DC=3.(2) 如图 , 若DA=DP,则DP=8, 在 Rt△BCD中 , BD==10,∴ BP=BD-DP=2.∵△ PBE∽△ DBC,∴ == ,∴ PE=CD=.综上所述 , PE的长为 3 或.7(-5,0) 或 (-3,0) 或 (3,0)或 (5,0).8.10或4或2[ 分析]在△ABC中,∵AB=AC=10,BC=12,底边BC 上的高是AD,∴∠ADB=∠90°,12 6,∴AD=8ADC=BD=CD=BC=×== .∴用这两个三角形拼成平行四边形, 能够分三种状况 :(1)依据如图的方法拼成平行四边形, 则这个平行四边形较长的对角线的长是10.(2)依据如图的方法拼成平行四边形, 则这个平行四边形较长的对角线的长是=4.(3) 依据如图的方法拼成平行四边形, 则这个平行四边形较长的对角线的长是=2.综上所述 , 这个平行四边形较长的对角线的长是10或4或 2.9.x= 0 或x=4- 4或4<x<4[ 分析 ]依据OM=x,ON=x+4,可知MN=4.作MN的垂直均分线, 该线与射线OB一直有一个公共点 , 分别以点M, N为圆心 ,4 为半径画圆 , 察看两圆与射线OB的交点状况:(1) 当☉N与射线OB没有公共点 , ☉M与射线OB有两个公共点时, 知足题意 , 如图① , 此时 4<x<4.(2) 当☉N与射线OB相切 , 只有一个公共点时, ☉M与射线OB也只有一个公共点时, 也知足题意 , 如图② , 此时x=4- 4;(3)当☉ N与射线 OB有两个公共点时,此时☉ M与射线 OB只有一个公共点,所以当☉ N与射线 OB有两个公共点时,一定出现不可以与点 M, N构成三角形的一个点,也能知足题意,如图③,此时 x=0.。
2013年杭州市中考数学试题及答案(解析版)

2013年浙江省杭州市中考数学试卷一.选择题(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的.注意可以用多种不同的方法来选取正确答案.1.(2013杭州)下列“表情图”中,属于轴对称图形的是()A.B.C.D.考点:轴对称图形.分析:根据轴对称的定义,结合各选项进行判断即可.解答:解:A.不是轴对称图形,故本选项错误;B.不是轴对称图形,故本选项错误;C.不是轴对称图形,故本选项错误;D.是轴对称图形,故本选项正确;故选D.点评:本题考查了轴对称图形的知识,判断轴对称的关键寻找对称轴,属于基础题.2.(2013杭州)下列计算正确的是()A.m3+m2=m5B.m3m2=m6C.(1﹣m)(1+m)=m2﹣1 D.考点:平方差公式;合并同类项;同底数幂的乘法;分式的基本性质.分析:根据同类项的定义,以及同底数的幂的乘法法则,平方差公式,分式的基本性质即可判断.解答:解:A.不是同类项,不能合并,故选项错误;B.m3m2=m5,故选项错误;C.(1﹣m)(1+m)=1﹣m2,选项错误;D.正确.故选D.点评:本题考查了同类项的定义,以及同底数的幂的乘法法则,平方差公式,分式的基本性质,理解平方差公式的结构是关键.3.(2013杭州)在▱ABCD中,下列结论一定正确的是()A.AC⊥BD B.∠A+∠B=180°C.AB=AD D.∠A≠∠C考点:平行四边形的性质.分析:由四边形ABCD是平行四边形,可得AD∥BC,即可证得∠A+∠B=180°.解答:解:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠A+∠B=180°.故选B.点评:此题考查了平行四边形的性质.此题比较简单,注意掌握数形结合思想的应用.4.(2013杭州)若a+b=3,a﹣b=7,则ab=()A.﹣10 B.﹣40 C.10 D.40考点:完全平方公式.专题:计算题.分析:联立已知两方程求出a与b的值,即可求出ab的值.解答:解:联立得:,解得:a=5,b=﹣2,则ab=﹣10.故选A.点评:此题考查了解二元一次方程组,求出a与b的值是解本题的关键.5.(2013杭州)根据2008~2012年杭州市实现地区生产总值(简称GDP,单位:亿元)统计图所提供的信息,下列判断正确的是()A.2010~2012年杭州市每年GDP增长率相同B.2012年杭州市的GDP比2008年翻一番C.2010年杭州市的GDP未达到5500亿元D.2008~2012年杭州市的GDP逐年增长考点:条形统计图.分析:根据条形统计图可以算2010年~2011年GDP增长率,2011年~2012年GDP增长率,进行比较可得A的正误;根据统计图可以大约得到2012年和2008年GDP,可判断出B的正误;根据条形统计图可得2010年杭州市的GDP,可判断出C的正误,根据条形统计图可直接得到2008~2012年杭州市的GDP 逐年增长.解答:解:A.2010年~2011年GDP增长率约为:=,2011年~2012年GDP增长率约为=,增长率不同,故此选项错误;B.2012年杭州市的GDP约为7900,2008年GDP约为4900,故此选项错误;C.2010年杭州市的GDP超过到5500亿元,故此选项错误;D.2008~2012年杭州市的GDP逐年增长,故此选项正确,故选:D.点评:本题考查的是条形统计图,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.6.(2013杭州)如图,设k=(a>b>0),则有()A.k>2 B.1<k<2 C.D.考点:分式的乘除法.专题:计算题.分析:分别计算出甲图中阴影部分面积及乙图中阴影部分面积,然后计算比值即可.解答:解:甲图中阴影部分面积为a2﹣b2,乙图中阴影部分面积为a(a﹣b),则k====1+,∵a>b>0,∴0<<1,故选B.点评:本题考查了分式的乘除法,会计算矩形的面积及熟悉分式的运算是解题的关键.7.(2013杭州)在一个圆中,给出下列命题,其中正确的是()A.若圆心到两条直线的距离都等于圆的半径,则这两条直线不可能垂直B.若圆心到两条直线的距离都小于圆的半径,则这两条直线与圆一定有4个公共点 C.若两条弦所在直线不平行,则这两条弦可能在圆内有公共点 D.若两条弦平行,则这两条弦之间的距离一定小于圆的半径考点:直线与圆的位置关系;命题与定理.分析:根据直线与圆的位置关系进行判断即可.解答:解:A.圆心到两条直线的距离都等于圆的半径时,两条直线可能垂直,故本选项错误;B.当两圆经过两条直线的交点时,圆与两条直线有三个交点;C.两条平行弦所在直线没有交点,故本选项正确;D.两条平行弦之间的距离一定小于直径,但不一定小于半径,故本选项错误,故选C.点评:本题考查了直线与圆的位置关系、命题与定理,解题的关键是熟悉直线与圆的位置关系.8.(2013杭州)如图是某几何体的三视图,则该几何体的体积是()A.B.C.D.考点:由三视图判断几何体.分析:由三视图可看出:该几何体是﹣个正六棱柱,其中底面正六边形的边长为6,高是2.根据正六棱柱的体积=底面积×高即可求解.解答:解:由三视图可看出:该几何体是﹣个正六棱柱,其中底面正六边形的边长为6,高是2,所以该几何体的体积=6××62×2=108.故选C.点评:本题考查了由三视图求原几何体的体积,正确恢复原几何体是解决问题的关键.9.(2013杭州)在Rt△ABC中,∠C=90°,若AB=4,sinA=,则斜边上的高等于() A.B.C.D.考点:解直角三角形.专题:计算题.分析:在直角三角形ABC中,由AB与sinA的值,求出BC的长,根据勾股定理求出AC的长,根据面积法求出CD的长,即为斜边上的高.解答:解:根据题意画出图形,如图所示,在Rt△ABC中,AB=4,sinA=,∴BC=ABsinA=2.4,根据勾股定理得:AC==3.2,∵S△ABC=AC•BC=AB•CD,∴CD==.故选B点评:此题考查了解直角三角形,涉及的知识有:锐角三角函数定义,勾股定理,以及三角形的面积求法,熟练掌握定理及法则是解本题的关键.10.(2013杭州)给出下列命题及函数y=x,y=x2和y=①如果,那么0<a<1;②如果,那么a>1;③如果,那么﹣1<a<0;④如果时,那么a<﹣1.则()A.正确的命题是①④ B.错误的命题是②③④C.正确的命题是①② D.错误的命题只有③考点:二次函数与不等式(组);命题与定理.分析:先确定出三函数图象的交点坐标为(1,1),再根据二次函数与不等式组的关系求解即可.解答:解:易求x=1时,三个函数的函数值都是1,所以,交点坐标为(1,1),根据对称性,y=x和y=在第三象限的交点坐标为(﹣1,﹣1),①如果,那么0<a<1正确;②如果,那么a>1或﹣1<a<0,故本小题错误;③如果,那么a值不存在,故本小题错误;④如果时,那么a<﹣1正确.综上所述,正确的命题是①④.故选A.点评:本题考查了二次函数与不等式组的关系,命题与定理,求出两交点的坐标,并准确识图是解题的关键.二.填空题(本题有6个小题,每小题4分,共24分)要注意认真看清楚题目的条件和要填写的内容,尽量完整地填写答案11.(2013杭州)32×3.14+3×(﹣9.42)= .考点:有理数的混合运算.分析:根据32×3.14+3×(﹣9.42)=3×9.42﹣3×(﹣9.42)即可求解.解答:解:原式=3×9.42﹣3×(﹣9.42)=0.故答案是:0.点评:本题考查了有理数的混合运算,理解运算顺序是关键.12.(2013杭州)把7的平方根和立方根按从小到大的顺序排列为.考点:实数大小比较.专题:计算题.分析:先分别得到7的平方根和立方根,然后比较大小.解答:解:7的平方根为﹣,;7的立方根为,所以7的平方根和立方根按从小到大的顺序排列为﹣<<.故答案为:﹣<<.点评:本题考查了实数大小比较:正数大于0,负数小于0;负数的绝对值越大,这个数越小.13.(2013杭州)在Rt△ABC中,∠C=90°,AB=2BC,现给出下列结论:①sinA=;②cosB=;③tanA=;④tanB=,其中正确的结论是(只需填上正确结论的序号)考点:特殊角的三角函数值;含30度角的直角三角形.专题:探究型.分析:先根据题意画出图形,再由直角三角形的性质求出各角的度数,由特殊角的三角函数值即可得出结论.解答:解:如图所示:∵在Rt△ABC中,∠C=90°,AB=2BC,∴sinA==,故①错误;∴∠A=30°,∴∠B=60°,∴cosB=cos60°=,故②正确;∵∠A=30°,∴tanA=tan30°=,故③正确;∵∠B=60°,∴tanB=tan60°=,故④正确.故答案为:③③④.点评:本题考查的是特殊角的三角函数值,熟记各特殊角度的三角函数值是解答此题的关键.14.(2013杭州)杭州市某4所高中近两年的最低录取分数线如下表(单位:分),设4所高中2011年和2012年的平均最低录取分数线分别为,,则= 分杭州市某4所高中最低考点:算术平均数.分析:先算出2011年的平均最低录取分数线和2012年的平均最低录取分数线,再进行相减即可.解答:解:2011年的平均最低录取分数线=(438+435+435+435)÷4=435.75(分),2012年的平均最低录取分数线=(442+442+439+439)÷4=440.5(分),则=440.5﹣435.75=4.75(分);故答案为:4.75.点评:此题考查了算术平均数,掌握平均数的计算公式是解题的关键,是一道基础题,比较简单.15.(2013杭州)四边形ABCD是直角梯形,AB∥CD,AB⊥BC,且BC=CD=2,AB=3,把梯形ABCD分别绕直线AB,CD旋转一周,所得几何体的表面积分别为S1,S2,则|S1﹣S2|= (平方单位)考点:圆锥的计算;点、线、面、体;圆柱的计算.分析:梯形ABCD分别绕直线AB,CD旋转一周所得的几何体的表面积的差就是AB和CD旋转一周形成的圆柱的侧面的差.解答:解:AB旋转一周形成的圆柱的侧面的面积是:2π×2×3=12π;AC旋转一周形成的圆柱的侧面的面积是:2π×2×2=8π,则|S1﹣S2|=4π.故答案是:4π.点评:本题考查了图形的旋转,理解梯形ABCD分别绕直线AB,CD旋转一周所得的几何体的表面积的差就是AB和CD旋转一周形成的圆柱的侧面的差是关键.16.(2013杭州)射线QN与等边△ABC的两边AB,BC分别交于点M,N,且AC∥QN,AM=MB=2cm,QM=4cm.动点P从点Q出发,沿射线QN以每秒1cm的速度向右移动,经过t秒,以点P为圆心,cm为半径的圆与△ABC的边相切(切点在边上),请写出t可取的一切值(单位:秒)考点:切线的性质;等边三角形的性质.专题:分类讨论.分析:求出AB=AC=BC=4cm,MN=AC=2cm,∠BMN=∠BNM=∠C=∠A=60°,分为三种情况:画出图形,结合图形求出即可;解答:解:∵△ABC是等边三角形,∴AB=AC=BC=AM+MB=4cm,∠A=∠C=∠B=60°,∵QN∥AC,AM=BM.∴N为BC中点,∴MN=AC=2cm,∠BMN=∠BNM=∠C=∠A=60°,分为三种情况:①如图1,当⊙P切AB于M′时,连接PM′,则PM′=cm,∠PM′M=90°,∵∠PMM′=∠BMN=60°,∴M′M=1cm,PM=2MM′=2cm,∴QP=4cm﹣2cm=2cm,即t=2;②如图2,当⊙P于AC切于A点时,连接PA,则∠CAP=∠APM=90°,∠PMA=∠BMN=60°,AP=cm,∴PM=1cm,∴QP=4cm﹣1cm=3cm,即t=3,当当⊙P于AC切于C点时,连接PC,则∠CP′N=∠ACP′=90°,∠P′NC=∠BNM=60°,CP′=cm,∴P′N=1cm,∴QP=4cm+2cm+1cm=7cm,即当3≤t≤7时,⊙P和AC边相切;③如图1,当⊙P切BC于N′时,连接PN′3则PN′=cm,∠PM\N′N=90°,∵∠PNN′=∠BNM=60°,∴N′N=1cm,PN=2NN′=2cm,∴QP=4cm+2cm+2cm=8cm,即t=8;故答案为:t=2或3≤t≤7或t=8.点评:本题考查了等边三角形的性质,平行线的性质,勾股定理,含30度角的直角三角形性质,切线的性质的应用,主要考查学生综合运用定理进行计算的能力,注意要进行分类讨论啊.三.解答题(本题有7个小题,共66分)解答应写出文字说明,证明过程或推演步骤.如果觉得有的题目有点困难,那么把自己能写出的解答写出一部分也可以.17.(2013杭州)如图,四边形ABCD是矩形,用直尺和圆规作出∠A的平分线与BC边的垂直平分线的交点Q(不写作法,保留作图痕迹).连结QD,在新图形中,你发现了什么?请写出一条.考点:作图—复杂作图.分析:根据角平分线的作法以及线段垂直平分线的作法得出Q点位置,进而利用垂直平分线的作法得出答案即可.解答:解:如图所示:发现:DQ=AQ或者∠QAD=∠QDA等等.点评:此题主要考查了复杂作图以及线段垂直平分线的作法和性质等知识,熟练应用其性质得出系等量关系是解题关键.18.(2013杭州)当x满足条件时,求出方程x2﹣2x﹣4=0的根.考点:解一元二次方程-公式法;解一元一次不等式组.分析:通过解一元一次方程组求得2<x<4.然后利用求根公式x=求得方程程x2﹣2x ﹣4=0的根,由x的取值范围来取舍该方程的根.解答:解:由求得,则2<x<4.解方程x2﹣2x﹣4=0可得x1=1+,x2=1﹣,∵2<<3,∴3<1+<4,符合题意∴x=1+.点评:本题考查了解一元二次方程﹣﹣公式法,解一元一次不等式组.要会熟练运用公式法求得一元二次方程的解.19.(2013杭州)如图,在等腰梯形ABCD中,AB∥DC,线段AG,BG分别交CD于点E,F,DE=CF.求证:△GAB是等腰三角形.考点:等腰梯形的性质;全等三角形的判定与性质;等腰三角形的判定.专题:证明题.分析:由在等腰梯形ABCD中,AB∥DC,DE=CF,利用SAS,易证得△ADE≌△BCF,即可得∠DAE=∠CBF,则可得∠GAB=∠GBA,然后由等角对等边,证得:△GAB是等腰三角形.解答:证明:∵在等腰梯形中ABCD中,AD=BC,∴∠D=∠C,∠DAB=∠CBA,在△ADE和△BCF中,,∴△ADE≌△BCF(SAS),∴∠DAE=∠CBF,∴∠GAB=∠GBA,∴GA=GB,即△GAB为等腰三角形.点评:此题考查了等腰梯形的性质、全等三角形的判定与性质以及等腰三角形的判定.此题难度不大,注意掌握数形结合思想的应用.20.(2013杭州)已知抛物线y1=ax2+bx+c(a≠0)与x轴相交于点A,B(点A,B在原点O两侧),与y 轴相交于点C,且点A,C在一次函数y2=x+n的图象上,线段AB长为16,线段OC长为8,当y1随着x的增大而减小时,求自变量x的取值范围.考点:二次函数的性质;抛物线与x轴的交点.专题:分类讨论.分析:根据OC的长度确定出n的值为8或﹣8,然后分①n=8时求出点A的坐标,然后确定抛物线开口方向向下并求出点B的坐标,再求出抛物线的对称轴解析式,然后根据二次函数的增减性求出x的取值范围;②n=﹣8时求出点A的坐标,然后确定抛物线开口方向向上并求出点B的坐标,再求出抛物线的对称轴解析式,然后根据二次函数的增减性求出x的取值范围.解答:解:根据OC长为8可得一次函数中的n的值为8或﹣8.分类讨论:①n=8时,易得A(﹣6,0)如图1,∵抛物线经过点A、C,且与x轴交点A、B在原点的两侧,∴抛物线开口向下,则a<0,∵AB=16,且A(﹣6,0),∴B(10,0),而A、B关于对称轴对称,∴对称轴直线x==2,要使y1随着x的增大而减小,则a<0,∴x>2;(2)n=﹣8时,易得A(6,0),如图2,∵抛物线过A、C两点,且与x轴交点A,B在原点两侧,∴抛物线开口向上,则a>0,∵AB=16,且A(6,0),∴B(﹣10,0),而A、B关于对称轴对称,∴对称轴直线x==﹣2,要使y1随着x的增大而减小,且a>0,∴x<﹣2.点评:本题考查了二次函数的性质,主要利用了一次函数图象上的点的坐标特征,二次函数的增减性,难点在于要分情况讨论.21.(2013杭州)某班有50位学生,每位学生都有一个序号,将50张编有学生序号(从1号到50号)的卡片(除序号不同外其它均相同打乱顺序重新排列,从中任意抽取1张卡片(1)在序号中,是20的倍数的有:20,40,能整除20的有:1,2,4,5,10(为了不重复计数,20只计一次),求取到的卡片上序号是20的倍数或能整除20的概率;(2)若规定:取到的卡片上序号是k(k是满足1≤k≤50的整数),则序号是k的倍数或能整除k(不重复计数)的学生能参加某项活动,这一规定是否公平?请说明理由;(3)请你设计一个规定,能公平地选出10位学生参加某项活动,并说明你的规定是符合要求的.考点:游戏公平性.分析:(1)由在序号中,是20的倍数的有:20,40,能整除20的有:1,2,4,5,10(为了不重复计数,20只计一次),直接利用概率公式求解即可求得答案;(2)由无论k取何值,都能被1整除,则序号为1的学生被抽中的概率为1,即100%,而很明显抽到其他序号学生概率不为100%.可知此游戏不公平;(3)可设计为:先抽出一张,记下数字,然后放回.若下一次抽到的数字与之前抽到过的重复,则不记数,放回,重新抽取.不断重复,直至抽满10个不同的数字为止.解答:解:(1)∵在序号中,是20的倍数的有:20,40,能整除20的有:1,2,4,5,10(为了不重复计数,20只计一次),∴是20倍数或者能整除20的数有7个,则取到的卡片上序号是20的倍数或能整除20的概率为:;(2)不公平,∵无论k取何值,都能被1整除,则序号为1的学生被抽中的概率为1,即100%,而很明显抽到其他序号学生概率不为100%.∴不公平;(3)先抽出一张,记下数字,然后放回.若下一次抽到的数字与之前抽到过的重复,则不记数,放回,重新抽取.不断重复,直至抽满10个不同的数字为止.(为保证每个数字每次被抽到的概率都是)点评:本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.(2013杭州)(1)先求解下列两题:①如图①,点B,D在射线AM上,点C,E在射线AN上,且AB=BC=CD=DE,22.已知∠EDM=84°,求∠A的度数;②如图②,在直角坐标系中,点A在y轴正半轴上,AC∥x轴,点B,C的横坐标都是3,且BC=2,点D在AC上,且横坐标为1,若反比例函数的图象经过点B,D,求k的值.(2)解题后,你发现以上两小题有什么共同点?请简单地写出.考点:等腰三角形的性质;反比例函数图象上点的坐标特征.分析:(1)①根据等边对等角可得∠A=∠BCA,∠CBD=∠BDC,∠ECD=∠CED,再根据三角形的一个外角等于与它不相邻的两个内角的和可得∠A+∠BCA=∠CBD,∠A+∠CDB=∠ECD,∠A+∠CED=∠EDM,然后用∠A表示出∠EDM,计算即可求解;②先根据反比例函数图象上的点的坐标特征表示出点B的坐标,再表示出点C的坐标,然后根据AC∥x 轴可得点C、D的纵坐标相同,从而表示出点D的坐标,再代入反比例函数解析式进行计算即可得解.(2)从数学思想上考虑解答.解答:解:(1)①∵AB=BC=CD=DE,∴∠A=∠BCA,∠CBD=∠BDC,∠ECD=∠CED,根据三角形的外角性质,∠A+∠BCA=∠CBD,∠A+∠CDB=∠ECD,∠A+∠CED=∠EDM,又∵∠EDM=84°,∴∠A+3∠A=84°,解得,∠A=21°;②∵点B在反比例函数y=图象上,点B,C的横坐标都是3,∴点B(3,),∵BC=3,∴点C(3,+2),∵AC∥x轴,点D在AC上,且横坐标为1,∴A(1,+2),∵点A也在反比例函数图象上,∴+2=k,解得,k=3;(2)用已知的量通过关系去表达未知的量,使用转换的思维和方法.(开放题)点评:本题考查了等腰三角形两底角相等的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,以及反比例函数图象上点的坐标特征,是基础题.23.(2013杭州)如图,已知正方形ABCD的边长为4,对称中心为点P,点F为BC边上一个动点,点E 在AB边上,且满足条件∠EPF=45°,图中两块阴影部分图形关于直线AC成轴对称,设它们的面积和为S1.(1)求证:∠APE=∠CFP;(2)设四边形CMPF的面积为S2,CF=x,.①求y关于x的函数解析式和自变量x的取值范围,并求出y的最大值;②当图中两块阴影部分图形关于点P成中心对称时,求y的值.考点:四边形综合题.分析:(1)利用正方形与三角形的相关角之间的关系可以证明结论;(2)本问关键是求出y与x之间的函数解析式.①首先分别用x表示出S1与S2,然后计算出y与x的函数解析式.这是一个二次函数,求出其最大值;②注意中心对称、轴对称的几何性质.解答:(1)证明:∵∠EPF=45°,∴∠APE+∠FPC=180°﹣45°=135°;而在△PFC中,由于PF为正方形ABCD的对角线,则∠PCF=45°,则∠CFP+∠FPC=180°﹣45°=135°,∴∠APE=∠CFP.(2)解:①∵∠APE=∠CFP,且∠FCP=∠PAE=45°,∴△APE∽△CPF,则.而在正方形ABCD中,AC为对角线,则AC=AB=,又∵P为对称中心,则AP=CP=,∴AE===.如图,过点P作PH⊥AB于点H,PG⊥BC于点G,P为AC中点,则PH∥BC,且PH=BC=2,同理PG=2.S△APE==×2×=,∵阴影部分关于直线AC轴对称,∴△APE与△APN也关于直线AC对称,则S四边形AEPN=2S△APE=;而S2=2S△PFC=2×=2x,∴S1=S正方形ABCD﹣S四边形AEPN﹣S2=16﹣﹣2x,∴y===+﹣1.∵E在AB上运动,F在BC上运动,且∠EPF=45°,∴2≤x≤4.令=a,则y=﹣8a2+8a﹣1,当a==,即x=2时,y取得最大值.而x=2在x的取值范围内,代入x=2,则y最大=4﹣2﹣1=1.∴y关于x的函数解析式为:y=+﹣1(2≤x≤4),y的最大值为1.②图中两块阴影部分图形关于点P成中心对称,而此两块图形也关于直线AC成轴对称,则阴影部分图形自身关于直线BD对称,则EB=BF,即AE=FC,∴=x,解得x=,代入x=,得y=﹣2.点评:本题是代数几何综合题,考查了正方形的性质、相似三角形、二次函数的解析式与最值、几何变换(轴对称与中心对称)、图形面积的计算等知识点,涉及的考点较多,有一定的难度.本题重点与难点在于求出y与x的函数解析式,在计算几何图形面积时涉及大量的计算,需要细心计算避免出错.。
中考数学专题复习教学案--分类讨论题(附答案)

分类讨论题类型之一直线型中的分类讨论直线型中的分类讨论问题主要是对线段、三角形等问题的讨论,特别是等腰三角形问题和三角形高的问题尤为重要.例1.(·沈阳市)若等腰三角形中有一个角等于50°,则这个等腰三角形的顶角的度数为()A.50° B.80° C.65°或50°D.50°或80°【解析】由于已知角未指明是顶角还是底角,所以要分类讨论:(1)当50°角是顶角时,则(180°-50°)÷2=65°,所以另两角是65°、65°;(2)当50°角是底角时,则180°-50°×2=80°,所以顶角为80°。
故顶角可能是50°或80°.答案:D .同步测试:1.(•乌鲁木齐)某等腰三角形的两条边长分别为3cm和6cm,则它的周长为()A.9cm B.12cm C.15cm D.12cm或15cm2. (·江西省)如图,把矩形纸片ABCD沿EF折叠,使点B落在边AD上的点B′处,点A 落在点A′处,(1)求证:B′E=BF;(2)设AE=a,AB=b, BF=c,试猜想a、b、c之间有何等量关系,并给予证明.类型之二圆中的分类讨论圆既是轴对称图形,又是中心对称图形,在解决圆的有关问题时,特别是无图的情况下,有时会以偏盖全、造成漏解,其主要原因是对问题思考不周、思维定势、忽视了分类讨论等.例2.(•湖北罗田)在Rt△ABC中,∠C=900,AC=3,BC=4.若以C点为圆心, r为半径所作的圆与斜边AB只有一个公共点,则r的取值范围是___ __.【解析】圆与斜边AB只有一个公共点有两种情况,1、圆与AB相切,此时r=2.4;2、圆与线段相交,点A在圆的内部,点B在圆的外部或在圆上,此时3<r≤4。
2013年中考数学二轮专题复习(专题六 运动问题)

专 题 解 读
专 题 突 破
课 时 跟 踪 检 测
4 3 -1, 时,△MCK 3
为等腰三角形.
上 页
下 页
返 回
步步高中考简易通
专 题 解 读
课 时 跟 踪 检 测
课 时 跟 踪 检 测
专 题 突 破
上 页
下 页
返 回
课 时 跟 踪 检 测
专 题 突 破
2,∠CKD=30°,易知△KDC 为等腰 三角形.
上 页
下 页
返 回
步步高中考简易通
∴当 l2 过抛物线顶点 D 时, 符合题意, 4 3 . 此时点 M2 坐标为-1, 3
(iii)当点 M 在抛物线对称轴右边时, 只有点 M 与点 A 重合时,满足 CM=CK, 但点 A、C、K 在同一直线上,不能构成三角 形.
课 时 跟 踪 检 测
专 题 突 破
上 页
下 页
返 回
步步高中考简易通
专 题 解 读
如图3,若PQ⊥AC,过Q点作
QG∥AC,
则QG⊥PG,即∠GQP=90°. ∴∠QPB>90°,这与△QPB的内
课 时 跟 踪 检 测
专 题 突 破
角和为180°矛盾, 此时PQ不与AC垂直. 4 综上所述,当 t= 时,有 PQ⊥AC. 3
下 页
返 回
步步高中考简易通
专 题 解 读
一、点的运动问题
这类问题就是在三角形、特殊的四边形等一些图形 上,设计一个动点或几个动点,探究这些点在运动
课 时 跟 踪 检 测
专 题 突 破
变化过程中伴随着的变化规律,如等量关系、变量
浙教版数学2013年中考第二轮专题复习针对性强化训练--开放性问题答案

浙教版数学2013年中考第二轮专题复习针对性强化训练——开放性问题答案1.解:(1)添加的条件是:DE=DF(或CE∥BF或∠ECD=∠DBF或∠DEC=∠DFB等).(2)证明:在△BDF和△CDE中∵∴△BDF≌△CDE.点评:三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.2.证明:∵AB∥CD,∴∠A=∠D,∵在△ABF和△DCE中,∴△ABF≌△DCE,∴CE=BF,∠AFB=∠DEC,∴CE∥BF,即CE和BF的数量关系是CE=BF,位置关系是CE∥BF.点评:本题考查了全等三角形的性质和判定,平行线的性质和判定,主要考查学生运用性质进行推理的能力.3.解:(1)如果①②,那么③;如果①③,那么②;(2)若选择如果①②,那么③,证明:∵AE∥DF,∴∠A=∠D,∵AB=CD,∴AB+BC=BC+CD,即AC=DB,在△ACE和△DBF中,,∴△ACE≌△DBF(AAS),∴CE=BF;若选择如果①③,那么②,证明:∵AE∥DF,∴∠A=∠D,在△ACE和△DBF中,,∴△ACE≌△DBF(AAS),∴AC=DB,∴AC﹣BC=DB﹣BC,即AB=CD.点评:此题考查了全等三角形的判定与性质,平行线的性质,利用了转化的数学思想,熟练掌握全等三角形的判定与性质是解本题的关键.4.解:本题答案不唯一,下列解法供参考.①该函数图象表示小明骑车离出发地的路程y(单位:km)与他所用的时间x(单位:min)的关系.②小明以400m/min的速度匀速骑了5min,在原地休息了6min,然后以500m/min的速度匀速骑车回出发地.点评:对于此类编制开放型问题,是一类新型的开放型问题,它要求学生的思维较发散,写出符合题意的正确答案即可,难度要求不大,但学生容易犯想当然的错误,叙述不够准确,如单位的问题、符合实际等要求,在解题中应该注意防范..5.解:“上加下减”的原则可知该函数的解析式可以是:y=﹣6x+1(答案不唯一).故答案为:y=﹣6x+1(答案不唯一).点评:本题考查了一次函数的性质,只要比例系数k相同,则直线平行,保证k不变的条件下,b的正负决定平移的方向.6.解:答案不唯一,如x2﹣3=x2﹣()2=(x+)(x﹣).故可填x2﹣3.点评:此题考查在实数范围内分解因式,属开放型试题,比较简单.7.解:此题答案不唯一,如:,,①+②得:2x=4,解得:x=2,将x=2代入①得:y=﹣1,∴一个二元一次方程组的解为:.故答案为:此题答案不唯一,如:.点评:本题主要考查了二元一次方程组的解的定义.此题属于开放题,注意正确理解定义是解题的关键.8.解:∵反比例函数y=的图象在每一个象限内,y随x的增大而增大,∴k﹣2<0,解得k<2.∴k可以为:1(答案不唯一).故答案为:1(答案不唯一).点评:本题考查的是反比例函数的性质,根据题意得出关于k的不等式,求出k的取值范围是解答此题的关键.9.解:设反比例函数的解析式为:y=,∵一次函数y=﹣2x+6与反比例函数y=图象无公共点,则,∴﹣2x2﹣6x﹣k=0,即△=(﹣6)2﹣8k<0解得k>,则这个反比例函数的表达式是y=;故答案为:y=.点评:此题考查了反比例函数与一次函数的交点问题.解题的关键是:两个函数在同一直角坐标系中的图象无公共点,其k要满足﹣2x2﹣6x﹣k=0,△<0.10.解:设此函数的解析式为y=(k>0),∵此函数经过点(1,1),∴k=1,∴答案可以为:y=(答案不唯一).故答案为:y=(答案不唯一).点评:本题考查的是反比例函数的性质,此题属开放性题目,答案不唯一.11.解:答案不唯一,如AB=AC或∠B=∠C或∠BED=∠CFD,或∠AED=∠AFD等;理由是:①∵AB=AC,∴∠B=∠C,根据ASA证出△BED≌△CFD,即可得出DE=DF;②由∠B=∠C,∠BDE=∠CDF,BD=DC,根据ASA证出△BED≌△CFD,即可得出DE=DF;③由∠BED=∠CFD,∠BDE=∠CDF,BD=DC,根据AAS证出△BED≌△CFD,即可得出DE=DF;④∵∠AED=∠AFD,∠AED=∠B+∠BDE,∠AFD=∠C+∠CDF,又∵∠BDE=∠CDF,∴∠B=∠C,即由∠B=∠C,∠BDE=∠CDF,BD=DC,根据ASA证出△BED≌△CFD,即可得出DE=DF;故答案为:答案不唯一,如AB=AC或∠B=∠C或∠BED=∠CFD或∠AED=∠AFD.点评:本题考查了全等三角形的判定,题目具有一定的代表性,是一道比较好的题目.12.解:添加的条件是∠A=90°,理由是:∵AB∥DC,AB=DC,∴四边形ABCD是平行四边形,∵∠A=90°,∴平行四边形ABCD是矩形,故答案为:∠A=90°.点评:本题考查了平行四边形的判定和矩形的判定的应用,能熟练地运用判定定理进行推理是解此题的关键,此题是一道比较好的题目.13.解:原式=×+1=+1∵a≠0,a≠±2,∴a可以等于1,当a=1时,原式=1+1=2.点评:本题考查的是分式的化简求值,在解答此题时要注意a不能取0、2、﹣2.14.解:(1)∵情境a:小芳离开家不久,即离家一段路程,此时①②③都符合,发现把作业本忘在家里,于是返回了家里找到了作业本,即又返回家,离家的距离是0,此时②③都符合,又去学校,即离家越来越远,此时只有③返回,∴只有③符合情境a;∵情境b:小芳从家出发,走了一段路程后,为了赶时间,以更快的速度前进,即离家越来越远,且没有停留,∴只有①符合,故答案为:③,①.(2)情境是小芳离开家不久,休息了一会儿,又走回了家.点评:主要考查学生的观察图象的能力,同时也考查了学生的叙述能力,用了数形结合思想,题型比较好,但是一道比较容易出错的题目.15.解:猜想:AE=CF.证明:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∴∠ABE=∠CDF,在△ABE和△CDF中,,∴△ABE≌△CDF(SAS),∴AE=CF.点评:此题考查了平行四边形的性质与全等三角形的判定与性质.此题比较简单,注意掌握平行四边形的对边平行且相等,注意数形结合思想的应用.16.证明:(1)∵四边形ABCD为菱形,∴AB=BC,又∵∠ABC=60°,∴△ABC是等边三角形,∵E是线段AC的中点,∴∠CBE=∠ABC=30°,AE=CE,∵AE=CF,∴CE=CF,∴∠F=∠CEF,∵∠F+∠CEF=∠ACB=60°,∴∠F=30°,∴∠CBE=∠F,∴BE=EF;(2)图2:BE=EF.图3:BE=EF.图2证明如下:过点E作EG∥BC,交AB于点G,∵四边形ABCD为菱形,∴AB=BC,又∵∠ABC=60°,∴△ABC是等边三角形,∴AB=AC,∠ACB=60°,又∵EG∥BC,∴∠AGE=∠ABC=60°,又∵∠BAC=60°,∴△AGE是等边三角形,∴AG=AE,∴BG=CE,又∵CF=AE,∴GE=CF,又∵∠BGE=∠ECF=120°,∴△BGE≌△ECF(SAS),∴BE=EF;图3证明如下:过点E作EG∥BC交AB延长线于点G,∵四边形ABCD为菱形,∴AB=BC,又∵∠ABC=60°,∴△ABC是等边三角形,∴AB=AC∠ACB=60°,又∵EG∥BC,∴∠AGE=∠ABC=60°,又∵∠BAC=60°,∴△AGE是等边三角形,∴AG=AE,∴BG=CE,又∵CF=AE,∴GE=CF,又∵∠BGE=∠ECF=60°,∴△BGE≌△ECF(SAS),∴BE=EF.点评:本题考查了菱形的性质,等边三角形的判定与性质,全等三角形的判定与性质,作出辅助线,利用等边三角形的性质找出全等的条件是解题的关键.17.解:(1)AB=AC;∠AED=∠ADC;△ADE∽△ACD;(2)①∵∠B=∠C,∠B=45°,∴△ACB为等腰直角三角形,∴AC=BC=×2=,∵∠1=∠C,∠DAE=∠CAD,∴△ADE∽△ACD,∴AD:AC=AE:AD,即AD2=AE•AC,∴AE===•AD2,当AD最小时,AE最小,此时AD⊥BC,AD=BC=1,∴AE的最小值为×12=,∴CE的最大值=﹣=;②当AD=AE时,∴∠1=∠AED=45°,∴∠DAE=90°,∴点D与B重合,不合题意舍去;当EA=ED时,如图1,∴∠EAD=∠1=45°,∴AD平分∠BAC,∴AD垂直平分BC,∴BD=1;当DA=DE时,如图2,∵△ADE∽△ACD,∴DA:AC=DE:DC,∴DC=CA=,∴BD=BC﹣DC=2﹣,∴当△ADE是等腰三角形时,BD的长的长为1或2﹣.点评:本题考查了相似形综合题:运用相似比进行线段的计算;熟练掌握等腰直角三角形的性质;学会运用分类讨论的思想解决数学问题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题二 分类讨论思想
1.(2012年辽宁营口)圆心距为2的两圆相切,其中一个圆的半径为1,则另一个圆的半
径为( )
A .1
B .3
C .1或2
D .1或3
2.已知线段AB =8 cm ,在直线AB 上画线段BC ,使BC =5 cm ,则线段AC 的长度为( )
A .3 cm 或13 cm
B .3 cm
C .13 cm
D .18 cm
3.(2011年贵州贵阳)如图Z2-3,反比例函数y 1=k 1x
和正比例函数y 2=k 2x 的图象交于A (-1,-3),B (1,3)两点,若k 1x
>k 2x ,则x 的取值范围是( )
图Z2-3
A .-1<x <0
B .-1<x <1
C .x <-1或0<x <1
D .-1<x <0或x >1 4.(2012年湖南张家界)当a ≠0时,函数y =ax +1与函数y =a x
在同一坐标系中的图象可能是( )
A B C D
5.(2011年山东济宁)如果一个等腰三角形的两边长分别是5 cm 和6 cm ,那么此三角形的周长是( )
A .15 cm
B .16 cm
C .17 cm
D .16 cm 或17 cm
6.(2012年四川泸州)为了节能减排,鼓励居民节约用电,某市将出台新的居民用电收费标准:
(1)若每户居民每月用电量不超过100度,则按0.50元/度计算;
(2)若每户居民每月用电量超过100度,则超过部份按0.80元/度计算(未超过部份仍按每度电0.50元计算).
现假设某户居民某月用电量是x (单位:度),电费为y (单位:元),则y 与x 的函数关系用图象表示正确的是( )
A B C D
7.等腰三角形ABC 的两边长分别为4和8,则第三边长为________.
8.(2011年四川南充)过反比例函数y =k x
(k ≠0)图象上的一点A ,分别作x 轴、y 轴的垂线,垂足分别为B ,C .若△ABC 的面积为3,则k 的值为________.
9.在实数范围内,比较代数式a 与1a
的大小关系.
10.已知实数a ,b 分别满足a 2+2a =2,b 2+2b =2,求1a +1b
的值.
11.(2011年浙江绍兴)在平面直角坐标系中,过一点分别作坐标轴的垂线,若与坐标轴围成的矩形的周长与面积相等,则这个点叫做和谐点.例如,图Z2-4中过点P 分别作x 轴、y 轴的垂线,与坐标轴围成矩形OAPB 的周长与面积相等,则点P 是和谐点.
(1)判断点M (1,2),N (4,4)是否为和谐点,并说明理由;
(2)若和谐点P (a,3)在直线y =-x +b (b 为常数)上,求点a ,b 的值.
图Z2-4
12.(2012年江苏扬州)如图Z2-5,已知抛物线y =ax 2+bx +c 经过点A (-1,0),B (3,0),C (0,3)三点,直线l 是抛物线的对称轴.
(1)求抛物线的函数关系式;
(2)设点P 是直线l 上的一个动点,当△P AC 的周长最小时,求点P 的坐标;
(3)在直线l 上是否存在点M ,使△MAC 为等腰三角形?若存在,直接写出所有符合条件的点M 的坐标;若不存在,请说明理由.
图Z2-5
专题二 分类讨论思想
【专题演练】
1.D 2.A 3.C 4.C 5.D 6.C
7.8 8.±6
9.解:(1)当a =±1时,a =1a
; (2)当a <-1时,a <1a
; (3)当-1<a <0时,a >1a
; (4)当0<a <1时,a <1a
; (5)当a >1时,a >1a
. 10.解:若a ≠b ,可知a ,b 为方程x 2+2x -2=0的两实数根,由韦达定理,得a +b =
-2,ab =-2,∴1a +1b =a +b ab =-2-2
=1. 若a =b ,则解关于a ,b 的方程分别,得a =b =-1+3或a =b =-1-3,1a +1b =3+1或1- 3.
11.解:(1)∵1×2≠2×(1+2),4×4=2×(4+4),
∴点M 不是和谐点,点N 是和谐点.
(2)由题意,得
当a >0时,(a +3)×2=3a ,
∴a =6.
∴点P (a,3)在直线y =-x +b 上,代入,得b =9;
当a <0时,(-a +3)×2=-3a ,
∴a =-6.
∴点P (a,3)在直线y =-x +b 上,代入,得b =-3.
∴a =6,b =9或a =-6,b =-3.
12.解:(1)将A (-1,0),B (3,0),C (0,3)代入抛物线y =ax 2+bx +c 中,得
⎩⎪⎨⎪⎧ a -b +c =0,9a +3b +c =0,c =3,解得⎩⎪⎨⎪⎧ a =-1,b =2,
c =3.
∴抛物线的解析式为y =-x 2+2x +3.
(2)如图D59,连接BC ,直线BC 与直线l 的交点为P ,
此时,△P AC 的周长最短(点A 与点B 关于l 对称).
设直线BC 的解析式为y =kx +b ,将B (3,0),c (0,3)代入上式,得
⎩⎪⎨⎪⎧ 3k +b =0,b =3,解得:⎩
⎪⎨⎪⎧
k =-1,b =3. ∴直线BC 的函数关系式y =x +3.
当x =1时,y =2,即点P 的坐标(1,2).
图D59
(3)抛物线的对称轴为x =-
b 2a
=1,设M (1,m ),已知A (-1,0),C (0,3), 则MA 2=m 2+4,MC 2=m 2-6m +10,AC 2=10.
①若MA =MC ,则MA 2=MC 2,得
m2+4=m2-6m+10,解得m=1;
②若MA=AC,则MA2=AC2,得
m2+4=10,解得m=±6;
③若MC=AC,则MC2=AC2,得
m2-6m+10=10,解得m1=0,m2=6.
当m=6时,M,A,C三点共线,构不成三角形,不合题意,故舍去.综上可知,符合条件的点M的坐标为(1,6)或(1,-6)或(1,1)或(1,0).。