精选中职数学函数的单调性.pptx

合集下载

函数单调性说课PPT

函数单调性说课PPT
增函数
减函数
设函数y=f(x) 在区间(a,b) 内有意义. 对于任意的 x1,x2∈ (a,b) 当x1<x2时
有f(x1)<f(x2)成立. 把函数叫做区间 (a,b)内的增函数 区间(a,b)叫做函 数的增区间.
有f(x1)>f(x2)成立. 把函数叫做区间 (a,b)内的减函数 区间(a,b)叫做函 数的减区间.
2、过程与方法目标 :
03
通过知识的探究过程培养学生细心观察、认真分析、严谨论证的良好思维习惯,树立正确的数学学习观
3、情感态度与价值观 :
四、教法学法
教学方法:根据教学内容、教学目标和学生 的认知水平,本节课主要采用任务驱动法、引导发现法的教学方法
学习方法: 合作学习:引导学生分组讨论,合作交流,共同探讨 类比学习:引导学生通过举一反三自主推导得出概念 探究学习:引导学生发挥主观能动性,主动探索新知(如 例题的处理)
五、教学过程
15分钟
问题探索,形成概念
4分钟
归纳小结,提高认识
16分钟
例题精讲、深化概念
创设情境、引入课题 理性认识 感性认识 40分钟 5分钟
1.创设情境、引入概念
思考:1)在0点到4点,气温随着时间的推移是怎么变化的? 2)在4点到14点,气温随着时间的推移又是怎么变化的? 3)在14点到24点,气温随着时间的推移又是怎么变化的?
一、教学内容
教学的重点和难点 教学重点:函数单调性的概念,判断 函数的单调性。 教学难点:根据定义证明函数的单调性。
二、基本学情
1、基础知识:
学生在初中已学习了一些简单的函数,对函数的单调性也有一些简单的认识。
2、认知水平与能力:
一年级学生抽象思维能力还比较弱,直观操作能力稍强,但已初步具有数形结合思维能力,能在教师的引导下解决稍复杂的抽象问题。

函数的单调性-PPT课件可修改文字

函数的单调性-PPT课件可修改文字
温故而知新
f (x) x
f (1) __ f (1)
f (x) 1 x
f (x) x2
f (3) __ f (2) f (2011) __ f (2012)
挑战自我
对于函数 f (x) x 2 (x 0) x
若1 a ,则比较 f (1) __?__ f (a)
体会生活
体会生活
新课探究
课堂小结
1、函数 y f (x)的单调性。
2、如何判断函数的单调性。
1.取数:任取x1,x2∈A,且x1<x2; 2.作差:f(x1)-f(x2); 3.变形:通常是因式分解和配方; 4.定号:判断f(x1)-f(x2)的正负; 5.小结:指出函数f(x)在给定的区间A上的单调性.
3、思想方法:数形结合
时 少 直 观
作 两 边 飞
本 是 相 倚 依


当 x1 x2时,都有 f (x1) f (x2) ,那么, 就说函数在区间A上是减少的,有时也称函数 在区间A上是递减的。
大显身手
函数 y f (x)的图像如下图所示,能否说: 函数在 [1, 0) (0,1] 是递增的?
y
-1
O
1
x
在函数 y f (x)的定义域内的一个区子间集 A上,如果对于 任意两数 x1, x2 A,当 x1 x2时,都有 f (x1) f (x2) , 那么,就说函数在区数间集 A上是增加的。
课外探究
1、根据函数的单调性,我们能够求出函数的值域吗?
2、我们有没有办法找到函数 y x 2 (x 0) 的单调
区间的分界点?
x
作业
A组:练习2,练习5
永切隔数形数焉数
远莫离形少缺能与

《函数的单调性》中职数学基础模块上册3.3ppt课件2【语文版】

《函数的单调性》中职数学基础模块上册3.3ppt课件2【语文版】


2、不要看书,要看老师的眼睛

只要老师不是在一味地读教材,那老师的“话”就不可能和你低头看着的教材上的“文字”一致。头脑聪明的学生,也许能做到既集中精神听老师的话,又集中精神看眼前书上的内容。可是实际上大部分的学生都做不到这一点。

认真听讲的第一个阶段就是上课时间无条件地“往前看”,上课的时候看书往往很容易开小差。摒除杂念,将视线从摊在眼前的书上移开。老师讲课的时候只看前面,集中注意力听老师嘴里说出来的话,那才是认真听讲的态度。
4、如果一个函数不存在单调性,只需举一个反例即可.
例1:证明函数
在R上是增函数
f (x) 2x 1
分析析::画画出出这这个个一一次次函函数数的的图图像像((见见右右图图)),,直直观观上上很
容进意很义何易行义容进意看证. 易行义出 明看 证. 函 .同出 明数学函.同值们数学随可值们着以随可自根着以变据自根量图变据增像量图大理增像而解大理增每而解大一增每.步下大一证面.步下根明证面的据明根定几的据义何几定
证证则明明::设 设xx11 ,,xx22是是任任意意两两个个不不相相等等的的实实数数,,且且xx11﹤﹤ xx22,,

例2:证明函数 减 函数。
f
(x)

1 x
,在定义域区间上分别是
总结:
• 1.一次函数 y=kx+b(k≠0) • 当k>0时,(-∞,+∞)是这个函数的单调增区间; • 当k<0时,(-∞,+∞)是这个函数的单调减区间.
2019/8/9
教学资料精选
14
谢谢欣赏!
2019/8/9
教学资料精选
15
1 、从左至右图象上升还 是下降 __下_降___?

函数的单调性教学课件

函数的单调性教学课件

- 比较任意两个点的函数值即可判断单调性
单调性的应用
1 最值问题
- 单调递增:最小值在最左侧
2 最值问题
- 单调递减:最大值在最右侧
3 映射问题
- 将原函数的定义域映射到新的定义上,新函数单调性一致
总结
单调性定义:
- 单调上升和单调下降
判断方法:
- 导数符号法和函数值比较法应来自:- 最值问题和映射问题
4 示例
- $g(x) = -x^2$ 在定义域 $x\in\mathbb{R}$ 上 单调下降
如何判断单调性?
1 方法一:导数符号法
- 若 $f'(x) > 0$,则 $f(x)$ 在该区间上单调上升
2 方法一:导数符号法
- 若 $f'(x) < 0$,则 $f(x)$ 在该区间上单调下降
3 方法二:函数值比较法
函数的单调性教学ppt课件
什么是单调性?
1 定义
- 函数单调上升:对于任意 $x_1 < x_2$,有 $f(x_1) < f(x_2)$
3 示例
- $f(x) = x^2$ 在定义域 $x\geq0$ 上单调上升
2 定义
- 函数单调下降:对于任意 $x_1 < x_2$,有 $f(x_1) > f(x_2)$

中职数学3.3函数的性质课件

中职数学3.3函数的性质课件
取值范围.
4.证明:
(1)函数() = − − 2在 −∞, +∞ 上是减函数.
(2)函数() = 2 2 + 1在 −∞, 0 上是减函数.
3.3.2
函数的奇偶性
3.3 函数的性质 ——奇偶性
情境导入 探索新知
大千世界,美无处不在.
例题辨析 巩固练习 归纳总结 布置作业
3.3 函数的性质 ——奇偶性
例5 (2)图(2)给出了奇函数 = 在 0, +∞) 上的函数图像,
试将 = 的图像补充完整,并指出函数的单调区间.
(2)由于函数 = 是奇函数,所以它的
图像关于原点中心对称,因此它的图像如图
所示.函数 = 的增区间为 −∞, +∞ .
3.3 函数的性质 ——奇偶性
则称 = 是奇函数.奇函数的图像关于原点中心对称.
3.3 函数的性质 ——奇偶性
情境导入 探索新知
例题辨析 巩固练习 归纳总结 布置作业
如果一个函数是奇函数或偶函数,就说这个函数
具有奇偶性,其定义域一定关于原点中心对称.
3.3 函数的性质 ——奇偶性
情境导入 探索新知
例题辨析 巩固练习 归纳总结 布置作业
3.3 函数的性质
函数是描述客观事物运动变化规律的数学模型.了解了
函数的变化规律,也就基本把握了相应事物的变化规律,因
此这一节我们来研究函数的性质.
3.3 函数的性质
3.3.1
函数的单调性
3.3 函数的性质 ——单调性
情境导入 探索新知
例题辨析 巩固练习 归纳总结 布置作业
下图是某市某天气温(℃)是时间(时)的函数图像,
次函数,它们的定义域、值域、单调性、奇偶性等各是怎

中职数学《函数的单调性》优秀说课课件

中职数学《函数的单调性》优秀说课课件

联系生活 加深理解
找出生活语言所隐含 的“单调性”
例:薄利多销
学生举例情况: 姜是老的辣; 海拔高,压强小; 山越高,温度越低; 人小鬼大; The more ,the better; 等。
“创新杯”教师教学设计和说课大赛
联系生活 加深理解
根据函数图象判断单调性:
人数(保人)持量(百分数)
市市场场需供求给量量DS((件k)g)
赢家,好开心,好有成就感!” “数学的课堂也可以这么的有趣
和吸引人”
“创新杯”教师教学设计和说课大赛
布置作业,强化训练
一、必做题:
1、分析反比例函数
y
k x
(k单调0) 性的变化规律 .
2、已知函数 y f 在(x) 上为R 增函数,比较: f (4), 的f (大0),小f (.7)
3、已知函数 y f 在(x) 上R为减函数,比较: f (2), f的(大2),小f .(0)
按要求对函数图像和相关 信息进行处理的技能;
应用单调性知识解决与生 活相关问题的能力.
体验生活中的数学,享受 学习的过程.
“创新杯”教师教学设计和说课大赛
重点与难点
重点
函数单调性的 判断及应用
难点
关键
函数单调性概 念的形成
用生活实例,让 学生切实感受数 学与生活的紧密 联系,将抽象的 知识具体化
“创新杯”教师教学设计和说课大赛
巩固知识 适当延展
【练习2】 1. 已知函数图像如下图所示 : (书本练习P48) (1)根据图像说出函数的单调区间以及函数在各单调区间内的单调性. (2)写出函数的定义域和值域.
【练习2】 2. 宝山钢铁股份有限公司(简称“宝钢” )的每股收益三季报点线图如 图所示,请说出该公司在哪几年的三季度每股收益是增加的,在哪几年是减少的?

北师大版中职数学基础模块上册:3.3.1函数的单调性课件(共24张PPT)

北师大版中职数学基础模块上册:3.3.1函数的单调性课件(共24张PPT)
数学
基础模块(下册)
第三单元 函数
3.3.1函数的单调性
人民教育出版社
第三单元 函数 3.3.1函数的单调性
学习目标
知识目标 理解函数的单调性,理解增函数、减函数、单调区间的概念
能力目标
学生运用自主探讨、合作学习,掌握判断函数单调性的方法,研究函数的性 质,提高其发现问题、分析问题及解决问题能力;
调动思维,探究新知 在活初动中2,我们用过“自然数集”“有理数集”等表述,这里的“集”就是集合的简称,那么什么是集合呢?
分析理解 观察图3-8,函数 y=x 和 y=-x 的定义域是 R.当自
变量 x 的值逐渐增大时,图3-8(1)中,函数图像从左到 右是上升的,函数值y随着自变量 x 的增大而增大.图3-8 (2)中,函数图像从左到右是下降的,函数值y随着自变 量x的增大而减小.
创设情境,生成问题 在活初动中1,我们用过“自然数集”“有理数集”等表述,这里的“集”就是集合的简称,那么什么是集合呢?
观察思考 在初中,我们曾经利用函数图像探究函数值y随着自变
量x的增大而增大(或减小)的变化规律.仔细观察图3-8 的函数图像,随着自变量 x 的增大,函数 y 的变化趋势分 别是怎样的?
例如,图 3-8 中函数 y=x 是R上的增函数,区间(∞,+∞)是函数 y=x 的增区间;函数 y=-x 是 R 上的减 函数,区间(-∞,+∞)是函数 y=-x 的减区间;函数 y=x2 在区间(-∞,0)上是减函数,在区间(0,+∞)上 是增函数,区间(-∞,0)和(0,+∞)分别是函数y=x2 的减区间、增区间.
抽象概括 (2)如果对任意 x1,x2∈A,当x1<x2时,都有 f(x1)
>f(x2),那么就称函数 f(x) 在区间 A 上单调递减,如 图3-10所示.特别地,当函数 f(x) 在它的定义域上单 调递减时,我们就称它是减函数.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档