2019-2020年九年级9月第三周周考数学试题
初三(下)周考(三)数学试题(Word版)

初三(下)周考(三)数学试题(考生注意:本试题共26小题,满分150分,考试时间120分钟)注意事项:1.试题的答案书写在答题卡上,不得在试卷上直接作答;2.作答前认真阅读答题卡上的注意事项.参考公式:抛物线)0(2≠++=acbxaxy的顶点坐标为⎪⎪⎭⎫⎝⎛--abacab44,22,对称轴为abx2-=.一.选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将正确答案的代号填在答题卡内.1.-2的倒数是( ) A.12B.12- C.-2 D.22.计算22122a a⎛⎫--⎪⎝⎭g的结果是( ) A.4a B.5a C.512a D.512a-3.若二次根式1x-有意义,则x的取值范围是( )A.x<l B.1≤1 C.x>l D.x≥1 4.一个多边形的内角和是1080°,这个多边形的边数是( ) A.6 B.7 C.8 D.95.点P在第二象限内,到x轴的距离是4,到y轴的距离是3,那么点P的坐标为( )A. (-4,3)B. (-3,-4) C-. (-3,4) D. (3,-4)6.如图,直线a//b,直线c与直线a,b分别相交于点A,B,AM⊥b,垂足为M,∠1=58°,则∠2的度数是( )A. 22° B. 32° C. 42° D. 58°7.如图,AB是◎O的直径,点C在AB的延长线上,CD切◎O于点C,连接AD,OD.若∠C=44°,则∠A的度数为( ) A.23° B.28° C.35° D. 44°8.课外阅读是提高学生素养的重要途径.某班团支部统计了该班甲、乙、丙、丁四名同学在1 2月份“书香校园”活动中的课外阅读时间,他们平均每天课外阅读时间x与方差2s如上表所示,你认为表现最好的是( )A.甲 B.乙 C.丙 D.丁9.如图,在OABCD中,E是CD的延长线上一点,BE与AD交于F,CD=2DE.若△DEF的面积为2,则Y ABCD 的面积为 ( )A.18 B.16 C.20 D.2410.下列图形都是由同样大小的若干个小正方形按一定的规律组成,其中图形①中一共有10个矩形,图形②中一共有14个矩形,图形③中一共有19个矩形,…,则第⑦个图形中矩形的个数为( )A.40B. 49C. 59D. 7011.从-3,-2,-23,0,1这五个数中任选一个数作为a的值,则抛物线y=(a+2)x2-2ax+a+1与x轴有交点的概率是( ) A.15B.25C.35D.4512.如图,某高楼OB上有一旗杆CB,我校数学兴趣小组的同学准备利用所学的三角函数知识估测该高楼的高度,由于有其他建筑物遮挡视线不便测量,所以测量员沼坡度i=1:3的山坡从坡脚的A处前行50米到达P处,测得旗杆顶部C的仰角为45°,旗杆底部B的仰角为37°(测量员的身高忽略不计),己知旗杆高BC=15米,则该高楼OB的高度约为( )米.(参考数据:sin37°≈0.60, cos37°≈0.80.tan37°≈0.75) A.45 B.60 C.70 D.85二.填空题:(本大题6个小题,每小题4分,共24分)请将正确答案填在答题卡内.13.计算:231sin6082-⎛⎫-+-=⎪⎝⎭o___________14.如图,直线y=kx+b与直线y=4x+2相交于点A(-1,-2),则不等式kx+b<4x+2的解集为_______ 15.如图,A是半径为2的◎O外的一点,OA=4,AB切◎O于点B,弦BC//OA,连接AC,则图中阴影部分的面积为______________16.若关于x的不等式组22314x mx m≥-⎧⎨-+≥-⎩有解,且分式方程1422x mx x--=--有非负整数解,则满足条件的所有整数m之和为________________17.一景观水池由一个出水管和两个进水管控制蓄水量,两个进水管进水速度相等从某时开始工人打开出水管放水,2个小时之后打开一个进水管进水.再经过3个小时,工人打开第二个进水管进水,在第6小时的时候,出水管关闭,但两个进水管一直开到第8小时.水池的蓄水量y(立方米)与时间x(小时)之间的关系如图所示.则在第6小时的时候,蓄水量y 为_______立方米.18.如图,在菱形ABCD中,AB=BD.点E,F分别在BC,CD边上,且CE=DF,BF与DE交于点G.若BG=2,DG=3,则四边形ABDE的面积为________三.解答题:(本大题2个小题,第19题6分,20题8分,共14分)解答时每小题必须给出必要的演算过程或推理步骤.19、已知:如图,点F 、A 、E 、B 在一条直线上,,//,AB DE AB DF AC DF ==。
2019-2020年初三下学期第一周数学周测测试卷(解析版)

立达中学初三数学周测测试卷(一)2019-2020年初三下学期第一周数学周测测试卷(解析版)一.填空题(4题,每题5分,共20分)1、如图,△AOB 为等腰三角形,顶点A 的坐标为(2,底边OB 在x 轴上.将△AOB 绕点B 按顺时针方向旋转一定角度后得△A 'O 'B ,点A 的对应点A '在x 轴上,则点O '的坐标为【 】A .(203,103)B .(163)C .(203) D .(163,2、已知过点()23- ,的直线()y ax b a 0=+≠不经过第一象限.设s a 2b =+,则s 的取值范围是【 】A.35s 2-≤≤- B. 36<s 2-≤- C. 36s 2-≤≤- D. 37<s 2-≤-3、如图,一个半径为r 的圆形纸片在边长为a (a ≥)的等边三角形内任意运动,则在该等边三角形内,这个圆形纸片“不能接触到的部分”的面积是【 】A. 2r 3π B. ()2r 3π C. ()2r π D. 2r π4、已知△ABC 的三条边长分别为3,4,6,在△ABC 所在平面内画一条直线,将△ABC 分割成两个三角形,使其中的一个是等腰三角形,则这样的直线最多可画【 】A. 6条B. 7条C. 8条D. 9条第Ⅱ卷二.填空题(4题,每题5分,共20分)1、设12201a ,a ,...,a 是从1,0,1- 这三个数中取值的一列数,若122014a a ...a 69+++=,222122014(a 1)(a 1)...(a 1)4001++++++=,则122014a ,a ,...,a 中为0的个数 .2、如图,在平面直角坐标系中,边长不等的正方形依次排列,每个正方形都有一个顶点落在函数y =x 的图象上,从左向右第3个正方形中的一个顶点A 的坐标为(8,4),阴影三角形部分的面积从左向右依次记为S 1、S 2、S 3、…、S n ,则S n 的值为 .(用含n 的代数式表示,n 为正整数)3、如图,一次函数y =kx ﹣1的图象与x 轴交于点A ,与反比例函数3y x=(x >0)的图象交于点B ,BC 垂直x 轴于点C .若△ABC 的面积为1,则k 的值是 .4、如图,菱形ABCD 中,∠A =60°,AB =3,⊙A 、⊙B 的半径分别为2和1,P 、E 、F 分别是边CD 、⊙A 和⊙B 上的动点,则PE +PF 的最小值是 .第Ⅲ卷三.解答题(4题,每题15分,共60分)1、某店因为经营不善欠下38400元的无息贷款的债务,想转行经营服装,专卖店又缺少资金. “中国梦想秀”栏目组决定借给该店30000元资金,并约定利用经营的利润偿还债务(所有债务均不计利息).已知该店代理的品牌服装的进价为每件40元,该品牌服装日销售量y(件)与销售价x(元/件)之间的关系可用图中的一条折线(实线)来表示. 该店支付员工的工资为每人每天82元,每天还应该支付其它费用为106元(不包含债务).(1)求日销售量y(件)与销售价x(元/件)之间的函数关系式;(2)若该店暂不考虑偿还债务,当某天的销售价为48元/件时,当天正好收支平衡(收入=支出),求该店员工的人数;(3)若该店只有2名员工,则该店最早需要多少天能还清所有债务,此时每件服装的价格应定为多少元2、如图,在Rt△ABC中,∠ACB=90°,AC=4 cm,BC=3 cm,⊙O为△ABC的内切圆.(1)求⊙O的半径;(2)点P从点B沿边BA向点A以点1cm/s的速度匀速运动,以点P为圆心,PB长为半径作圆. 设点P运动的时间为t s. 若⊙P与⊙O相切,求t的值.3、如图,抛物线2y x 2x 3=-++与x 轴相交于A 、B 两点,与y 轴交于C ,顶点为D ,抛物线的对称轴DF 与BC 相交于点E ,与x 轴相交于点F .(1)求线段DE 的长;(2)设过E 的直线与抛物线相交于M (x 1,y 1),N (x 2,y 2),试判断当|x 1﹣x 2|的值最小时,直线MN 与x 轴的位置关系,并说明理由; (3)设P 为x 轴上的一点,∠DAO +∠DPO =∠α,当tan ∠α=4时,求点P 的坐标.4、某数学兴趣小组对线段上的动点问题进行探究,已知AB =8. 问题思考:如图1,点P 为线段AB 上的一个动点,分别以AP 、BP 为边在同侧作正方形APDC 与正方形PBFE . (1)在点P 运动时,这两个正方形面积之和是定值吗?如果时求出;若不是,求出这两个正方形面积之和的最小值.(2)分别连接AD 、DF 、AF ,AF 交DP 于点K ,当点P 运动时,在△APK 、△ADK 、△DFK 中,是否存在两个面积始终相等的三角形?请说明理由. 问题拓展:(3)如图2,以AB 为边作正方形ABCD ,动点P 、Q 在正方形ABCD 的边上运动,且PQ =8.若点P 从点A 出发,沿A →B →C →D 的线路,向D 点运动,求点P 从A 到D 的运动过程中,PQ 的中点O 所经过的路径的长.(4)如图(3),在“问题思考”中,若点M 、N 是线段AB 上的两点,且AM =BN =1,点G 、H 分别是边CD 、EF 的中点.请直接写出点P 从M 到N 的运动过程中,GH 的中点O 所经过的路径的长及OM +OB 的最小值.选择题 1、C 2、B 3、C 4、B 填空题 1、165 2、542 n3、24、31、【答案】C.【考点】1.坐标与图形的旋转变化;2.勾股定理;3. 等腰三角形的性质;4.三角形面积公式.【分析】利用等面积法求O'的纵坐标,再利用勾股定理或三角函数求其横坐标:如答图,过O’作O’F⊥x轴于点F,过A作AE⊥x轴于点E,∵A的坐标为(2,∴AE,OE=2.由等腰三角形底边上的三线合一得OB=2OE=4,在Rt△ABE中,由勾股定理可求AB=3,则A’B=3,【答案】B.【考点】1.作图(应用与设计作图);2.等腰三角形的判定和性质;3.分类思想的应用.【分析】根据等腰三角形的性质分别利用AB,AC为底以及为腰得出符合题意的图形即可:如答图所示:当BC1=AC1,AC=CC2,AB=BC3,AC4=CC4,AB=AC5,AB=AC6,BC7=CC7时,都能得到符合题意的等腰三角形.故选B.【答案】2.【考点】1.反比例函数与一次函数的交点问题;2.曲线上点的坐标与方程的关系.【分析】∵点B在反比例函数3yx(x>0)的图象上,元.【考点】:1.一次、二次函数和方程、不等式的应用;2.分类思想的应用.【分析】(1)根据待定系数法,可得函数解析式.(2)根据收入等于指出,可得一元一次方程,根据解一元一次方程,可得答案.(3)分类讨论40≤x≤58,或58≤x≤71,根据收入减去支出大于或等于债务,可得不等式,根据解不等式,可得答案.-+-=,解得r=1.∴4r3r5∴⊙O的半径为1 cm.∵∠PGB=∠C=90°,∴PG∥A C.(2)为⊙P 与⊙O 外切和⊙P 与⊙O 内切两种情况讨论即可.【答案】解:(1)由抛物线2y x 2x 3=-++可知,C (0,3),令y =0,则﹣x 2+2x +3=0,解得:x =﹣1,x =3,∴A (﹣1,0),B (3,0).∴顶点x =1,y =4,即D (1,4).∴DF =4.设直线BC 的解析式为y =kx +b ,代入B (3,0),C (0,3)得; 3k b 0b 3+=⎧⎨=⎩,解得k 1b 3=-⎧⎨=⎩. ∴直线BC 的解析式为;y =﹣x +3,当x =1时,y =﹣1+3=2,∴E (1,2).∴EF =2. ∴DE =DF ﹣EF =4﹣2=2.【考点】1.二次函数综合题;2.待定系数法的应用;3.曲线上点的坐标与方程的关系;4.一元二次方程根与系数的关系;5.配方法的应用;6.偶次幂的非负数性质;7.平行的判定;8.锐角三角函数定义;9.相似三角形的判定和性质.【分析】(1)根据抛物线的解析式即可求得与坐标轴的坐标及顶点坐标,进而求得直线BC 的解析式,把对称轴代入直线BC 的解析式即可求得.(2)设直线MN 的解析式为y =k 1x +b 1,依据E (1,2)的坐标即可表示出直线MN 的解析式y =(2﹣b 1)x +b 1,根据直线MN 的解析式和抛物线的解析式即可求得x 2﹣b 1x +b 1﹣3=0,所以x 1+x 2=b 1,x 1 x 2=b 1﹣3;根据完全平方公式即可求得12x x -b 1=2时,|x 1﹣x 2|最小值,因为b 1=2时,y =(2﹣b 1)x +b 1=2,所以直线MN ∥x 轴.(3)由D (1,4),则tan ∠DOF =4,得出∠DOF =∠α,然后根据三角形外角的性质即可求得∠DPO =∠ADO ,进而求得△ADP ∽△AOD ,得出AD 2=AO •AP ,从而求得OP 的长,进而求得P 点坐标.∴()2a 8a a DK PD PK a 88-=-=-=. ∴()()()()222APK DFK a 8a a 8a a 8a 1111a S PK PA a ,S DK EF 8a 2281622816∆∆---=⋅=⋅⋅==⋅=⋅⋅-= . ∴APK DFK S S ∆∆=.(3)当点P 从点A 出发,沿A →B →C →D 的线路,向点D 运动时,不妨设点Q 在DA 边上, 若点P 在点A ,点Q 在点D ,此时PQ 的中点O 即为DA 边的中点;若点Q 在DA 边上,且不在点D ,则点P 在AB 上,且不在点A .此时在Rt △APQ 中,O 为PQ 的中点,所以AO =12PQ =4.所以点O 在以A 为圆心,半径为4,圆心角为90°的圆弧上.(4)本问涉及点的运动轨迹.GH 中点O 的运动路径是与AB 平行且距离为3的线段XY 上,如答图3所示;然后利用轴对称的性质,求出OM +OB 的最小值,如答图4所示.如答图3,分别过点G 、O 、H 作AB 的垂线,垂足分别为点R 、S 、T ,则四边形GRTH 为梯形.∵点O 为中点,∴OS =12(GR +HT )=12(AP +PB )=4,即OS 为定值.。
2019-2020年九年级中考第三次模拟数学试题

2019-2020年九年级中考第三次模拟数学试题注意事项:1.本试卷全卷满分120分.考试时间为120分钟.考生答题全部答在答题卡上,答在本试卷上无效.2.请认真核对监考教师在答题卡上所粘贴条形码的姓名、考试证号是否与本人相符合,再将自己的姓名、准考证号用0.5毫米黑色墨水签字笔填写在答题卡及本试卷上.3.答选择题必须用2B铅笔将答题卡上对应的答案标号涂黑.如需改动,请用橡皮擦干净后,再选涂其他答案.答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡上的指定位置,在其他位置答题一律无效.4.作图必须用2B铅笔作答,并请加黑加粗,描写清楚.一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填在答题卡相应位置上)1.下列计算正确的是A.-(-3)2=9 B.=3 C.-(-2)0=1 D.=-32.我国成功发射了嫦娥三号卫星,是世界上第三个实现月面软着陆和月面巡视探测的国家.嫦娥三号探测器的发射总质量约3 700千克,3 700用科学记数法表示为A.3.7×102B.3.7×103C.37×102 D.0.37×104 3.对参加某次野外训练的中学生的年龄(单位:岁)进行统计,结果如下:年龄14 15 16 17 18人数 5 6 6 7 2则这些学生年龄的众数和中位数分别是A.17 15.5 B.17 16 C.15 15.5 D.16 164.如图,将一块含有30°角的直角三角板的两个顶点叠放在矩形的两条对边上,如果∠1=27°,那么∠2的度数为A.53°B.55°C.57°D.60°5.反比例函数y =k x 和正比例函数y =mx 的部分图象如图所示.由此可以得到方程k x=mx 的实数根为A .x =1B .x =2C .x 1=1,x 2=-1D .x 1=1,x 2=-26.如图,QQ 软件里的“礼盒”图标是一个表面印有黑色实线,顶端有图示箭头的正方体.下列图形中,是该几何体的表面展开图的是二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)7.-3的绝对值等于 . 8.(12+8 )× 2 = . 9.使1x +2有意义的x 的取值范围是 . 10.(2×103)2×(3×10-3) = .(结果用科学计数法表示) 11.已知⊙O 1,⊙O 2没有公共点.若⊙O 1的半径为4,两圆圆心距为5,则⊙O 2的半径可以是 .(写出一个符合条件的值即可)12.如图,在梯形ABCD 中,AB ∥CD ,∠B =90°,连接AC ,∠ DAC =∠BAC .若BC =4cm ,AD=5cm,则梯形ABCD的周长为 cm.13.如图,在□ABCD中,∠A=70°,将□ABCD绕顶点B顺时针旋转到□A1BC1D1,当C1D1首次经过顶点C时,旋转角∠ABA1=°.14.某科研机构对我区400户有两个孩子的家庭进行了调查,得到了表格中的数据,其中(男,女)代表第一个孩子是男孩,第二个孩子是女孩,其余类推.由数据,请估计我区两个孩子家庭中男孩与女孩的人数比为:.类别数量(户)(男,男)101(男,女)99(女,男)116(女,女)84合计40015.如图,⊙O的半径是5,△ABC是⊙O的内接三角形,过圆心O分别作AB、BC、AC的垂线,垂足为E、F、G,连接EF.若OG=2,则EF为.16.将一张长方形纸片按照图示的方式进行折叠:①翻折纸片,使A与DC边的中点M重合,折痕为EF;②翻折纸片,使C 落在ME 上,点C 的对应点为H ,折痕为MG ;③翻折纸片,使B 落在ME 上,点B 的对应点恰与H 重合,折痕为GE .根据上述过程,长方形纸片的长宽之比AB BC= .三、解答题(本大题共11小题,共88分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤) 17.(6分)计算:2x 2-4-12x -4. 18.(6分)解不等式组⎩⎪⎨⎪⎧5+3x >18,x 3≤4-x -22. 并写出不等式组的整数解.19.(8分)已知:如图,在正方形ABCD 中,点E 、F 在对角线BD 上,且BF =DE . (1)求证:四边形AECF 是菱形.(2)若AB =2,BF =1,求四边形AECF 的面积.20.(8分)甲、乙、丙三位歌手进入“我是歌手”的冠、亚、季军的决赛,他们通过抽签来决定演唱顺序. (1)求甲第一位出场的概率;(2)求甲比乙先出场的概率.21.(8分)为了解南京市xx 年市城镇非私营单位员工每月的收入状况,统计局对市城镇非私营单位随机抽取了1000人进行抽样调查.整理样本数据,得到下列图表:市城镇非私营单位1000人月收入频数分布表月工资x (元) 频数(人)x<xx60 xx ≤x<40006104000≤x<6001806000≤x<80050x≥8000 100合计1000(1)如果1000人全部在金融行业抽取,这样的抽样是否合理?请说明理由;(2)根据这样的调查结果,绘制条形统计图;(3)xx年南京市城镇非私营单位月平均工资为5034元,请你结合上述统计的数据,谈一谈用平均数反映月收入情况是否合理?22.(8分)(1)如图①,若BC=6,AC=4,∠C=60°,求△ABC的面积S△ABC ;(2)如图②,若BC=a,AC=b,∠C=α,求△ABC的面积S△ABC ;(3)如图③,四边形ABCD,若AC=m,BD=n,对角线AC、BD交于O点,它们所成的锐角为β.求四边形ABCD的面积S四边形ABCD .23.(8分)如图,把长为40cm,宽为30cm的长方形硬纸板,剪掉2个小正方形和2个小长方形(阴影部分即剪掉的部分),将剩余部分折成一个有盖的长方体盒子,设剪掉的小正方形边长为x cm.(纸板的厚度忽略不计)(1)长方体盒子的长、宽、高分别为(单位:cm);(2)若折成的一个长方体盒子的表面积为950cm2,求此时长方体盒子的体积.24.(8分)xx年2月,纯电动出租车在南京正式上路运行,下表是普通燃油出租车和纯电动出租车的运价.车型起步公里数起步价格超出起步公里数后的单价普通燃油型 3 9元+2元(燃油附加费) 2.4元/公里纯电动型 2.5 9元 2.9元/公里设乘客打车的路程为x公里,乘坐普通燃油出租车及纯电动出租车所需费用分别为y1、y2元.(1)直接写出y1、y2关于x的函数关系式,并注明对应的x的取值范围;(2)在如下的同一个平面直角坐标系中,画出y1、y2关于x的函数图象;(3)结合图象,求出当乘客打车的路程在什么范围内时,乘坐纯电动出租车更合算.25.(8分)如图,在□ABCD中,过A、B、D三点的⊙O交BC于点E,连接DE,∠CDE=∠DAE.(1)判断四边形ABED的形状,并说明理由;(2)判断直线DC与⊙O的位置关系,并说明理由;(3)若AB=3,AE=6,求CE的长.26.(11分)问题提出平面内不在同一条直线上的三点确定一个圆.那么平面内的四点(任意三点均不在同一直线上),能否在同一个圆呢?初步思考设不在同一条直线上的三点A、B、C确定的圆为⊙O.(1)当C、D在线段AB的同侧时,如图①,若点D在⊙O上,此时有∠ACB=∠ADB,理由是;如图②,若点D在⊙O内,此时有∠ACB∠ADB;如图③,若点D在⊙O外,此时有∠ACB∠ADB.(填“=”、“>”或“<”);由上面的探究,请直接写出A、B、C、D四点在同一个圆上的条件:.类比学习(2)仿照上面的探究思路,请探究:当C、D在线段AB的异侧时的情形.此时有,此时有,此时有.由上面的探究,请用文字语言直接写出A 、B 、C 、D 四点在同一个圆上的条件: . 拓展延伸(3)如何过圆上一点,仅用没有刻度的直尺,作出已知直径的垂线? 已知:如图,AB 是⊙O 的直径,点C 在⊙O 上. 求作:CN ⊥AB . 作法:①连接CA ,CB ;②在 ⌒CB上任取异于B 、C 的一点D ,连接DA ,DB ; ③DA 与CB 相交于E 点,延长AC 、BD ,交于F 点; ④连接F 、E 并延长,交直径AB 于M ; ⑤连接D 、M 并延长,交⊙O 于N .连接CN . 则CN ⊥AB .请按上述作法在图④中作图,并说明CN ⊥AB 的理由.(提示:可以利用(2)中的结论)27.(9分)【课本节选】反比例函数y =k x(k 为常数,k ≠0)的图象是双曲线.当k >0时,双曲线两个分支分别在三象限,在每一个象限内,y 随x 的增大而减小(简称增减性);反比例函数的图象关于原点对称(简称对称性).这些我们熟悉的性质,可以通过说理得到吗? 【尝试说理】我们首先对反比例函数y =k x(k >0)的增减性来进行说理.如图,当x >0时.在函数图象上任意取两点A 、B ,设A (x 1,k x 1),B (x 2,k x 2), 且0<x 1< x 2.下面只需要比较k x 1和k x 2的大小.k x 2—k x 1=k (x 1-x 2) x 1 x 2. ∵0<x 1< x 2,∴x 1-x 2<0,x 1 x 2>0,且 k >0. ∴k (x 1-x 2) x 1 x 2<0.即k x 2<k x 1.这说明:x 1< x 2时,k x 1>kx 2.也就是:自变量值增大了,对应的函数值反而变小了. 即:当x >0时,y 随x 的增大而减小. 同理,当x <0时,y 随x 的增大而减小.(1)试说明:反比例函数y = k x(k >0)的图象关于原点对称. 【运用推广】(2)分别写出二次函数y =ax 2(a >0,a 为常数)的对称性和增减性,并进行说理. 对称性: ; 增减性: . 说理:(3)对于二次函数y=ax2+bx+c (a>0,a,b,c为常数),请你从增减性的角度,简要解释为何当x=—b2a 时函数取得最小值.xx 年山东省滕州市卓楼中学九年级中考第三次模拟数学试卷参考答案说明:本评分标准每题给出了一种解法供参考,如果考生的解法与本解答不同,参照本评分标准的精神给分.一、选择题(本大题共6小题,每小题2分,共12分.)二、填空题(本大题共10小题,每小题2分,共20分.) 7.3 8.5 9.x ≠-2 10.1.2×10411.答案不唯一,如0.5(满足0<r <1或r >9即可)12.22 13.40 14.417︰383 15.21 16. 2 三、解答题(本大题共11小题,共88分.) 17.(6分)解:原式=2(x +2)(x -2)-12(x -2)2分=2-x2(x +2)(x -2)4分 =-12x +4. 6分18.(6分)解:解不等式①,得x >133; 2分解不等式②,得x ≤6.4分所以原不等式组的解集为133<x ≤6.5分它的整数解为5,6. 6分19.(8分)(1)连接AC ,AC 交BD 于点O . 在正方形ABCD 中,OB =OD ,OA =OC ,AC ⊥BD .∵BF =DE ,∴OB -BF =OD -DE ,即OF =OE . ∴四边形AECF 是平行四边形.又∵AC ⊥EF , ∴□AECF 是菱形.4分(2)∵AB =2,∴AC =BD =AB 2+AD 2=22. ∴OA =OB = BD2=2.∵BF =1,∴OF =OB -BF =2-1.∴S 四边形AECF =12AC ·EF =12×22×2(2-1)=4-22.8分20.(8分)解:所有可能出现的结果如下:5分以上共有6种等可能的结果.其中甲第一位出场的结果有2种,甲比乙先出场的结果有3种. 所以P (甲第一位出场)=26=13.7分 P (甲比乙先出场)=36=12.8分(注:用树状图列举所有结果参照以上相应步骤给分.) 21.(8分)解:(1)不合理.因为如果1000人全部在金融行业抽取,那么全市城镇非私营单位员工被抽到的机会不相等,样本不具有代表性和广泛性. 2分 (2)6分(3)本题答案不惟一,下列解法供参考.用平均数反映月收入情况不合理.由数据可以看出1000名被调查者中有670人的月收入不超过4000元,月收入的平均数受高收入者和低收入者收入变化的影响较大,月收入的中位数几乎不受高低两端收入变化的影响,因此,用月收入的中位数反映月收入水平更合理.8分(注:对于(1)(3)两问,学生回答只要合理,应酌情给分.) 22.(8分)(1)如图①,过点A 作AH ⊥BC ,垂足为H . 在Rt△AHC 中,AH AC=sin 60°, ∴AH =AC ·sin 60°=4×32=23. ∴S △ABC =12×BC ×AH =12×6×23=63.…………………………………………3分(2)如图②,过点A 作AH ⊥BC ,垂足为H . 在Rt△AHC 中,AH AC=sin α, ∴AH =AC ·sin α=b sin α.∴S △ABC =12×BC ×AH =12ab sin α.……………………………………………………5分(3)如图③,分别过点A ,C 作AH ⊥BD ,CG ⊥BD ,垂足为H ,G . 在Rt△AHO 与Rt△CGO 中,AH =OA sin β,CG =OC sin β; 于是,S △ABD =12×BD ×AH =12n ×OA sin β;S △BCD =12×BD ×CG =12n ×OC sin β;∴S 四边形ABCD = S △ABD +S △BCD =12n ×OA sin β+12n ×OC sin β=12n ×(OA +OC )sin β=12mn sin β.……………………………………………………………………8分23.(8分)解:(1)30-2x 、20-x 、x ;3分(2)根据图示,可得2(x 2+20x )=30×40-950 解得x 1=5,x 2=-25(不合题意,舍去)长方体盒子的体积V =(30-2×5)×5×(20-5)=20×5×15=1500(cm 3). 答:此时长方体盒子的体积为1500 cm 3. 8分 24.(8分)(1)y 1=⎩⎪⎨⎪⎧11,(x ≤3)2.4x +3.8,(x >3)y 2=⎩⎪⎨⎪⎧9,(x ≤2.5)2.9x +1.75,(x >2.5)4分(2)画图正确. 6分(3)由2.4x +3.8=2.9x +1.75,解得,x =4.1.∴ 结合图象可知,当乘客打车的路程不超过 4.1公里时,乘坐纯电动出租车合算.8分25.(8分)(1)四边形ABED 是等腰梯形.理由如下:在□ABCD 中,AD ∥BC , ∴∠DAE =∠AEB . ∴ ⌒DE= ⌒AB ,DE =AB . ∵AB ∥CD ,∴AB 与DE 不平行. ∴四边形ABDE 是等腰梯形. 2分(2)直线DC 与⊙O 相切.如图,作直径DF ,连接AF . 于是,∠EAF =∠EDF . ∵∠DAE =∠CDE ,∴∠EAF +∠DAE =∠EDF +∠CDE ,即∠DAF =∠CDF . ∵DF 是⊙O 的直径,点A 在⊙O 上,∴∠DAF =90°,∴∠CDF =90°.∴OD ⊥CD . 直线DC 经过⊙O 半径OD 外端D ,且与半径垂直, 直线DC 与⊙O 相切. 5分(3)由(1),∠EDA =∠DAB . 在□ABCD 中,∠DAB =∠DCB ,∴∠EDA =∠DCB .又∵∠DAE =∠CDE ,∴△ADE ∽△DCE .∴AE DE =DECE,∵AB =3,由(1)得,AB =DE =DC =3.即 63=3DE.解得,CE =32.…………………………………………………………………………8分26.(11分)(1)同弧所对的圆周角相等. ∠ACB <∠ADB ,∠ACB >∠ADB . 答案不惟一,如:∠ACB =∠ADB . 4分(2)如图:此时∠ACB +∠ADB =180°, 此时∠ACB +∠ADB >180°, 此时∠ACB +∠ADB <180若四点组成的四边形对角互补,则这四点在同一个圆上.8分(3)作图正确.9分∵AB 是⊙O 的直径,C 、D 在⊙O 上, ∴∠ACB =90°,∠ADB =90°. ∴点E 是△ABF 三条高的交点. ∴FM ⊥AB . ∴∠EMB =90°.∠EMB +∠EDB =180°, ∴点E ,M ,B ,D 在同一个圆上. ∴∠EMD =∠DBE .又∵点N ,C ,B ,D 在⊙O 上, ∴∠DBE =∠CND ,∠EMD =∠CND . ∴FM ∥CN .∴∠CPB =∠EMB =90°. ∴CN ⊥AB .11分(注:其他正确的说理方法参照给分.) 27.(9分)(1)在反比例函数y =kx(k >0)的图象上任取一点P (m ,n ),于是:mn =k . 那么点P 关于原点的对称点为P 1(-m ,-n ).而(-m )(-n )=mn =k , 这说明点P 1也必在这个反比例函数y =k x的图象上.所以反比例函数y = k x(k >0)的图象关于原点对称.…………………………2分 (2)对称性:二次函数y =ax 2(a >0,a 为常数)的图象关于y 轴成轴对称. 增减性:当x >0时,y 随x 增大而增大;当x <0时,y 随x 增大而减小. 理由如下:①在二次函数y =ax 2(a >0,a 为常数)的图象上任取一点Q (m ,n ),于是n =am 2. 那么点Q 关于y 轴的对称点Q 1(-m ,n ).而n =a (-m )2,即n =am 2. 这说明点Q 1也必在在二次函数y =ax 2(a >0,a 为常数) 的图象上. ∴二次函数y =ax 2(a >0,a 为常数)的图象关于y 轴成轴对称,②在二次函数y =ax 2(a >0,a 为常数)的图象上任取两点A 、B,设A (m ,am 2),B (n ,an 2) ,且0<m <n .则an 2-am 2=a (n +m )(n -m ) ∵n >m >0,∴n +m >0,n -m >0; ∵a >0,∴an 2-am 2=a (n +m )(n -m )>0.即an 2>am 2. 而当m <n <0时,n +m <0,n -m >0;∵a >0,∴an 2-am 2=a (n +m )(n -m )<0.即an 2<am 2.这说明,当x >0时,y 随x 增大而增大;当x <0时,y 随x 增大而减小.7分(3)二次函数y =ax 2+bx +c (a >0,a ,b ,c 为常数) 的图象可以由y =ax 2的图象通过平移得到,关于直线x =—b 2a 对称,当x =—b 2a 时,y =4ac -b24a.由(2),当x ≥—b 2a 时,y 随x 增大而增大;也就是说,只要自变量x ≥—b2a ,其对应的函数值y ≥4ac -b 24a ;而当x ≤—b2a时,y 随x 增大而减小,也就是说,只要自变量x≤—b 2a ,其对应的函数值y ≥4ac -b24a.综上,对于二次函数y =ax 2+bx +c (a >0,a ,b ,c 为常数),当x =—b 2a时取得最小值4ac -b24a. 9分。
江西省赣州市2019-2020学年中考数学三模考试卷含解析

江西省赣州市2019-2020学年中考数学三模考试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知一次函数3y kx =-且y 随x 的增大而增大,那么它的图象不经过( )A .第一象限B .第二象限C .第三象限D .第四象限2.如图,四边形ABCD 是平行四边形,点E 在BA 的延长线上,点F 在BC 的延长线上,连接EF ,分别交AD ,CD 于点G ,H ,则下列结论错误的是( )A .EA EG BE EF =B .EG AG GH GD =C .AB BC AE CF =D .FH CF EH AD= 3.小丽只带2元和5元的两种面额的钞票(数量足够多),她要买27元的商品,而商店不找零钱,要她刚好付27元,她的付款方式有( )种.A .1B .2C .3D .44.已知a m =2,a n =3,则a 3m+2n 的值是( )A .24B .36C .72D .65.下列运算正确的是( )A .32()x =x 5B .55()x x -=-C .3x ·2x =6xD .32x +2 35x 5x =6.如图,函数y=﹣2x+2的图象分别与x 轴,y 轴交于A ,B 两点,点C 在第一象限,AC ⊥AB ,且AC=AB ,则点C 的坐标为( )A .(2,1)B .(1,2)C .(1,3)D .(3,1)7.如图,在△ABC 中,∠C=90°,AC=BC=3cm.动点P 从点A 2cm/s 的速度沿AB 方向运动到点B .动点Q 同时从点A 出发,以1cm/s 的速度沿折线AC →CB 方向运动到点B .设△APQ 的面积为y (cm 2).运动时间为x (s ),则下列图象能反映y 与x 之间关系的是 ( )A.B.C.D.8.如图,在平行四边形ABCD中,∠ABC的平分线BF交AD于点F,FE∥AB.若AB=5,AD=7,BF=6,则四边形ABEF的面积为()A.48 B.35 C.30 D.249.如图,在△ABC中,∠C=90°,∠B=10°,以A为圆心,任意长为半径画弧交AB于M、AC于N,再分别以M、N为圆心,大于MN的长为半径画弧,两弧交于点P,连接AP并延长交BC于D,下列四个结论:①AD是∠BAC的平分线;②∠ADC=60°;③点D在AB的中垂线上;④S△ACD:S△ACB=1:1.其中正确的有()A.只有①②③B.只有①②④C.只有①③④D.①②③④10.下列交通标志是中心对称图形的为()A .B .C .D .11.下列各数中是有理数的是( )A .πB .0C .2D .3512.用教材中的计算器依次按键如下,显示的结果在数轴上对应点的位置介于( )之间.A .B 与C B .C 与D C .E 与F D .A 与B二、填空题:(本大题共6个小题,每小题4分,共24分.)13.20-114+-3-2014-4+6⨯()()=________14.如图,在平面直角坐标系中,一动点从原点O 出发,沿着箭头所示方向,每次移动一个单位,依次得到点P 1(0,1);P 2(1,1);P 3(1,0);P 4(1,﹣1);P 5(2,﹣1);P 6(2,0)……,则点P 2019的坐标是_____.15.函数 2y x =-的定义域是__________.16.已知线段a=4,b=1,如果线段c 是线段a 、b 的比例中项,那么c=_____.17.如图,在平面直角坐标系中,以坐标原点O 为位似中心在y 轴的左侧将△OAB 缩小得到△OA′B′,若△OAB 与△OA′B′的相似比为2:1,则点B (3,﹣2)的对应点B′的坐标为_____.18.如图,直线l 1∥l 2∥l 3,等边△ABC 的顶点B 、C 分别在直线l 2、l 3上,若边BC 与直线l 3的夹角∠1=25°,则边AB 与直线l 1的夹角∠2=________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,正方形ABCD 的边长为4,点E ,F 分别在边AB ,AD 上,且∠ECF =45°,CF 的延长线交BA 的延长线于点G ,CE 的延长线交DA 的延长线于点H ,连接AC ,EF .,GH .填空:∠AHC ∠ACG ;(填“>”或“<”或“=”)线段AC ,AG ,AH 什么关系?请说明理由;设AE =m ,①△AGH 的面积S 有变化吗?如果变化.请求出S 与m 的函数关系式;如果不变化,请求出定值. ②请直接写出使△CGH 是等腰三角形的m 值.20.(6分)有一个n 位自然数...abcd gh 能被x 0整除,依次轮换个位数字得到的新数bcd...gha 能被x 0+1整除,再依次轮换个位数字得到的新数cd...ghab 能被x 0+2整除,按此规律轮换后,d...ghabc 能被x 0+3整除,…,...habc g 能被x 0+n ﹣1整除,则称这个n 位数a ...bcd gh 是x 0的一个“轮换数”.例如:60能被5整除,06能被6整除,则称两位数60是5的一个“轮换数”;再如:324能被2整除,243能被3整除,432能被4整除,则称三位数324是2个一个“轮换数”. (1)若一个两位自然数的个位数字是十位数字的2倍,求证这个两位自然数一定是“轮换数”. (2)若三位自然数abc 是3的一个“轮换数”,其中a=2,求这个三位自然数abc .21.(6分)某工厂计划生产A ,B 两种产品共10件,其生产成本和利润如下表.A 种产品B 种产品 成本(万元/件)2 5 利润(万元/件) 1 3(1)若工厂计划获利14万元,问A ,B 两种产品应分别生产多少件?(2)若工厂计划投入资金不多于44万元,且获利多于22万元,问工厂有哪几种生产方案?22.(8分)如图,△ABC 中AB=AC ,请你利用尺规在BC 边上求一点P ,使△ABC ~△PAC 不写画法,(保留作图痕迹).23.(8分)在平面直角坐标系中,一次函数y ax b =+(a≠0)的图象与反比例函数(0)k y k x=≠的图象交于第二、第四象限内的A 、B 两点,与y 轴交于点C ,过点A 作AH ⊥y 轴,垂足为点H ,OH=3,tan ∠AOH=43,点B 的坐标为(m ,-2).求该反比例函数和一次函数的解析式;求△AHO 的周长.24.(10分)如图,大楼底右侧有一障碍物,在障碍物的旁边有一幢小楼DE ,在小楼的顶端D 处测得障碍物边缘点C 的俯角为30°,测得大楼顶端A 的仰角为45°(点B ,C ,E 在同一水平直线上).已知AB =80m ,DE =10m ,求障碍物B ,C 两点间的距离.(结果保留根号)25.(10分)图中的每个小方格都是边长为1个单位长度的正方形,每个小正方形的顶点叫格点,△ABC 的顶点均在格点上(1)画出将△ABC 绕点B 按逆时针方向旋转90°后所得到的△A 1BC 1;(2)画出将△ABC 向右平移6个单位后得到的△A 2B 2C 2;(3)在(1)中,求在旋转过程中△ABC 扫过的面积.26.(12分)小王是“新星厂”的一名工人,请你阅读下列信息:信息一:工人工作时间:每天上午8:00﹣12:00,下午14:00﹣18:00,每月工作25天;信息二:小王生产甲、乙两种产品的件数与所用时间的关系见下表:生产甲产品数(件) 生产乙产品数(件) 所用时间(分钟)10 10 35030 20 850信息三:按件计酬,每生产一件甲种产品得1.50元,每生产一件乙种产品得2.80元.信息四:该厂工人每月收入由底薪和计酬工资两部分构成,小王每月的底薪为1900元,请根据以上信息,解答下列问题:(1)小王每生产一件甲种产品,每生产一件乙种产品分别需要多少分钟;(2)2018年1月工厂要求小王生产甲种产品的件数不少于60件,则小王该月收入最多是多少元?此时小王生产的甲、乙两种产品分别是多少件?27.(12分)已知:四边形ABCD是平行四边形,点O是对角线AC、BD的交点,EF过点O且与AB、CD分别相交于点E、F,连接EC、AF.(1)求证:DF=EB;(2)AF与图中哪条线段平行?请指出,并说明理由.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】【分析】根据一次函数的性质:k>0,y随x的增大而增大;k<0,y随x的增大而减小,进行解答即可.【详解】解:∵一次函数y=kx-3且y随x的增大而增大,∴它的图象经过一、三、四象限,∴不经过第二象限,故选:B.【点睛】本题考查了一次函数的性质,掌握一次函数所经过的象限与k、b的值有关是解题的关键.2.C试题解析:∵四边形ABCD 是平行四边形,,AD BF BE DC AD BC ∴=P P ,,,,.EA EG EG AG HF FC CF BE EF GH DG EH BC AD∴==== 故选C.3.C【解析】分析:先根据题意列出二元一次方程,再根据x ,y 都是非负整数可求得x ,y 的值.详解:解:设2元的共有x 张,5元的共有y 张,由题意,2x+5y=27∴x=12(27-5y ) ∵x ,y 是非负整数,∴15x y ⎧⎨⎩==或111x y ⎧⎨⎩==或63x y ⎧⎨⎩==, ∴付款的方式共有3种.故选C.点睛:本题考查二元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再根据实际意义求解.4.C【解析】试题解析:∵a m =2,a n =3,∴a 3m+2n=a 3m •a 2n=(a m )3•(a n )2=23×32=8×9=1.故选C.5.B【解析】【分析】根据幂的运算法则及整式的加减运算即可判断.A. ()23x =x 6,故错误;B. ()55x x -=-,正确;C. 3x ·2x =5x ,故错误;D. 32x +2 3x 不能合并,故错误,故选B.【点睛】此题主要考查整式的加减及幂的运算,解题的关键是熟知其运算法则.6.D【解析】【分析】过点C 作CD ⊥x 轴与D ,如图,先利用一次函数图像上点的坐标特征确定B (0,2),A (1,0),再证明△ABO ≌△CAD ,得到AD =OB =2,CD =AO =1,则C 点坐标可求.【详解】如图,过点C 作CD ⊥x 轴与D.∵函数y=﹣2x+2的图象分别与x 轴,y 轴交于A ,B 两点,∴当x =0时,y =2,则B (0,2);当y =0时,x =1,则A (1,0).∵AC ⊥AB ,AC =AB ,∴∠BAO +∠CAD =90°,∴∠ABO =∠CAD.在△ABO 和△CAD 中,,∴△ABO ≌△CAD ,∴AD =OB =2,CD =OA =1,∴OD =OA +AD =1+2=3,∴C 点坐标为(3,1).故选D.【点睛】本题主要考查一次函数的基本概念。
2019-2020年九年级(下)周考数学试卷(1)

2019-2020年九年级(下)周考数学试卷(1)一、选择题(共10小题,每小题3分,共30分)1.2的算术平方根是()A.B.C.﹣D.±22.下列计算中,正确的是()A.a3+a3=a6B.(a2)3=a5 C.a2•a4=a8D.a4÷a3=a3.若二次根式有意义,则x的取值范围是()A.x≠0 B.x>3 C.x≠3 D.x≥34.把x3﹣9x分解因式,结果正确的是()A.x(x2﹣9)B.x(x﹣3)2C.x(x+3)2D.x(x+3)(x﹣3)5.一只蚂蚁在如图所示的树枝上寻觅食物,假定蚂蚁在每个岔路口都会随即地选择一条路径,则它获得食物的概率是()A.B.C.D.6.若x1、x2是方程2x2﹣3x﹣4=0的两根,则x1x2=()A.0 B.2 C.﹣2 D.﹣47.如图是由6个相同的小正方体搭成的几何体,那么这个几何体的俯视图是()A.B.C.D.8.图中两个四边形是位似图形,它们的位似中心是()A.点M B.点N C.点O D.点P9.如图,在△ABC 中,∠C=90°,BC=3,D,E分别在AB、AC上,将△ADE沿DE翻折后,点A落在点A′处,若A′为CE的中点,则折痕DE的长为()A.B.3 C.2 D.110.如图,Rt△ABC中,∠C=90°,AC=3,BC=4,P是斜边AB上一动点(不与点A、B 重合),PQ⊥AB交△ABC的直角边于点Q,设AP为x,△APQ的面积为y,则下列图象中,能表示y关于x的函数关系的图象大致是()A. B. C.D.二、填空题(本大题共6个小题,每小题3分,共18分)11.一名射击运动员在某次训练中连续打靶8次,命中的环数分别是7,8,9,10,10,8,8,8,这组数据的众数与中位数分别为.12.已知地球的表面积约为510000000km2,数510000000用科学记数法可表示为.13.在一个不透明的布袋中装有2个白球和n个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球,它是黄球的概率是,则n=.14.设面积为20cm2的平行四边形的一边长为a(cm),这条边上的高为h(cm).当边长a=25cm时,这条边上的高为cm.15.小明骑自行车从家出发,沿一条直路到相距2400m的邮局办事,小明出发的同时,他的爸爸以96米/分钟的速度从邮局沿一条道路步行回家,小明在邮局停留2分钟后沿原理以原速返回,设他们出发后经过t分钟时,小明与家之间的距离为S1米,小明爸爸与家之间的距离为S2米,图中折线OABD、线段EF分别是表示S1、S2与t之间函数关系的图象,则小明从家出发,追上爸爸所用的时间是分钟.16.半圆⊙O中,AB为直径,C、D为半圆上任意两点,将沿直线CD翻折使AB与相切,已知AB=8,求CD的最大值.三、解答题(共8题,共72分)17.如图,已知反比例函数y=(x>0)的图象与一次函数y=kx+b的图象交于点A(1,m),B(n,2)两点.(1)求一次函数的解析式;(2)结合图象回答:反比例函数的值大于一次函数的值时x的取值范围.18.如图,点F,G分别在△ADE的AD,DE边上,C,B依次为GF延长线上两点,AB=AD,∠BAF=∠CAE,∠B=∠D.(1)求证:BC=DE;(2)若∠B=35°,∠AFB=78°,直接写出∠DGB的度数.19.课前预习是学习数学的重要环节,为了了解所教班级学生完成数学课前预习的具体情况,王老师对本班部分学生进行了为期半个月的跟踪调查,他将调查结果分为四类,A:很好;B:较好;C:一般;D:较差.并将调查结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:(1)王老师一共调查了多少名同学?(2)C类女生有名,D类男生有名,将上面条形统计图补充完整;(3)为了共同进步,王老师想从被调查的A类和D类学生中各随机选取一位同学进行“一帮一”互助学习,请用列表法或画树形图的方法求出所选两位同学恰好是一位男同学和一位女同学的概率.20.如图,方格纸中每个小正方形的边长都是1个单位长度,Rt△ABC的三个顶点A(﹣2,2),B(0,5),C(0,2).(1)将△ABC以点C为旋转中心旋转180°,得到△A1B1C,请画出△A1B1C的图形;(2)平移△ABC,使点A的对应点A2坐标为(﹣2,﹣6),请画出平移后对应的△A2B2C2的图形;(3)若将△A1B1C绕某一点旋转180°可得到△A2B2C2,请直接写出旋转中心的坐标.21.已知:如图,P是⊙O外一点,PA切⊙O于点A,AB是⊙O的直径,BC∥OP交⊙O 于点C.(1)判断直线PC与⊙O的位置关系,并证明你的结论;(2)若OA:PC=1:3,AD⊥PC于点D,求AD:PA的值.22.九年级数学兴趣小组经过市场调查,整理出某种商品在第x(1≤x≤70且x为整数)天已知该商品的进价为每件元,设销售该商品的每天利润为元.(1)求出y与x的函数关系式;(2)问销售该商品第几天时,当天销售利润最大,最大利润是多少?(3)该商品在销售过程中,共有多少天每天销售利润不低于3250元?请直接写出结果.23.已知菱形ABCD的边长为1,∠ADC=60°,等边△AEF两边分别交DC、CB于点E、F.(1)特殊发现:如图1,若点E、F分别是边DC、CB的中点,求证:菱形ABCD对角线AC、BD的交点O即为等边△AEF的外心;(2)若点E、F始终分别在边DC、CB上移动,记等边△AEF的外心为P.①猜想验证:如图2,猜想△AEF的外心P落在哪一直线上,并加以证明;②拓展运用:如图3,当E、F分别是边DC、CB的中点时,过点P任作一直线,分别交DA边于点M,BC边于点G,DC边的延长线于点N,请你直接写出的值.24.已知抛物线y=(m﹣1)x2+(m﹣2)x﹣1与x轴交于A、B两点.(1)求m的取值范围;(2)若m>1,且点A在点B的左侧,OA:OB=1:3,试确定抛物线的解析式;(3)设(2)中抛物线与y轴的交点为C,过点C作直线l∥x轴,将抛物线在y轴左侧的部分沿直线l翻折,抛物线的其余部分保持不变,得到一个新图象.请你结合新图象回答:当直线与新图象只有一个公共点P(x0,y0)且y0≤7时,求b的取值范围.2015-2016学年湖北省武汉市武钢实验学校九年级(下)周考数学试卷(1)参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)1.2的算术平方根是()A.B.C.﹣D.±2【考点】算术平方根.【分析】利用算术平方根定义计算即可得到结果.【解答】解:2的算术平方根是,故选B2.下列计算中,正确的是()A.a3+a3=a6B.(a2)3=a5 C.a2•a4=a8D.a4÷a3=a【考点】同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】根据合并同类项法则;幂的乘方,底数不变指数相乘;同底数幂相乘,底数不变指数相加;同底数幂相除,底数不变指数相减,对各选项分析判断后利用排除法求解.【解答】解:A、应为a3+a3=2a3,故本选项错误;B、应为(a2)3=a2×3=a6,故本选项错误;C、应为a2•a4=a2+4=a6,故本选项错误;D、a4÷a3=a4﹣3=a,正确.故选D.3.若二次根式有意义,则x的取值范围是()A.x≠0 B.x>3 C.x≠3 D.x≥3【考点】二次根式有意义的条件.【分析】根据二次根式有意义的条件,被开方数大于或等于0,可以求出x的范围.【解答】解:根据题意得:x﹣3≥0,解得:x≥3.故选D.4.把x3﹣9x分解因式,结果正确的是()A.x(x2﹣9)B.x(x﹣3)2C.x(x+3)2D.x(x+3)(x﹣3)【考点】提公因式法与公式法的综合运用.【分析】先提取公因式x,再对余下的多项式利用平方差公式继续分解.【解答】解:x3﹣9x,=x(x2﹣9),=x(x+3)(x﹣3).故选:D.5.一只蚂蚁在如图所示的树枝上寻觅食物,假定蚂蚁在每个岔路口都会随即地选择一条路径,则它获得食物的概率是()A.B.C.D.【考点】概率公式.【分析】看有食物的情况占总情况的多少即可.【解答】解:共有6条路径,有食物的有2条,所以概率是,故选B.6.若x1、x2是方程2x2﹣3x﹣4=0的两根,则x1x2=()A.0 B.2 C.﹣2 D.﹣4【考点】根与系数的关系.【分析】根据韦达定理即可得.【解答】解:∵x1、x2是方程2x2﹣3x﹣4=0的两根,∴x1x2==﹣2,故选:C.7.如图是由6个相同的小正方体搭成的几何体,那么这个几何体的俯视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】根据俯视图是从上面看到的图形判定则可.【解答】解:从上面可看到第一横行左下角有一个正方形,第二横行有3个正方形,第三横行中间有一个正方形.故选C.8.图中两个四边形是位似图形,它们的位似中心是()A.点M B.点N C.点O D.点P【考点】位似变换.【分析】根据位似变换的定义:对应点的连线交于一点,交点就是位似中心.即位似中心一定在对应点的连线上.【解答】解:点P在对应点M和点N所在直线上,再利用连接另两个对应点,得出相交于P点,即可得出P为两图形位似中心,故选:D.9.如图,在△ABC 中,∠C=90°,BC=3,D,E分别在AB、AC上,将△ADE沿DE翻折后,点A落在点A′处,若A′为CE的中点,则折痕DE的长为()A.B.3 C.2 D.1【考点】翻折变换(折叠问题).【分析】先由图形翻折变换的性质得出AE=A′E,再根据A′为CE的中点可知AE=A′E=CE,故AE=AC,=,再由∠C=90°,DE⊥AC可知DE∥BC,故可得出△ADE∽△ABC,由相似三角形的性质可知==,故可得出结论.【解答】解:∵△A′DE△ADE翻折而成,∴AE=A′E,∵A′为CE的中点,∴AE=A′E=CE,∴AE=AC,=,∵∠C=90°,DE⊥AC,∴DE∥BC,∴△ADE∽△ABC,∴==,=,解得DE=1.故选D.10.如图,Rt△ABC中,∠C=90°,AC=3,BC=4,P是斜边AB上一动点(不与点A、B 重合),PQ⊥AB交△ABC的直角边于点Q,设AP为x,△APQ的面积为y,则下列图象中,能表示y关于x的函数关系的图象大致是()A. B. C.D.【考点】动点问题的函数图象;相似三角形的应用.【分析】分点Q在AC上和BC上两种情况进行讨论即可.【解答】解:当点Q在AC上时,y=×AP×PQ=×x×=x2;当点Q在BC上时,如下图所示,∵AP=x,AB=5,∴BP=5﹣x,又cosB=,∵△ABC∽QBP,∴PQ=BP=∴S△APQ=AP•PQ=x•=﹣x2+x,∴该函数图象前半部分是抛物线开口向上,后半部分也为抛物线开口向下.故选C.二、填空题(本大题共6个小题,每小题3分,共18分)11.一名射击运动员在某次训练中连续打靶8次,命中的环数分别是7,8,9,10,10,8,8,8,这组数据的众数与中位数分别为8,8.【考点】众数;中位数.【分析】根据中位数和众数的定义求解.【解答】解:在这一组数据中8是出现次数最多的,故众数是8;而将这组数据从小到大的顺序排列7,8,8,8,8,9,10,10,处于中间位置的2个数是8,8,那么由中位数的定义可知,这组数据的中位数是(8+8)÷2=8,所以这组数据的众数与中位数分别为8与8.故答案为8,8.12.已知地球的表面积约为510000000km2,数510000000用科学记数法可表示为 5.1×108.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于510000000有9位,所以可以确定n=9﹣1=8.【解答】解:510 000 000=5.1×108.故答案为:5.1×108.13.在一个不透明的布袋中装有2个白球和n个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球,它是黄球的概率是,则n=8.【考点】概率公式.【分析】根据黄球的概率公式列出方程求解即可.【解答】解:不透明的布袋中的球除颜色不同外,其余均相同,共有n+2个球,其中黄球n 个,根据古典型概率公式知:P(黄球)==.解得n=8.故答案为:8.14.设面积为20cm2的平行四边形的一边长为a(cm),这条边上的高为h(cm).当边长a=25cm时,这条边上的高为cm.【考点】平行四边形的性质.【分析】由平行四边形的面积=底×高即可得出结果.【解答】解:∵四边形ABCD是平行四边形,∴ah=20,当a=25cm时,h==cm;故答案为:15.小明骑自行车从家出发,沿一条直路到相距2400m的邮局办事,小明出发的同时,他的爸爸以96米/分钟的速度从邮局沿一条道路步行回家,小明在邮局停留2分钟后沿原理以原速返回,设他们出发后经过t分钟时,小明与家之间的距离为S1米,小明爸爸与家之间的距离为S2米,图中折线OABD、线段EF分别是表示S1、S2与t之间函数关系的图象,则小明从家出发,追上爸爸所用的时间是20分钟.【考点】一次函数的应用.【分析】用路程除以时间就是小亮骑自行车的速度;设小亮从家出发,经过x分钟,在返回途中追上爸爸,再由题意得出等量关系除了小亮在邮局停留2分钟,即x﹣2分钟所走的路程减去小亮从家到邮局相距的2400米,就是小亮在返回途中追上爸爸时,爸爸所走的路程,列出方程即可解答出来【解答】解:小亮骑自行车的速度是2400÷10=240m/min;先设小亮从家出发,经过x分钟,在返回途中追上爸爸,由题意可得:(x﹣2)×240﹣2400=96x240x﹣240×2﹣2400=96x240x﹣2880﹣96x=96x﹣96x144x﹣2880+2880=2880144x÷144=2880÷144x=20.答:小亮从家出发,经过20分钟,在返回途中追上爸爸.16.半圆⊙O中,AB为直径,C、D为半圆上任意两点,将沿直线CD翻折使AB与相切,已知AB=8,求CD的最大值4.【考点】切线的性质;翻折变换(折叠问题).【分析】当CD∥AB时,有最大值,过O作CD的垂线交CD于点E,连接CO,利用折叠的性质,易得OE=AO=×4=2,利用勾股定理得CE,易得AD.【解答】解:当CD∥AB时,有最大值,过O作CD的垂线交CD于点E,连接CO,∴OE=AO=×4=2,CE=DE=CD,∵AB=8,∴CE===2,∴CD=4,故答案为:4.三、解答题(共8题,共72分)17.如图,已知反比例函数y=(x>0)的图象与一次函数y=kx+b的图象交于点A(1,m),B(n,2)两点.(1)求一次函数的解析式;(2)结合图象回答:反比例函数的值大于一次函数的值时x的取值范围.【考点】反比例函数与一次函数的交点问题.【分析】(1)先把点A(1,m),B(n,2)分别代入y=可求出m、n的值,确定A点坐标为(1,6),B点坐标为(3,2),然后利用待定系数法求一次函数的解析式;(2)观察函数图象得到当0<x<1或x>3,反比例函数的图象在一次函数图象上方.【解答】解:(1)把点A(1,m),B(n,2)分别代入y=得m=6,2n=6,解得n=3,∴A点坐标为(1,6),B点坐标为(3,2),把A(1,6),B(3,2)分别代入y=kx+b得,解得,∴一次函数解析式为y=﹣2x+8;(2)反比例函数的值大于一次函数的值的x的取值范围是0<x<1或x>3.18.如图,点F,G分别在△ADE的AD,DE边上,C,B依次为GF延长线上两点,AB=AD,∠BAF=∠CAE,∠B=∠D.(1)求证:BC=DE;(2)若∠B=35°,∠AFB=78°,直接写出∠DGB的度数.【考点】全等三角形的判定与性质.【分析】(1)由∠BAF=∠CAE,等式两边同时减去∠CAF,可得出∠BAC=∠DAE,再由AB=AD,∠B=∠D,理由ASA得出△ABC≌△ADE,利用全等三角形的对应边相等可得证;(2)由∠B=∠D,以及一对对顶角相等,利用两对对应角相等的两三角形相似得到三角形ABF与三角形DGF相似,由相似三角形的对应角相等得到∠DGB=∠BAD,在三角形AFB 中,由∠B及∠AFB的度数,利用三角形的内角和定理求出∠BAD的度数,进而得到∠DGB 的度数.【解答】(1)证明:∵∠BAF=∠CAE,∴∠BAF﹣∠CAF=∠CAE﹣∠CAF,∴∠BAC=∠DAE,在△ABC和△ADE中,,∴△ABC≌△ADE(ASA),∴BC=DE;(2)解:∠DGB的度数为67°,理由为:∵∠B=∠D,∠AFB=∠GFD,∴△ABF∽△GDF,∴∠DGB=∠BAD,在△AFB中,∠B=35°,∠AFB=78°,∴∠DGB=∠BAD=180°﹣35°﹣78°=67°.19.课前预习是学习数学的重要环节,为了了解所教班级学生完成数学课前预习的具体情况,王老师对本班部分学生进行了为期半个月的跟踪调查,他将调查结果分为四类,A:很好;B:较好;C:一般;D:较差.并将调查结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:(1)王老师一共调查了多少名同学?(2)C类女生有3名,D类男生有1名,将上面条形统计图补充完整;(3)为了共同进步,王老师想从被调查的A类和D类学生中各随机选取一位同学进行“一帮一”互助学习,请用列表法或画树形图的方法求出所选两位同学恰好是一位男同学和一位女同学的概率.【考点】条形统计图;扇形统计图;列表法与树状图法.【分析】(1)根据B类有6+4=10人,所占的比例是50%,据此即可求得总人数;(2)利用(1)中求得的总人数乘以对应的比例即可求得C类的人数,然后求得C类中女生人数,同理求得D类男生的人数;(3)利用列举法即可表示出各种情况,然后利用概率公式即可求解.【解答】解:(1)(6+4)÷50%=20.所以王老师一共调查了20名学生.(2)C类学生人数:20×25%=5(名)C类女生人数:5﹣2=3(名),D类学生占的百分比:1﹣15%﹣50%﹣25%=10%,D类学生人数:20×10%=2(名),D类男生人数:2﹣1=1(名),故C类女生有3名,D类男生有1名;补充条形统计图.(3)由题意画树形图如下:从树形图看出,所有可能出现的结果共有6种,且每种结果出现的可能性相等,所选两位同学恰好是一位男同学和一位女同学的结果共有3种.所以P(所选两位同学恰好是一位男同学和一位女同学)==.20.如图,方格纸中每个小正方形的边长都是1个单位长度,Rt△ABC的三个顶点A(﹣2,2),B(0,5),C(0,2).(1)将△ABC以点C为旋转中心旋转180°,得到△A1B1C,请画出△A1B1C的图形;(2)平移△ABC,使点A的对应点A2坐标为(﹣2,﹣6),请画出平移后对应的△A2B2C2的图形;(3)若将△A1B1C绕某一点旋转180°可得到△A2B2C2,请直接写出旋转中心的坐标.【考点】作图-旋转变换;作图-平移变换;旋转的性质.【分析】(1)利用旋转的性质得出对应点坐标进而得出答案;(2)利用平移规律得出对应点位置,进而得出答案;(3)利用旋转图形的性质,连接对应点,即可得出旋转中心的坐标.【解答】解:(1)如图所示,△A1B1C即为所求;(2)如图所示,△A2B2C2即为所求;(3)旋转中心坐标(0,﹣2).21.已知:如图,P是⊙O外一点,PA切⊙O于点A,AB是⊙O的直径,BC∥OP交⊙O 于点C.(1)判断直线PC与⊙O的位置关系,并证明你的结论;(2)若OA:PC=1:3,AD⊥PC于点D,求AD:PA的值.【考点】切线的性质.【分析】(1)连接OC,由BC∥OP,∠1=∠2,∠3=∠4,而∠1=∠3,得到∠2=∠4,易证得△POC≌△POA,则∠PCO=∠PAO,由PA切⊙O于点A,根据切线的性质得到∠PAO=90°,则有∠PCO=90°,根据切线的判定得到PC与⊙O相切;(2)连接AC,交OP于M,由切线长定理得出PA=PC,设OC=OA=x,则PA=PC=3x,由勾股定理得出OP==x,AC⊥OP,由射影定理求出PM=x,得出OM=OP﹣PM=x,由射影定理求出CM=x,得出AC=2CM=x,由△APC的面积求出AD,即可得出AD:PA的值.【解答】解:(1)PC与⊙O相切;理由如下:连接OC,如图1所示:∵BC∥OP,∴∠1=∠2,∠3=∠4.∵OB=OC,∴∠1=∠3.∴∠2=∠4.在△POC和△POA中,,∴△POC≌△POA(SAS),∴∠PCO=∠PAO.∵PA切⊙O于点A,∴∠PAO=90°,∴∠PCO=90°,∴PC与⊙O相切;(2)连接AC,交OP于M,如图2所示:∵PA、PC是⊙O的切线,∴PA=PC,∵OA:PC=1:3,设OC=OA=x,则PA=PC=3x,∴OP==x,AC⊥OP,由射影定理得:PC2=PM•OP,∴PM==x,∴OM=OP﹣PM=x,∵CM2=OM•PM=x•x,∴CM=x,∴AC=2CM=x,∵△APC的面积=PC•AD=AC•PM,∴AD==x,∴==.22.九年级数学兴趣小组经过市场调查,整理出某种商品在第x(1≤x≤70且x为整数)天(1)求出y与x的函数关系式;(2)问销售该商品第几天时,当天销售利润最大,最大利润是多少?(3)该商品在销售过程中,共有多少天每天销售利润不低于3250元?请直接写出结果.【考点】二次函数的应用.【分析】(1)根据单价乘以数量,可得利润,可得答案;(2)根据分段函数的性质,可分别得出最大值,根据有理数的比较,可得答案;(3)根据二次函数值大于或等于3250,一次函数值大于或等于3250,可得不等式,根据解不等式组,可得答案.【解答】解:(1)当1≤x<40时,y=(x+45﹣30)=﹣2x2+120x+2250,当40≤x≤70时,y=(85﹣30)=﹣110x+8250,综上所述:y=;(2)当1≤x<40时,二次函数开口向下,二次函数对称轴为x=30,=﹣2×302+120×30+2250=4050,当x=30时,y最大当40≤x≤70时,y随x的增大而减小,=3850,当x=40时,y最大综上所述,该商品第30天时,当天销售利润最大,最大利润是4050元;(3)当1≤x<40时,y=﹣2x2+120x+2250≥3250,解得10≤x≤50,因此利润不低于3250元的天数是10≤x<40,共30天;当40≤x≤70时,y=﹣110x+8250≥3250,解得x≤45,因此利润不低于3250元的天数是40≤x≤45,共6天,所以该商品在销售过程中,共36天每天销售利润不低于3250元.23.已知菱形ABCD的边长为1,∠ADC=60°,等边△AEF两边分别交DC、CB于点E、F.(1)特殊发现:如图1,若点E、F分别是边DC、CB的中点,求证:菱形ABCD对角线AC、BD的交点O即为等边△AEF的外心;(2)若点E、F始终分别在边DC、CB上移动,记等边△AEF的外心为P.①猜想验证:如图2,猜想△AEF的外心P落在哪一直线上,并加以证明;②拓展运用:如图3,当E、F分别是边DC、CB的中点时,过点P任作一直线,分别交DA边于点M,BC边于点G,DC边的延长线于点N,请你直接写出的值.【考点】四边形综合题.【分析】(1)连接OE、0F,由四边形ABCD是菱形,得出AC⊥BD,BD平分∠ADC,AD=DC=BC,又由E、F分别为DC、CB中点,证得0E=OF=OA,则可得点O即为△AEF 的外心;(2)①连接PE、PA,过点P分别作PI⊥CD于I,PJ⊥AD于J,求出∠IPJ的度数,又由点P是等边△AEF的外心,易证得△PIE≌△PJA,可得PI=PJ,即点P在∠ADC的平分线上,即点P落在直线DB上;②连接BD、AC交于点P,由(1)可得点P即为△AEF的外心.设DM=x,DN=y(x≠0,y≠O),则CN=y﹣1,先利用AAS证明△GBP≌△MDP,得出BG=DM=x,CG=1﹣x,再由BC∥DA,得出△NCG∽△NDM,根据相似三角形对应边成比例得出=,进而求出为定值2.【解答】(1)证明:如图1,连接OE、0F,∵四边形ABCD是菱形,∴AC⊥BD,BD平分∠ADC,AD=DC=BC,∴∠COD=∠COB=∠AOD=90°.∠ADO=∠ADC=×60°=30°,又∵E、F分别为DC、CB中点,∴OE=CD,OF=BC,AO=AD,∴0E=OF=OA,∴点O即为△AEF的外心;(2)解:①猜想:外心P一定落在直线DB上.理由如下:如图2,分别连接PE、PA,过点P分别作PI⊥CD于I,PJ⊥AD于J,∴∠PIE=∠PJD=90°,∵∠ADC=60°,∴∠IPJ=360°﹣∠PIE﹣∠PJD﹣∠JDI=120°,∵点P是等边△AEF的外心,∴∠EPA=120°,PE=PA,∴∠IPJ=∠EPA,∴∠IPE=∠JPA,∴△PIE≌△PJA,∴PI=PJ,∴点P在∠ADC的平分线上,即点P落在直线DB上;②为定值2.连接BD、AC交于点P,由(1)可得点P即为△AEF的外心.如图3,设MN交BC于点G,设DM=x,DN=y(x≠0,y≠O),则CN=y﹣1,∵BC∥DA,∴∠GBP=∠MDP,∠BGP=∠DMP,又由(1)知BP=DP,∴△GBP≌△MDP(AAS),∴BG=DM=x,∴CG=1﹣x.∵BC∥DA,∴△NCG∽△NDM,∴=,∴=,∴x+y=2xy,∴+=2,即=2.24.已知抛物线y=(m﹣1)x2+(m﹣2)x﹣1与x轴交于A、B两点.(1)求m的取值范围;(2)若m>1,且点A在点B的左侧,OA:OB=1:3,试确定抛物线的解析式;(3)设(2)中抛物线与y轴的交点为C,过点C作直线l∥x轴,将抛物线在y轴左侧的部分沿直线l翻折,抛物线的其余部分保持不变,得到一个新图象.请你结合新图象回答:当直线与新图象只有一个公共点P(x0,y0)且y0≤7时,求b的取值范围.【考点】二次函数综合题.【分析】(1)抛物线y=(m﹣1)x2+(m﹣2)x﹣1与x轴交于A、B两点,即在解析式中令y=0,得到一个一元二次方程,这个方程有两个不同的解,根据一元二次方程的根的判别式即可求解;(2)首先求抛物线与x轴的交点坐标,根据OA:OB=1:3,即可得到关于m的方程,从而求解;(3)首先求得抛物线与x轴的交点坐标,以及函数当y=7时,函数的横坐标,则根据图象可以得到:直线在过C的直线与过D的直线之间,或在与抛物线只有一个交点的直线的下边,以及根的判别式即可求得m的范围.【解答】解:(1)∵抛物线y=(m﹣1)x2+(m﹣2)x﹣1与x轴交于A、B两点,∴由①得m≠1,由②得m≠0,∴m的取值范围是m≠0且m≠1.(2)∵点A、B是抛物线y=(m﹣1)x2+(m﹣2)x﹣1与x轴的交点,∴令y=0,即(m﹣1)x2+(m﹣2)x﹣1=0.解得x1=﹣1,.∵m>1,∴.∵点A在点B左侧,∴点A的坐标为(﹣1,0),点B的坐标为.∴OA=1,OB=.∵OA:OB=1:3,∴.∴.∴抛物线的解析式为.(3)∵点C是抛物线与y轴的交点,∴点C的坐标为(0,﹣1).依题意翻折后的图象如图所示.令y=7,即.解得x1=6,x2=﹣4.∴新图象经过点D(6,7).当直线经过D点时,可得b=5.当直线经过C点时,可得b=﹣1.当直线与函数的图象仅有一个公共点P(x0,y0)时,得.整理得.由△=(﹣3)2﹣4(﹣3b﹣3)=12b+21=0,得.结合图象可知,符合题意的b的取值范围为﹣1<b≤5或.2016年10月21日。
2019-2020年初三下学期第三周数学周测测试卷(解析版)

1A A A A 立达中学初三数学周测测试卷(三)2019-2020年初三下学期第三周数学周测测试卷(解析版)一.填空题(4题,每题5分,共20分)1、如图,将边长为a 的正六边形A 1 A 2 A 3 A 4 A 5 A6在直线上由图1的位置按顺时针方向向右 作无滑动滚动,当A 1第一次滚动到图2位置时,顶点A 1所经过的路径的长为( )aa a a2、如图,在平面直角坐标系中,正方形ABCO 的顶点A 、C 分别在Y 轴,X 轴上,以AB 为弦的⊙M 与X 轴相切,若点A 的坐标为(0,8),则圆心M 的坐标为( )A.4,-5)B.(5,-4)C.(-5,4)D.(-4,5)3、如图,Rt △ABC 中,∠ACB=Rt ∠,AC=2BC=2,作内接正方形A 1B 1D 1C ;在Rt △AA 1B 1中,作内接正方形A 2B 2D 2A 1;在Rt △A A 2B 2中,作内接正方形A 3B 3D 3A 2;……;依次作下去,则第n 个正方形A n B n D n A n-1的边长是( ) A 、 131-n B 、 n 31C 、1132--n nD 、n n 324、已知:抛物线y 1=-2x 2+2,直线y 2=2x +2, 当x 任取一值时, x 对应的函数值分别为y 1、y 2.表示. 当y 1≠y 2,时,取y 1、y 2中的较小值记为M ;若y 1=y 2,记M = y 1=y 2.下列判断:①当x >0时,y 1>y 2; ②当x <0时,x 值越大,M 值越小;③使得M 大于2的x 值不存在; ④使得M =1的x 值是 或.其中正确的是 ( ) A . ①② B .①④ C .②③ D .③④21-22第Ⅱ卷二.填空题(4题,每题5分,共20分)5、如图,点E 、F 、G 、H 分别为菱形A 1B 1C 1D 1各边的中点,连接A 1F 、B 1G 、C 1H 、D 1E 得四边形A 2B 2C 2D 2,以此类推得四边形A 3B 3C 3D 3…,若菱形A 1B 1C 1D 1的面积为S ,则四边形A n B n C n D n 的面积为6、如图,AB 是⊙O 的直径,点C 在⊙O 上,且tan ∠ABC =12,D 是⊙O 上的一个动点(C ,D 两点位于直径AB 的两侧),连接CD ,过点C 作CE ⊥CD 交DB 的延长线于点E。
河南省濮阳市2019-2020学年中考三诊数学试题含解析

河南省濮阳市2019-2020学年中考三诊数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,在数轴上有点O ,A ,B ,C 对应的数分别是0,a ,b ,c ,AO =2,OB =1,BC =2,则下列结论正确的是( )A .a c =B .0ab >C .1a c +=D .1b a -=2.下列运算正确的是( )A .a 2+a 2=a 4B .(a+b )2=a 2+b 2C .a 6÷a 2=a 3D .(﹣2a 3)2=4a 63.方程(2)0x x +=的根是( )A .x=2B .x=0C .x 1=0,x 2=-2D . x 1=0,x 2=2 4.计算2311x x x -+++的结果为( ) A .2 B .1 C .0 D .﹣15.﹣6的倒数是( )A .﹣B .C .﹣6D .66.如图,田亮同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能正确解释这一现象的数学知识是( )A .垂线段最短B .经过一点有无数条直线C .两点之间,线段最短D .经过两点,有且仅有一条直线7.某校九年级(1)班学生毕业时,每个同学都将自己的相片向全班其他同学各送一张留作纪念,全班共送了1980张相片,如果全班有x 名学生,根据题意,列出方程为A .(1)19802x x -=B .x (x+1)=1980C .2x (x+1)=1980D .x (x-1)=1980 8.如图,以两条直线l 1,l 2的交点坐标为解的方程组是( )A.121x yx y-=⎧⎨-=⎩B.121x yx y-=-⎧⎨-=-⎩C.121x yx y-=-⎧⎨-=⎩D.121x yx y-=⎧⎨-=-⎩9.八边形的内角和为()A.180°B.360°C.1 080°D.1 440°10.如图是由五个相同的小立方块搭成的几何体,则它的俯视图是()A.B.C.D.11.已知x=1是方程x2+mx+n=0的一个根,则代数式m2+2mn+n2的值为()A.–1 B.2 C.1 D.–212.二次函数y=ax2+bx﹣2(a≠0)的图象的顶点在第三象限,且过点(1,0),设t=a﹣b﹣2,则t值的变化范围是()A.﹣2<t<0 B.﹣3<t<0 C.﹣4<t<﹣2 D.﹣4<t<0二、填空题:(本大题共6个小题,每小题4分,共24分.)13.若两个相似三角形的面积比为1∶4,则这两个相似三角形的周长比是__________.14.函数12xyx+=-中,自变量x的取值范围是.15.矩形纸片ABCD中,AB=3cm,BC=4cm,现将纸片折叠压平,使A与C重合,设折痕为EF,则重叠部分△AEF的面积等于_____.16.今年我市初中毕业暨升学统一考试的考生约有35300人,该数据用科学记数法表示为________人. 17.不等式1﹣2x<6的负整数解是___________.18.不等式5﹣2x<1的解集为_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)某同学报名参加学校秋季运动会,有以下5 个项目可供选择:径赛项目:100m、200m、1000m (分别用A1、A2、A3 表示);田赛项目:跳远,跳高(分别用T1、T2 表示).该同学从 5 个项目中任选一个,恰好是田赛项目的概率P 为;该同学从 5 个项目中任选两个,求恰好是一个径赛项目和一个田赛项目的概率P1,利用列表法或树状图加以说明;该同学从5 个项目中任选两个,则两个项目都是径赛项目的概率P2 为.20.(6分)2015年1月,市教育局在全市中小学中选取了63所学校从学生的思想品德、学业水平、学业负担、身心发展和兴趣特长五个维度进行了综合评价.评价小组在选取的某中学七年级全体学生中随机抽取了若干名学生进行问卷调查,了解他们每天在课外用于学习的时间,并绘制成如下不完整的统计图.根据上述信息,解答下列问题:(1)本次抽取的学生人数是______ ;扇形统计图中的圆心角α等于______ ;补全统计直方图;(2)被抽取的学生还要进行一次50米跑测试,每5人一组进行.在随机分组时,小红、小花两名女生被分到同一个小组,请用列表法或画树状图求出她俩在抽道次时抽在相邻两道的概率.21.(6分)已知:如图,A、C、F、D在同一直线上,AF=DC,AB=DE,BC=EF,求证:△ABC≌△DEF.22.(8分)学习了正多边形之后,小马同学发现利用对称、旋转等方法可以计算等分正多边形面积的方案.(1)请聪明的你将下面图①、图②、图③的等边三角形分别割成2个、3个、4个全等三角形;(2)如图④,等边△ABC边长AB=4,点O为它的外心,点M、N分别为边AB、BC上的动点(不与端点重合),且∠MON=120°,若四边形BMON的面积为s,它的周长记为l,求1s最小值;(3)如图⑤,等边△ABC的边长AB=4,点P为边CA延长线上一点,点Q为边AB延长线上一点,点D为BC边中点,且∠PDQ=120°,若PA=x,请用含x的代数式表示△BDQ的面积S△BDQ.23.(8分)如图,在△ABC中,∠C=90°,以AB上一点O为圆心,OA长为半径的圆恰好与BC相切于点D,分别交AC,AB于点E,F.(1)若∠B=30°,求证:以A,O,D,E为顶点的四边形是菱形;(2)填空:若AC=6,AB=10,连接AD,则⊙O的半径为,AD的长为.24.(10分)小强想知道湖中两个小亭A、B之间的距离,他在与小亭A、B位于同一水平面且东西走向的湖边小道I上某一观测点M处,测得亭A在点M的北偏东30°,亭B在点M的北偏东60°,当小明由点M沿小道I向东走60米时,到达点N处,此时测得亭A恰好位于点N的正北方向,继续向东走30米时到达点Q处,此时亭B恰好位于点Q的正北方向,根据以上测量数据,请你帮助小强计算湖中两个小亭A、B之间的距离.25.(10分)某商场计划购进一批甲、乙两种玩具,已知一件甲种玩具的进价与一件乙种玩具的进价的和为40元,用90元购进甲种玩具的件数与用150元购进乙种玩具的件数相同.求每件甲种、乙种玩具的进价分别是多少元?商场计划购进甲、乙两种玩具共48件,其中甲种玩具的件数少于乙种玩具的件数,商场决定此次进货的总资金不超过1000元,求商场共有几种进货方案?26.(12分)2018年春节,西安市政府实施“点亮工程”,开展“西安年·最中国”活动,元宵节晚上,小明一家人到“大唐不夜城”游玩,看美景、品美食。
河南省驻马店市部分中学2024-2025学年九年级上学期9月月考数学试题

河南省驻马店市部分中学2024-2025学年九年级上学期9月月考数学试题一、单选题1.下列选项中,是关于x 的一元二次方程的是( )A .2211x x +=B .223250x xy y --=C .()()123x x --=D .20ax bx c ++= 2.下列说法正确的是( )A .对角线相等的四边形是矩形B .有一个角为直角的四边形是矩形C .对角线互相垂直平分的四边形是菱形D .对角线互相垂直且相等的四边形是正方形 3.根据表格对应值:判断关于x 的方程23ax bx c ++=的一个解x 的范围是( )A .1.1 1.2x <<B .1.2 1.3x <<C .1.3 1.4x <<D .无法判定4.已知m 是一元二次方程2320x x -+=的一个根,则代数式2262022m m -+的值为( ) A .2018 B .2020 C .2022 D .20245.若顺次连接四边形ABCD 各边的中点所得四边形是菱形.则四边形ABCD 一定是 ( ) A .菱形B .对角线互相垂直的四边形C .矩形D .对角线相等的四边形6.已知关于x 的一元二次方程()21210k x x --+=有两个不相等的实数根,则k 的取值范围是( )A .2k <B .2k <且1k ≠C .2k >-且1k ≠D .2k ≤且1k ≠ 7.如图,四边形ABCD 是菱形,12AC =,16BD =,AH BC ⊥于H ,则AH 等于( )A .245B .485C .4D .58.如图所示,在ABC V 中,90B ??,6cm AB =,3cm BC =,点P 以1cm/s 的速度从点A 开始沿边AB 向点B 移动,点Q 以2cm/s 的速度从点B 开始沿边BC 向点C 移动,且点P ,Q 分别从点A ,B 同时出发.若有一点到达目的地,则另一点同时停止运动.要使P ,Q 两点之间的距离等于,则需要经过( )A .2s 5B .2sC .6s 5D .2s 5或2s 9.如图,矩形ABCD 中,DE AC ⊥于E ,且ADE ∠:3EDC ∠=:2,则BDE ∠的度数为( )A .36︒B .27︒C .18︒D .9︒10.如图,在ABC V 中,90BAC ∠=︒,86AB AC ==,,M 为BC 上的一动点,ME AB ⊥于E ,MF AC ⊥于F ,N 为EF 的中点,则MN 的最小值为( )A .4.8B .2.4C .2.5D .2.6二、填空题11.方程2x x=的解是.12.如图,菱形ABCD中,对角线AC交BD于O,AB=8,E是CD的中点,则OE的长等于.13.如图,学校综合实践小组的种植园是长35米、宽20米的矩形,为便于管理,现要在中间开辟一横两纵三条等宽的小道(如图),要使种植面积为627平方米,设小道的宽为x米,则可列方程为.14.如图,菱形ABCD的周长为24cm,∠A=120°,E是BC边的中点,P是BD上的动点,则PE﹢PC的最小值是.15.如图,在正方形ABCD中,4AB=,点E是BC边上一个动点(不与点B,C重合),V.当点E'恰好落在正方形将ABEV沿AB'翻折得到AB E''V沿AE翻折到AB E'V,再将AB E'ABCD的边所在的直线上时,线段BE的长度为.三、解答题16.解方程(1)2410x x -+=;(2)2340x x +-=;(3)()32142x x x +=+;(4)()()22213x x +=-17.已知关于x 的一元二次方程()222130x m x m +-+-=有实数根. (1)求实数m 的取值范围;(2)当m 取满足条件的最大整数时,求方程的解.18.如图,线段AC 是矩形ABCD 的对角线.(1)实践与操作,利用尺规作线段AC 的垂直平分线,垂足为O ,交AB 于点E ,交DC 于点F ,连接AF CE ,(要求:尺规作图并保留作图痕迹,不写作法,需标明字母)(2)猜想与证明 试猜想四边形AECF 的形状,并加以证明.19.如图,点O 是菱形ABCD 对角线的交点,过点C 作CE ∥OD ,过点D 作DE ∥AC ,CE 与DE 相交于点E .(1)求证:四边形OCED 是矩形.(2)若AB =4,∠ABC =60°,求矩形OCED 的面积.20.据统计某生鲜电商平台1月份的销售额是100万元,3月份的销售额是144万元.(1)若该平台1月份到3月份的月平均增长率都相同,求月平均增长率是多少?(2)经市场调查发现,某水果在该平台上的售价为24元/千克时,每天能销售300千克,售价每降低2元,每天可多售出100千克,为了推广宣传,商家决定降价促销,同时尽量减少库存,已知该水果的成本价为12元千克,若使销售该水果每天获利4000元,则售价应降低多少元?21.如图,在正方形ABCD 中,点E F ,分别在AD CD ,上,且AE DF =,BE 与AF 相交于点O ,P 是BF 的中点,连接OP .(1)BE 与AF 之间有怎样的关系?请说明理由.(2)若1AE DF ==,4AB =,求OP 的长.22.定义:若两个一元二次方程有且只有一个相同的实数根,我们就称这两个方程为“同伴方程”.例如24x =和()()230x x -+=有且只有一个相同的实数根2x =,所以这两个方程为“同伴方程”.(1)根据所学定义,下列方程属于“同伴方程”的有________:(只填写序号即可) ①()219x -=②2440x x ++=③2280x x +-=(2)关于x 的一元二次方程220x x -=与210x x m ++-=为“同伴方程”,求m 的值;(3)若关于x 的一元二次方程()200ax bx c a ++=≠同时满足0a b c -+=和930a b c ++=,且与()()30x n x -+=互为“同伴方程”,求n 的值.23.教材再现:(1)如图1,在矩形ABCD 中,34AB AD ==,,P 是AD 上不与A 和D 重合的一个动点,过点P 分别作AC 和BD 的垂线,垂足分别为E ,F ,则PE PF +的值为________. 知识应用:(2)如图2,在矩形ABCD 中,点M ,分别在边AD ,BC 上,将矩形ABCD 沿直线MN 折叠,使点D 恰好与点B 重合,点C 落在点1C 处,点P 为线段MN 上一动点(不与点M ,N 重合),过点P 分别作直线BM BC ,的垂线,垂足分别为E 和F ,以PE PF ,为邻边作平行四边形PEQF ,若135DM CN ==,,Y PEQF 的周长是否为定值?若是,请求出Y PEQF 的周长;若不是,请说明理由.(3)如图3,当点P 是等边ABC V 外一点时,过点P 分别作直线AB AC BC 、、的垂线、垂足分别为点E 、D 、F .若3PE PF PD +-=,请直接写出ABC V 的面积.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019-2020年九年级9月第三周周考数学试题
命题人:强春霞 审题:聂晓岐
一、选择题(每题6分,共30分)
1、如右图,一飞镖游戏板,其中每个小正方形的大小相等,则随意投掷一个飞
镖,击中黑色区域的概率是 ( )
A 、 21
B 、 83
C 、 41
D 、 31 2、在一个不透明的口袋中装有除颜色外其余都相同的3个小球,其中一个红色球、两个黄色球.如果第一次先从袋中摸出一个球后,记下颜色,再把它放回去。
摇匀后,第二次再从袋中摸出一个,那么两次都摸到黄色球的概率是( )
A 、 91
B 、31
C 、 92
D 、9
4 3、两个正四面体骰子的各面上分别标明数字1,2,3,4,如同时投掷这两个正四面体骰子,则着地的面所得的点数之和等于5的概率为( )
A 、41
B 、163
C 、 43
D 、 8
3 4、从—2,-1,2这三个数中任取两个不同的数作为点的坐标,该点在第四象限的概率是( )
A 、61
B 、31
C 、 3
2 D 、94 5、已知21x x 、是方程122+=x x 的两个根,则
2111x x +的值为( ) A 、2
1- B 、 2 C 、 -2 D 、 21 二、填空题(每题6分,共30分)
6、已知关于x 的方程032112=-+-+x x m m )(是一元二次方程,则m 的值为:________。
7、在实数范围内定义一种运算“﹡”,其规则为a ﹡b=a 2-b 2,根据这个规则,方程(x+2) ﹡
5=0的解为 。
8、小丽要在一幅长为80cm ,宽为50cm 的矩形风景画的四周外围镶上一条宽度相同的金色纸边制成一幅矩形挂图,使整幅挂图面积是5400cm 2
,设金色纸边的宽度为x cm ,则x= 。
9、从1,2,—3,—4四个数中,随机抽取两个数相乘,积是正数的概率是
10、一口袋中放有黑白两种颜色的球,其中黑色球6个和白色球若干,从口袋中随机摸出
一球记下其颜色,再把它放回口袋中摇匀,重复上述过程,共实验50次,其中有45次摸到白球,由此可估算其中白球有个。
西安远东一中初三年级数学第3周周考答题卡
班级:姓名:总分:
一、选择题(每小题6分,共30分)
二、填空题(每题6分,共30分).
6、;
7、;
8、;
9、 10、。
三、解答题 (每小题20分,共40分)
11.某公司今年4月的营业额为2500万元,按计划第二季度的总营业额要达到9100万元,求该公司5, 6两个月营业额的月均增长率。
12、将分别标有数字1,2,3 的三张卡片洗匀后,背面朝上放在桌上。
(1)随机抽取一张,求抽到奇数的概率;
(2)随机抽取一张作为十位上的数字(不放回),再抽取一张作为个位上的数字,能组成哪些两位数?恰好是32的概率是多少?(试用树状图或列表的方法)。