小学六年级:分数应用题中单位“1”的确定方法,别再弄错了

合集下载

小学分数、百分数应用题中关于“单位1”的用法

小学分数、百分数应用题中关于“单位1”的用法

小学分数、百分数应用题中关于“单位1”的用法分数、百分数应用题一般称为分率应用题,同学们对解答这类应用题时一般都感到困难,大家怎样掌握解答这类问题的方法呢?同学们不妨从以下两点入手……一确定单位“1”的量是解题的关键分率应用题的解答关键是确定单位“1”的量,因此要求同学们抓住关键词找出单位“1”的量,找单位“1”的量有两种方法。

1.根据分数的实际意义,确定单位“1”的量。

例如,学校运来一批面粉,用去2/3,正好是10吨,这批面粉有多少吨?2/3的实际意义是把这批面粉看作单位“1”,平均分成3份,用去了其中的2份,所以这批面粉是单位“1”的量。

2.搞清哪两个量相比,确定单位“1”的量。

例如,一项工程,计划投资15万元,实际节约了20%,实际投资多少万元?同学们可以先想想:“谁比谁节约20%”,当大家弄清是“实际比计划节约了20%”,也就弄清计划投资是单位“1”的量。

二理清数量关系是解题的重要环节1.分析关键句的含义,弄清数理关系上面例子里的关键句是“实际节约20%”,分析这句话的含义是:实际投资相当于原计划的(1-20%),单位“1”的量是原计划,再根据分数乘法的意义,列出关系式:原计划投资×(1-20%)=实际投资2.运用线段图把数量关系表示出来有些较复杂的分率应用题,若采用线段图,就能更直观地理清数量关系。

(1)列出关系式是解题的依据。

分析数量关系式后再采取“一找”、“二看”、“三列式”的方法列出数量关系,这题基本上就能解答出来。

“一找”是抓住关键句找出单位“1”的量。

“二看”单位“1”的量是否已知。

求什么?“三列式”(1)已知单位“1”的量求分率,用比较量÷单位“1”的量。

(2)己知单位“1”的量和分率求比较量,用单位“1”的量×比较量对应的分率。

(3)求单位“1”的量,用比较量÷比较量的对应分率。

如何找分数应用题中的单位”1“

如何找分数应用题中的单位”1“

在分数应用题中如何寻找单位“1”一、把分率作为突破口,找准单位“1”分数应用题存在着三种数量(即比较量、标准量和分率),这三种数量有着如下的关系:标准量×分率=比较量,比较量÷标准量=分率,比较量÷分率=标准量,要正确找准单位“1”的量(即标准量)必须从题目中的分率着手,看这个分率是哪个量的分率,哪个量就是标准量。

例如:幸福村有旱地300亩,水亩面积是旱地面积的3/5,水田面积有多少亩?这道题中的分率3/5是旱地面积的3/5,所以旱地面积是单位“1”的量。

二、部分数和总数有些分数应用题,存在着整体和部分两个数量,部分数和总数作比较关系时,部分数通常作为比较量,而总数则作为标准量,那么总数就是单位“1”。

例如:我国人口约占世界人口的1/5,世界人口是总数,我国人口是部分数,所以,世界人口就是单位“1”。

例如:食堂买来100千克白菜,吃了2/5,吃了多少千克?在这里,食堂一共买来的白菜是总数,吃掉的是部分数,所以100千克白菜就是单位“1” 。

例如:红星小学有学生1000人,男生占总人数的3/5,男生有多少人?在这道应用题中,学生的总人数是标准量,男生人数量比较量。

解答这类分数应用题,只要找准总数和部分数,确定单位“1”就很容易了。

三、两种数量比较分数应用题中,两种数量相比的关键句非常多。

有的是“比”字句,有的则没有“比”字,而是带指向性特征的“占”、“是”、“相当于”。

在含有“比”字的关键句中,比后面的那个数量通常就作为标准量,也就是单位“1”。

例如:六(2)班男生比女生多1/2。

就是以女生人数为标准(单位“1”),男生比女生多的人数作为比较量。

在另外一种没有比字的两种量相比的时候,我们通常找到分率,看“占”谁的,“相当于”谁的,“是”谁的几分之几。

这个“占”,“相当于”,“是”后面的数量——谁就是单位“1”。

例如,一个长方形的宽是长的5/12。

在这关键句中,很明显是以长作为标准,宽和长相比较,也就是说长是单位“1”。

小学六年级分数应用题单位1的确定

小学六年级分数应用题单位1的确定

小学六年级:分数应用题中单位“1”的确定分数应用题中怎样分析数量之间的关系,如求一个数比另一个数多(或少)百分之几的问题.解决的核心是要弄清楚哪个量是“单位1”,这多(或少)的百分之几究竟是谁的百分之几?常用的方法有以下3种:(1)在同一整体中,部分数和总数作比较关系时,部分数通常作为比较量,而总数则作为标准量,那么总数就是单位“1”.如:有120吨货物,运走了24吨,还剩下百分之几没有运走?这个问题中120吨是总数量,24吨是部分数量,因此120吨就是单位1;六(1)班女生占总人数的3/5,六(1)班总人数就是单位1.(2)熟练掌握几个关键的字:“比”、“是”、“的”、“占”、“相当于”等. 一般情况下,“比”后“的”前的量是“单位1”,“是”、“相当于”、“占”后面的量是“单位1”.举例说明如下:将正确列式的选项填在相应的括号里.①李明家养了120只灰兔,白兔的只数是灰兔的40%,李明家养了多少只白兔?()②李明家养了120只灰兔,占白兔只数的40%,李明家养了多少只白兔?()③李明家养了120只灰兔,比白兔的只数少40%,李明家养了多少只白兔?()④李明家养了120只灰兔,白兔的只数比灰兔少40%,李明家养了多少只白兔?()A.120×(1-40%)B.120÷40%C.120÷(1-40%)D.120×40%解析:①中,“白兔的只数是灰兔的40% ”,“是”后面是灰兔,因此灰兔的只数是“单位1”;②中,“占白兔只数的40% ”,“占”后面是白兔,因此白兔的只数是“单位1”;③中,“比白兔的只数少40% ”,“比”后面是白兔,因此白兔的只数是“单位1”;④中,“白兔的只数比灰兔少40% ”,“比”后面是灰兔,因此灰兔的只数是“单位1”.正确答案是(1)D(2)B(3)C(4)A.(3)原数量与现数量的比较型问题,一般原数量是单位1.如:一种机器零件成本从8元降到6元,成本降低了百分之几?原来的数量是8元,现在是6元,单位1就是原数量8元.再如:水结成冰后体积增加了1/10,冰融化成水后,体积减少了1/12.象这样的水和冰两种数量到底谁作为单位“1”?我们只要看,原来的数量是谁,谁就是单位“1”.比如水结成冰,原来的数量是水,那么水就是单位“1”;冰融化成水,原来的数量是冰,所以冰的体积就是单位“1”.【易错题型练习】1.()比28千克多12.5%.A.3.5千克B.24.5千克C. 31.5千克D.32千克2.今年棉花产量比去年增加20%,就是()A.今年的棉花产量是去年的102%;B.去年棉花产量比今年少20%;C.今年的棉花产量是去年的120%;D.去年产量比今年少80%.3.李叔叔10月份看中的轿车是12万元,到了年底降到了10.8万元.问降了百分之几?4.李奶奶家养母鸡25只,公鸡20只.(1)李奶奶家养的母鸡比公鸡多百分之几?(2)李奶奶家养的公鸡比母鸡少百分之几?5.(1)利民服装厂计划11月份加工服装25万件,实际加工30万件.实际比计划多加工百分之几?(2)利民服装厂计划11月份加工服装25万件,实际比计划多加工5万件.实际比计划多加工百分之几?(3)利民服装厂计划11月份加工服装25万件,实际比计划多加工5万件. 实际加工的相当于计划的百分之几?(4)利民服装厂11月份实际加工服装30万件,比计划多加工5万件. 实际比计划多加工百分之几?6.把一个长6厘米、宽5厘米、高4厘米的长方体木块,加工成一个棱长是4厘米的正方体木块.体积减少了百分之几?7.甲校学生人数比乙校学生人数多25%,求乙校学生人数比甲校学生人数少百分之几?8.已知甲数比乙数多3/5,那么乙数比甲数少百分之几?9.一本科幻小说有96页,小军看了43页.小军说“剩下的比这本书的1/2少5页”,小丽说“剩下的比这本书的5/12多13页”.小军和小丽谁说的对?10.建筑工地要运进一批沙子,第一次运进总量的25%,第二次运进总量的40%,第二次比第一次多运30吨.这批沙子共有多少吨?11.一根竹竿不足8米,如果从一头量到4米做一记号,再从另一头量到4米做一记号,若这两个记号之间的长度是全长的25%,那么竹竿全长是多少米?【答案】1. 28千克就是单位1,比28多12.5%的数就是 28×(1+12.5%)=31.5,正确答案选C.2.“比去年增加20%”,“比”后的“去年”就是单位1,因此今年的产量就是(1+20%)=120%,正确答案是C.3.原数量12万元就是单位1,(12-10.8)÷12=10%.4.(1)公鸡是单位1:(25-20)÷20=25%;(2)母鸡是单位1:(25-20)÷25=20%.5.本题的4问中,单位1都是计划加工服装的件数.(1)(30-25)÷25=20%;(2)5÷25=20%;(3)(25+5)÷25=120%;(4)5÷(30-5)=20%.6.虽然没有“比、是、的”这些关键的字,但是认真读题,不难看出题中的意思是“正方体的体积比长方体的体积减少了百分之几?”,因此长方体的体积是单位1.(6×5×4-4×4×4)÷(6×5×4)≈46.7%.7.1+25%=125% (125%-1)÷125%=20%.8.第一句是“甲数比乙数”,因此“比”后的乙数就是单位1,甲数就是(1+3/5)=8/5.;第二句“乙数比甲数”,因此甲数就是单位1,(8/5-1)÷8/5= 37.5%.9.小军说“剩下的比这本书的1/2少5页”,是以“这本书”为单位1的,96×1/2=48,48-5=43,而剩下的页数是(96-43)=53页,因此小军说错了;小丽说“剩下的比这本书的5/12多13页”,也是以“这本书”为单位1的,96×5/12=40,40+13=53,和剩下的页数是相等的,因此小丽说的对.10.题中的25%和40%都是针对总量的,也就是总量就是单位1,两次的差额40%-25%=15%,也是占总量的15%,30÷15%=200吨.11.画出示意图:25%就是两次重合的部分,设竹竿的全长是x米,由题意可得 x+25%x=4+4 ,可解得x=6.4,即竹竿全长为6.4米.。

找单位“1”的方法

找单位“1”的方法

正确找准单位“1”,是解答分数(百分数)应用题的关键,每一道分数应用题中总是有关键句(含有分率的句子)。

如何从关键句中找准单位“1”,可以从以下这些方面进行考虑。

一、部分数和总数在同一整体中,部分数和总数作比较关系时,部分数通常作为比较量,而总数则作为标准量,那么总数就是单位“1”。

例如我国人口约占世界人口的1/5,世界人口是总数,我国人口是部分数,所以,世界人口就是单位“1”。

再如,食堂买来100千克白菜,吃了2/5,吃了多少千克?在这里,食堂一共买来的白菜是总数,吃掉的是部分数,所以100千克白菜就是单位“1”。

解答这类分数应用题,只要找准总数和部分数,确定单位“1”就很容易了。

二、两种数量比较分数应用题中,两种数量相比的关键句非常多。

有的是“比”字句,有的则没有“比”字,而是带有指向性特征的“占”、“是”、“相当于”。

在含有“比”字的关键句中,比后面的那个数量通常就作为标准量,也就是单位“1”。

例如:六(2)班男生比女生多1/2。

就是以女生人数为标准(单位“1”),男生比女生多的人数作为比较量。

在另外一种没有比字的两种量相比的时候,我们通常找到分率,看“占”谁的,“相当于”谁的,“是”谁的几分之几。

这个“占”,“相当于”,“是”后面的数量——谁就是单位“!”。

例如,一个长方形的宽是长的5/12。

在这关键句中,很明显是以长作为标准,宽和长相比较,也就是说长是单位“1”。

又如,今年的产量相当于去年的4/3倍。

那么相当于后面的去年的产量就是标准量,也就是单位“1”。

三、原数量与现数量有的关键句中不是很明显地带有一些指向性特征的词语,也不是部分数和总数的关系。

这类分数应用题的单位“1”比较难找。

例如,水结成冰后体积增加了1/10,冰融化成水后,体积减少了1/12。

象这样的水和冰两种数量到底谁作为单位“1”?两句关键句的单位“1”是不是相同?用上面讲过的两种方法不容易找出单位“1”。

其实我们只要看,原来的数量是谁?这个原来的数量就是单位“1”!比如水结成冰,原来的数量就是水,那么水就是单位“1”。

在分数应用题的教学中如何寻找单位“1”

在分数应用题的教学中如何寻找单位“1”

在分数应用题的教学中如何寻找单位“1”分数应用题的教学,是九年制义务教育小学数学教材的重要内容,学好分数应用题,为今后学好数理化打下良好的基础,要学好分数应用题,必须懂得寻找单位“1”,找准单位“1”是解答分数应用题的关键,掌握寻找单位“1”的方法,解答分数应用题就会得心应手。

本人从多年的教学实践中,总结以下三种寻找单位“1”的方法。

(一)把分率作为突破口,找准单位“1”分数应用题存在着三种数量(即比较量、标准量和分率),这三种数量有着如下的关系:标准量×分率=比较量,比较量÷标准量=分率,比较量÷分率=标准量,要正确找准单位“1”的量(即标准量)必须从题目中的分率着手,看这个分率是哪个量的分率,哪个量就是标准量。

例如:幸福村有旱地300亩,水亩面积是旱地面积的3/5,水田面积有多少亩?这道题中的分率3/5是旱地面积的3/5,所以旱地面积是单位“1”的量。

(二)抓关键词“是”、“比”、“等于”、“相当于”找准单位“1”分数应用题,题目中经常出现“是”、“占”、“比”、“等于”、“相当于”这些词,一般来说,单位“1”的量就隐藏在这些的后面,只要从这些词的后面寻找,就可以找出单位“1”的量,例如:1、甲有人民币100元,乙的钱数是甲的1/2,求乙有人民币多少元?在这道题中,甲的钱数是单位“1”的量。

2、甲有人民币100元,乙的钱数占甲的1/2,求乙有人民币多少元?在这道题中,甲的钱数是单位“1”的量。

3、甲有人民币100元,乙的钱数比甲多1/2,求乙有人民币多少元?在这道题中,甲的钱数是单位“1”的量。

4、甲有人民币100元,乙的钱数等于甲的1/2,求乙有人民币多少元?在这道题中,甲的钱数是单位“1”的量。

5、甲有人民币100元,乙的钱数相当于甲的1/2,求乙有人民币多少元?在这道题中,甲的钱数是单位“1”的量。

(三)分析整体和部分之间的数量关系,找准单位“1”有些分数应用题,存在着整体和部分两个数量,一般来说,部分是比较量,整体是标准量。

找单位1的技巧

找单位1的技巧

在分数应用题如何寻找单位“1”在分数应用题中如何寻找单位正确找准单位“1”,是解答分数(百分数)应用题的关键。

每一道分数应用题中总是有关键句(含有分率的句子)。

如何从关键句中找准单位“1”,应该从以下这些方面进行考虑。

一、把分率作为突破口,找准单位“1”分数应用题存在着三种数量(即比较量、标准量和分率),这三种数量有着如下的关系:标准量×分率=比较量,比较量÷标准量=分率,比较量÷分率=标准量,要正确找准单位“1”的量(即标准量)必须从题目中的分率着手,看这个分率是哪个量的分率,哪个量就是标准量。

例如:幸福村有旱地300 亩,水亩面积是旱地面积的3/5,水田面积有多少亩?这道题中的分率3/5 是旱地面积的3/5,所以旱地面积是单位“1”的量。

二、部分数和总数有些分数应用题,存在着整体和部分两个数量,部分数和总数作比较关系时,部分数通常作为比较量,而总数则作为标准量,那么总数就是单位“1”。

例如:我国人口约占世界人口的1/5,世界人口是总数,我国人口是部分数,所以,世界人口就是单位“1”。

例如:红星小学有学生1000 人,男生占总人数的3/5,男生有多少人?在这道应用题中,学生的总人数是标准量,男生人数量比较量。

解答这类分数应用题,只要找准总数和部分数,确定单位“1”就很容易了。

三、两种数量比较分数应用题中,两种数量相比的关键句非常多。

有的是“比”字句,有的则没有“比”字,而是带指向性特征的“占”、“是”、“相当于”。

在含有“比”字的关键句中,比后面的那个数量通常就作为标准量,也就是单位“1”。

例如:六(2)班男生比女生多1/2。

就是以女生人数为标准(单位“1”),男生比女生多的人数作为比较量。

在另外一种没有比字的两种量相比的时候,我们通常找到分率,看“占”谁的,“相当于”谁的,“是”谁的几分之几。

这个“占”,“相当于”,“是”后面的数量——谁就是单位“1”。

例如,一个长方形的宽是长的5/12。

寻找“单位1”有技巧,三个方法帮你轻松辨认!

寻找“单位1”有技巧,三个方法帮你轻松辨认!

寻找“单位1”有技巧,三个⽅法帮你轻松辨认!
在做分数乘除法的应⽤题时,正确找到“单位1”是解题的关键,在熊爸数据库中,熊爸⽼师发现
很多学⽣在做题时往往分不清楚,家长也模棱两可,下⾯熊爸⽼师对其进⾏了总结,相信记住
这些⼩学分数乘除法的应⽤题将迎刃⽽解:
⼀、“相当于”的后⾯
把夏⾄时漠河的昼长看成单位“1”,它的5/12就是7⼩时,7÷5/12=16.8时,⽽不是⽤乘法计算。

⼆、“的”的前⾯
是把兔⼦的只数看成单位“1”,⽽不能写成兔⼦
三、“占、是”的后⾯
(1)50岁以上的⼈数占总⼈数的3/10,把总⼈数看成单位“1”,
50岁以上的⼈数=总⼈数×3/10
即:350×3/10=105⼈
(2)40~50岁的⼈数是50岁以上⼈数的4/5,
把50岁以上⼈数看成单位“1”,40~50岁的⼈数=50岁以上⼈数×4/5
即:105×4/5=84⼈
单位“1”藏在“相当于、占、是”的后⾯,躲在“的”的前⾯,记住这句话⼩学分数乘除法的应⽤题将
不再是阻碍。

在分数应用题中如何确定单位“1”

在分数应用题中如何确定单位“1”

在分数应用题中如何确定单位“1”的量在我的教学实践中,我发现在小学数学的学习阶段,让学生感到困惑和难以掌握的就是应用题的学习,特别是分数应用题难度更大,而解这类应用题的关键,就是能否准确判断单位“1”的量(标准量)、分率对就量(比较量)和对应分率,而单位“1”的量是这个三个量的核心。

为此,我根据多种题型和自己的教学经验,认为单位“1”的量的确定方法大致有以下四种,仅供参考:1.找关键字,题中如在分数前出现“是谁”、“占谁”、“比谁”、或“超过谁”等词时,那么“是、占、比、超过”等字后的这个“谁”就是该分数所对应的单位“1”的量。

例如:(1)一套西服160元,其中裤子的价格是上衣的3/5,上衣是多少元》?分析:3/5前有“是上衣”一词,则“是”后的“上衣”是3/5对应的单位“1”的量。

(2)校园里有60棵树,杨树占总株数的1/5,杨树有多少棵?分析:“占”的后面是总株数,则它就是1/5对应的单位“1”的量。

2.在没有关键字时,如果在分数前有若干个量,可找最接近分数的这个量,就是这个分数对应的单位“1”的量。

例如:某汽车厂去年计划生产汽车12600辆,结果上半年完成全年计划的5/9,下半年完成全年计划的3/5,去年超产汽车多少辆?分析:题中5/9和3/5为两个量,但最接近分数的是“全年计划”,则它就是该分数对应的单位“1”的量。

3.在某些题中的分数前,既没有关键字,又没有出现量,那么这个分数的单位“1”的量便隐含题中,但通过读该题,便让单位“1”浮现在上面,很容易确定。

例如:六(1)班有学生68人,今天到校了33/34,到校人数有多少人?分析:很明显,全班人数是分数对应的单位(1)的量。

4.较复杂的分数应用题是基本应用题的延续和发展,题中的单位“1”的量不定,因为这类题中的已知条件之间,已知条件与所求问题之间的变幻关系可逐步确定而灵活选择。

例如:某学校六年级有四个班去植树,一班植树的棵数是其他班级的1/2,二班植树棵数是其他班级的1/3,三班植树棵数是其他班级的1/4,而四班植了130棵,问四个班级一共植树多少棵?分析:题中出现了3个不同的单位“1”的量,1/2对应的是二、三、四班植树的总棵数,1/3对应的是一、三、四班植的总棵数,1/4对应的一、二、四班植的总棵数,但解这道题如果逐步进行,按对应关系计算就太复杂,可选择不变量四个班植树总棵数来统一单位“1”的量,此计算过程要简单些。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小学六年级:分数应用题中单位“1”的确定方法,别再弄错了
分数应用题中怎样分析数量之间的关系,如求一个数比另一个数多(或少)百分之几的问题.解决的核心是要弄清楚哪个量是“单位1”,这多(或少)的百分之几究竟是谁的百分之几?常用的方法有以下3种:
(1)在同一整体中,部分数和总数作比较关系时,部分数通常作为比较量,而总数则作为标准量,那么总数就是单位“1”.
如:有120吨货物,运走了24吨,还剩下百分之几没有运走?这个问题中12 0吨是总数量,24吨是部分数量,因此120吨就是单位1;六(1)班女生占总人数的3/5,六(1)班总人数就是单位1.
(2)熟练掌握几个关键的字:“比”、“是”、“的”、“占”、“相当于”等. 一般情况下,“比”后“的”前的量是“单位1”,“是”、“相当于”、“占”后面的量是“单位1”.
举例说明如下:
将正确列式的选项填在相应的括号里.
①李明家养了120只灰兔,白兔的只数是灰兔的40%,李明家养了多少只白兔?()
②李明家养了120只灰兔,占白兔只数的40%,李明家养了多少只白兔?()
③李明家养了120只灰兔,比白兔的只数少40%,李明家养了多少只白兔?()
④李明家养了120只灰兔,白兔的只数比灰兔少40%,李明家养了多少只白兔?()
A.120×(1-40%)
B.120÷40%
C.120÷(1-40%)
D.120×40%
解析:①中,“白兔的只数是灰兔的40% ”,“是”后面是灰兔,因此灰兔的只数是“单位1”;
②中,“占白兔只数的40% ”,“占”后面是白兔,因此白兔的只数是“单位1”;
③中,“比白兔的只数少40% ”,“比”后面是白兔,因此白兔的只数是“单位1”;
④中,“白兔的只数比灰兔少40% ”,“比”后面是灰兔,因此灰兔的只数是“单位1”.
正确答案是(1)D(2)B(3)C(4)A.
(3)原数量与现数量的比较型问题,一般原数量是单位1.
如:一种机器零件成本从8元降到6元,成本降低了百分之几?原来的数量是8元,现在是6元,单位1就是原数量8元.
再如:水结成冰后体积增加了1/10,冰融化成水后,体积减少了1/12.象这样的水和冰两种数量到底谁作为单位“1”?我们只要看,原来的数量是谁,谁就
是单位“1”.比如水结成冰,原来的数量是水,那么水就是单位“1”;冰融化成水,原来的数量是冰,所以冰的体积就是单位“1”.
【易错题型练习】
1.()比28千克多1
2.5%.
A.3.5千克
B.24.5千克
C. 31.5千克
D.32千克
2.今年棉花产量比去年增加20%,就是()
A.今年的棉花产量是去年的102%;
B.去年棉花产量比今年少20%;
C.今年的棉花产量是去年的120%;
D.去年产量比今年少80%.
3.李叔叔10月份看中的轿车是12万元,到了年底降到了10.8万元.问降了百分之几?
4.李奶奶家养母鸡25只,公鸡20只.
(1)李奶奶家养的母鸡比公鸡多百分之几?(2)李奶奶家养的公鸡比母鸡少百分之几?
5.(1)利民服装厂计划11月份加工服装25万件,实际加工30万件.实际比计划多加工百分之几?
(2)利民服装厂计划11月份加工服装25万件,实际比计划多加工5万件.实际比计划多加工百分之几?
(3)利民服装厂计划11月份加工服装25万件,实际比计划多加工5万件. 实际加工的相当于计划的百分之几?
(4)利民服装厂11月份实际加工服装30万件,比计划多加工5万件. 实际比计划多加工百分之几?
6.把一个长6厘米、宽5厘米、高4厘米的长方体木块,加工成一个棱长是4厘米的正方体木块.体积减少了百分之几?
7.甲校学生人数比乙校学生人数多25%,求乙校学生人数比甲校学生人数少百分之几?
8.已知甲数比乙数多3/5,那么乙数比甲数少百分之几?
9.一本科幻小说有96页,小军看了43页.小军说“剩下的比这本书的1/2少5页”,小丽说“剩下的比这本书的5/12多13页”.小军和小丽谁说的对?10.建筑工地要运进一批沙子,第一次运进总量的25%,第二次运进总量的40%,第二次比第一次多运30吨.这批沙子共有多少吨?
11.一根竹竿不足8米,如果从一头量到4米做一记号,再从另一头量到4米做一记号,若这两个记号之间的长度是全长的25%,那么竹竿全长是多少米?【答案】
1. 28千克就是单位1,比28多1
2.5%的数就是28×(1+12.5%)=31.5,正确答案选C.
2.“比去年增加20%”,“比”后的“去年”就是单位1,因此今年的产量就是(1+20%)=120%,正确答案是C.
3.原数量12万元就是单位1,(12-10.8)÷12=10%.
4.(1)公鸡是单位1:(25-20)÷20=25%;(2)母鸡是单位1:(25-20)÷25=20%.
5.本题的4问中,单位1都是计划加工服装的件数.(1)(30-25)÷25=20%;(2)5÷25=20%;(3)(25+5)÷25=120%;(4)5÷(30-5)=20%.
6.虽然没有“比、是、的”这些关键的字,但是认真读题,不难看出题中的意思是“正方体的体积比长方体的体积减少了百分之几?”,因此长方体的体积是单位1.(6×5×4-4×4×4)÷(6×5×4)≈46.7%.
7.1+25%=125% (125%-1)÷125%=20%.
8.第一句是“甲数比乙数”,因此“比”后的乙数就是单位1,甲数就是(1+ 3/5)=8/5.;第二句“乙数比甲数”,因此甲数就是单位1,(8/5-1)÷8/5= 3 7.5%.
9.小军说“剩下的比这本书的1/2少5页”,是以“这本书”为单位1的,96×1/2=48,48-5=43,而剩下的页数是(96-43)=53页,因此小军说错了;小丽说“剩下的比这本书的5/12多13页”,也是以“这本书”为单位1的,9 6×5/12=40,40+13=53,和剩下的页数是相等的,因此小丽说的对.
10.题中的25%和40%都是针对总量的,也就是总量就是单位1,两次的差额40% -25%=15%,也是占总量的15%,30÷15%=200吨.
11.画出示意图:
25%就是两次重合的部分,设竹竿的全长是x米,由题意可得x+25%x=4+4 ,可解得x=6.4,即竹竿全长为6.4米.。

相关文档
最新文档