小学六年级分数应用题例题解析及常用公式
小学六年级分数应用题例题解析及常用公式

小学六年级分数应用题例题解析及常用公式分数应用题例题分析以及常用公式解题详细步骤解读一、正确的找单位“1”是解决分数应用题的前提。
不管什么样的分数应用题,题中必有单位“1”。
正确的找到单位“1”是解答分数应用题的前提和首要任务。
分数应用题中的单位“1”分两种形式出现:1、有明显标志的:(1)男生人数占全班人数的4/7 (2)杨树棵树是柳树的3/5(3)小明的体重相当于爸爸的1/2 (4)苹果树比梨树多1/5条件中“占”“是”“相当于”“比”后面,分率前面的量是本题中的单位“1”。
2、无明显标志的:(1)一条路修了200米,还剩2/3没修。
这条路全长多少千米?(2)有200张纸,第一次用去1/4,第二次用去1/5。
两次共用去多少张?(3)打字员打一部5000字的书稿,打了3/10,还剩多少字没打?这3道题中的单位“1”没有明显标志,要根据问题和条件综合判断。
(1)中应把“一条路的总长”看作单位“1”(2)题中应把“200张纸”看作单位“1”(3)题中应把“5000个字”看作单位“1”。
二、正确的找对应关系是解分数应用题的关键。
每道分数应用题都有数量和分率的对应关系,正确的找到所求数量(或分率)和哪个分率(或数量)对应是解分数应用题的关键。
方法:分率对应量÷单位“1”的量=分率单位“1”的量×分率=分率对应量分率对应量÷分率=单位“1”的量三、根据数量关系式解答分数应用题“三步法”掌握以上关系和数量关系式,解分数应用题可以按以下三步进行:1、找准单位“1”的量;2、找准对应关系3、根据数量关系式列式解答四、有效练习,建立模型,提升解分数应用题的能力。
要想正确、迅速地解答分数应用题,必须多加练习,把基本型的、稍复杂型的和复杂型的结构特征理解清楚,才能熟练快速地解答分数应用题。
基础理论(一)分数应用题的构建分数应用题主要讨论的是以下三者之间的关系:(1)、分率:表示一个数是另一个数的几分之几,这几分之几通常称为分率。
六年级数学上册典型例题系列之第一单元分数乘法应用题(解析版)

答:略。
3. 厦华希望小学四年级有25名学生,五年级有学生35人,五年级人数比四年级少几分之几?
解析:(35-25)÷25=
答:略。
4. 信誉楼七月份卖出120台冰箱,八月份卖出100台冰箱,八月份比七月份少卖几分之几?
解析:(120-100)÷120=
答:略。
【典型例题3】如果甲数是乙数的 ,那么甲数比乙数少几分之几?乙数比甲数多几分之几?
答:200× =12(万元)
答:略。
2.一套西服原价250元,现价比原价多 。现价比原价多多少元?
答:250× =50(元)
答:略。
3.六年级音乐小组有30人。舞蹈小组的人数比音乐小组多 ,舞蹈小组比音乐小组多多少人?
解析:30× =10(人)
答:略。
【考点四】已知单位“1”,求比一个数多几分之几,是多少?
【对应练习】
1.小华看一本132页的书,第一天看了全书的 ,第二天看了第一天的 ,小华第二天看了多少页?
解析:132× × =11(页)
答:略。
2.学校四月份用电1600千瓦时,五月份用电量是四月份的 ,六月份用电量是五月份的 ,六月份用电多少千瓦时?
解析:1600× × =1120(千瓦时)
答:略。
六年级数学上册典型例题系列之
第一单元分数乘法应用题(解析版)
【考点一】寻找单位“1”和写数量关系式。
【方法点拨】
1.在分率句中分率的前面或“占”、“是”、“比”的后面
2.写数量关系式:
(1)“的” 相当于 “×” ;“占”、“是”、“比”相当于“ ÷ ”
(2)分率前是“的”:单位“1”的量×分率=分率对应量
解析:(1600-1200)÷1200=
六年级上册分数除法应用题

六年级上册分数除法应用题一、分数除法应用题基础概念1. 意义- 分数除法应用题是已知一个数的几分之几是多少,求这个数的应用题。
它是分数乘法应用题的逆向应用。
例如:已知一个数的公式是10,求这个数,这就是典型的分数除法应用题。
2. 数量关系- 基本的数量关系为:部分量÷对应分率 = 单位“1”的量。
例如,在上面的例子中,10是部分量,公式是对应分率,要求的这个数就是单位“1”的量。
二、典型例题及解析1. 例1- 题目:小明看一本故事书,已经看了全书的公式,正好是45页。
这本故事书一共有多少页?- 解析:- 我们确定这里的部分量是45页,它对应的分率是公式。
- 根据数量关系“部分量÷对应分率 = 单位‘1’的量”,我们可以列式为公式。
- 计算时,公式(页)。
所以这本故事书一共有75页。
2. 例2- 题目:一个工程队修一条路,已经修了12千米,占全长的公式,这条路全长多少千米?- 解析:- 这里12千米是部分量,公式是对应分率。
- 求全长(单位“1”的量),列式为公式。
- 计算公式(千米),即这条路全长30千米。
3. 例3- 题目:学校美术小组有男生20人,男生人数是女生人数的公式,女生有多少人?- 解析:- 在这个问题中,20人是男生人数,它是部分量,公式是男生人数相对于女生人数的分率。
- 要求女生人数(单位“1”的量),列式为公式。
- 计算公式(人),所以女生有25人。
三、练习题1. 题1- 题目:果园里有苹果树180棵,占果树总棵数的公式,果园里一共有多少棵果树?- 解析:- 180棵是部分量,公式是对应分率。
- 根据数量关系,果树总棵数(单位“1”的量)为公式(棵)。
2. 题2- 题目:一辆汽车从甲地开往乙地,已经行驶了120千米,正好是全程的公式,甲乙两地相距多少千米?- 解析:- 120千米是部分量,公式是对应分率。
- 甲乙两地的距离(单位“1”的量)为公式(千米)。
六年级数学上册总复习分数应用题六种类型

六年级数学上册总复习分数应用题六种类型一、分数的相等与同分母计算分数的相等可以通过化简分数进行判断,而同分母计算则需要统一分母后进行加减运算。
下面是一些应用题的例子:例题1:小明有5/6的水果,他分给小红1/4,小明自己剩下多少水果?解析:小明分给小红的水果是5/6 * 1/4 = 5/24,小明自己剩下的水果是5/6 - 5/24 = 15/24 = 5/8。
例题2:小华有7/8的糖果,他分给小李3/4,小华自己剩下多少糖果?解析:小华分给小李的糖果是7/8 * 3/4 = 21/32,小华自己剩下的糖果是7/8 - 21/32 = 11/32。
二、分数的大小比较分数的大小比较可以通过将分数转化为相同分母后,比较分子的大小进行判断。
下面是一些应用题的例子:例题1:比较3/4和2/3的大小。
解析:将分数转化为相同分母,得到3/4和2/3,分母相同,比较分子大小,3>2,因此3/4>2/3。
例题2:比较5/6和7/8的大小。
解析:将分数转化为相同分母,得到10/12和7/8,分母相同,比较分子大小,10>7,因此5/6>7/8。
三、分数的加减运算分数的加减运算需要先统一分母,然后按照分子之和(或差)除以相同分母的规则进行计算。
下面是一些应用题的例子:例题1:计算3/4 + 5/6。
解析:将两个分数的分母统一为12,得到9/12和10/12,然后相加得到19/12。
例题2:计算2/3 - 1/4。
解析:将两个分数的分母统一为12,得到8/12和3/12,然后相减得到5/12。
四、分数的乘除运算分数的乘除运算通过分子相乘或相除,以及分母相乘或相除来进行。
下面是一些应用题的例子:例题1:计算2/3 × 3/4。
解析:分子相乘得到6,分母相乘得到12,因此2/3 * 3/4 = 6/12 =1/2。
例题2:计算5/6 ÷ 2/5。
解析:分子相除得到25,分母相除得到12,因此5/6 ÷2/5 = 25/12。
小学六年级数学重点知识归纳分数运算中的应用题解析

小学六年级数学重点知识归纳分数运算中的应用题解析小学六年级数学重点知识归纳:分数运算中的应用题解析数学作为一门学科,扮演着培养学生逻辑思维和解决实际问题的重要角色。
分数运算作为小学六年级数学的重点之一,涉及到了分数的加、减、乘、除以及应用题解析等内容。
本文将通过对分数运算中的应用题解析,来帮助小学六年级的学生更好地理解和应用分数运算。
一、分数运算的基本概念在进入分数运算的应用题解析之前,我们首先来回顾一下分数运算的基本概念。
1. 分数的加法和减法分数的加法和减法就是将具有相同分母的分数进行加或减。
具体步骤如下:(1)将两个分数的分母相同化。
(2)根据相同的分母,将分子进行加或减。
(3)将结果进行化简,如果需要。
2. 分数的乘法和除法分数的乘法和除法是将两个分数进行乘或除。
具体步骤如下:(1)将两个分数的分子相乘,并将两个分数的分母相乘。
(2)将结果进行化简,如果需要。
二、应用题解析下面将结合几个应用题来解析分数运算在实际问题中的应用。
1. 问题一:小明昨天吃了5/8块蛋糕,今天还剩下3/4块蛋糕,问他原来一共有多少块蛋糕?解析:根据题目,我们可以设小明原来一共有x块蛋糕,根据题意,可以列出方程:x - 5/8 - 3/4 = 0化简方程得:8x - 40 - 6x = 0化简结果为:2x = 40由此可以得出小明原来一共有20块蛋糕。
2. 问题二:一辆汽车以每小时4/5的速度行驶8小时,那么这辆汽车一共行驶了多少公里?解析:根据题目,我们可以设汽车一共行驶了x公里,根据题意,可以列出方程:x = (4/5) * 8化简方程得:x = 32/5化简结果为:x = 6 2/5由此可以得出这辆汽车一共行驶了6又2/5公里。
3. 问题三:林妈妈给小明买了一块长为3/4米、宽为5/8米的地毯,问这块地毯的面积是多少平方米?解析:根据题目,我们可以设地毯的面积为x平方米,根据题意,可以列出方程:x = (3/4) * (5/8)化简方程得:x = 15/32由此可以得出这块地毯的面积是15/32平方米。
六年级下册数学常见分数应用题的解题方法

常见的分数应用题的结构和解题方法一、求一个数 是 另一个数的几分之几(或百分之几)是多少 ( 用除法计算 ) ↓ ↓(已知) (单位“1” )→已知↓ ↓具体数量 具体数量【方法: 甲÷乙(乙≠0)=乙甲】 如:甲数是5,乙数是4,甲是乙的几分之几(或百分之几)?(单位“1”)5÷4=411 或【5÷4×100%=1.25×100%=125%】 甲数是5,乙数是4,乙是甲的几分之几(或百分之几)?(单位“1”)4÷5=54 或【4÷5×100%=0.8×100%=80%】 甲数是5,乙数是4,甲比乙多几分之几(或百分之几)?(单位“1”)(5-4)÷4=41 或【(5-4)÷4×100%=0.25×100%=25% 】 甲数是5,乙数是4,乙比甲少几分之几(或百分之几)?(单位“1”)(5-4)÷5=51 或【(5-4)÷5×100%=0.2×100%=20%】二、求 一个数 的 几分之几(或百分之几)是多少 (用乘法计算) (单位“1”) (已知)↓ ↓具体数量(已知) 分率【方法: 单位“1”对应数量×几几(或百几)=几几(或百几)对应数量】 如:甲数是5,乙数是甲数的54(或80%),乙数是多少? (单位“1”)5×54=4 或 【5×80%=4】 甲数是5,乙数比甲数多51(或20%),乙数是多少? (单位“1”)5+5×51=6 或5+5×20%=6 5×(1+51)=6 5×(1+20%)=6甲数是5,乙数比甲数少51(或20%),乙数是多少? 5-5×51=4 或5-5×20%=4 5×(1-51)=4 5×(1-20%)=4 如:一本书共120页,第一天看了全书的51(或20%),第二天看了全书的41(或25%),还剩多少页未看?120-120×51-120×41 或 120×(1-51-41) 120-120×20%-120×25% 或 120×(1-20%-25%)三、已知一个数 的 几分之几 (或百分之几)是多少 (用除法计算) ↓ ↓(单位“1”) (分率)↓ ↓具体数量(未知) (已知) 【方法:几几(或百几)对应数量÷几几(或百几)=单位“1”对应数量】 甲数是5,是乙数的54(或80%),乙数是多少?解法一:方程解 解法二:算术方法解 设乙数为ⅹ, 5÷54(80%)=6.25 ⅹ×54(80%)=5 甲数是5,比乙数多41(或25%),乙数是多少? 解法一:方程解 解法二:算术方法解 设乙数为ⅹ, 5÷(1+41【25%】)=4 ⅹ+41ⅹ【25%ⅹ】=5ⅹ×(1+41【25%】)=5 甲数是5,比乙数少51(或20%),乙数是多少? 解法一:方程解 解法二:算术方法解 设乙数为ⅹ, 5÷(1-51【20%】)=6.25 ⅹ-ⅹ×51(20% )=5 ⅹ×(1-51【20%】)=5如:一本故事书,小王看了20页,是小勇的41(25%),小勇是小刚的51(20%),小刚看了多少页?方程解:设小刚看了ⅹ页,算术方法解: ⅹ×51×41=20 20÷41÷51 ⅹ×25%×20%=20 20÷25%÷20% 如:小王看一本书,第一天看了全书41(或25%),第二天看了全书51(或20%),正好看了200页,这本书共有多少页?方程解:设这本书有ⅹ页, 算术方法解:41ⅹ+51ⅹ=200 200÷(41+51) 25%ⅹ+20%ⅹ=200 200÷(25%+20%) 如:小王看一本书,第一天看了全书41(或25%),第二天看了全书51(或20%),第二天比第一天少看10页,这本书一共有多少页?方程解:设这本书有ⅹ页, 算术方法解:41ⅹ-51ⅹ=10 10÷(41-51) 25%ⅹ-20%ⅹ=10 10÷(25%-20%)四、工程问题(行程问题)工作总量=工作时间×工效 工作效率=工作总量÷工作时间工作时间=工作总量÷工效如:一件工程,甲独做8天完成,乙独做10天完成,丙独做12天完成。
小学六年级分数应用题讲解

分数(百分数)应用题典型解法一、 读懂题意,根据题目的意思用列式表达出来。
常见的应用题表达意思:A 是B 的几分之几——A=B*几/几B 占A 的几分之几——B=A*几/几A 比B 多几分之几——A-B=B*几/几A 比B 少几分之几——A=B-B*几/几1、 知道题目告诉了我们什么?需要我们解决什么?一个班组有学生80人,男生人数是女生的四分之一,求男人多少人?1)读懂题目,知道题目表达的什么意思,题目所求什么?第一:我们男人和女人一共80人;第二:男人人数是女人人数的1/4;第三:求的是男生多少人?根据题意:我们列式:班组人数—女生人数=男生人数80-女生人数=女生人数*1/4得出女生人数:64人;80-64=16人,男生16人2男生:女生:可以看出:男生是女生的1/4,那么女生就是1.男生与女生的和就是1+1/4=5/4;我们知道求“1”是除。
那么女生是“1”,求女生的人数:80÷5/4=64根据线段表达的意思,解答以下问题:1、 已知女生64人,问总人数多少人?2、 已知女生63人,问男生多少人?3、 已知总人数80人,问女生多少人?4、 已知男生16人,问女生多少人?以上问题现弄明白谁是“1”,再弄明白是已知“1”还是要求“1”二、 找题目中关键的“1”几分之几或百分率前面的那个关键名词就是“1”。
比如:女生的1/5,全班人数的4%。
中国人都比美国人口多60%;今年种植树苗的发芽率比去年多3%;足球队中15岁以下的占全队的2/5;一杯水喝去1/5;例题:1、 一堆煤,第一次用去这堆煤的20%,第二次用去290千克,这时剩下的煤比原来这堆煤的一半还多10千克,求原来这堆煤共有多少千克?2、 某班学生体育达标人数是没达标人数的1/4,如果又有2名达标,达标人数是没达标人数的1/3,求全班的人数。
三、 找对应关系多数分数和百分数应用题都有一个“量率对应”的明显特点。
对一个单位“1”来说,每个分率都对应着一个具体的数量,而每一个具体的数量,也同样对应着一个分率,因此,正确地查找并确定“量率对应”是解题的关键。
六年级数学分数应用题试题答案及解析

六年级数学分数应用题试题答案及解析1.把个人分成四队,一队人数是二队人数的倍,一队人数是三队人数的倍,那么四队有多少个人?【答案】49人【解析】方法一:设一队的人数是“”,那么二队人数是:,三队的人数是:,,因此,一、二、三队之和是:一队人数,因为人数是整数,一队人数一定是的整数倍,而三个队的人数之和是(某一整数),因为这是以内的数,这个整数只能是.所以三个队共有人,其中一、二、三队各有,,人.而四队有:(人).方法二:设二队有份,则一队有份;设三队有份,则一队有份.为统一一队所以设一队有份,则二队有份,三队有份,所以三个队之和为份,而四个队的份数之和必须是的因数,因此四个队份数之和是100份,恰是一份一人,所以四队有(人).2.某班一次集会,请假人数是出席人数的,中途又有一人请假离开,这样一来,请假人数是出席人数的,那么,这个班共有多少人?【答案】50【解析】因为总人数未变,以总人数作为”1”.原来请假人数占总人数的,现在请假人数占总人数的,这个班共有:l÷(-)=50(人).3.小明是从昨天开始看这本书的,昨天读完以后,小明已经读完的页数是还没读的页数,他今天比昨天多读了页,这时已经读完的页数是还没读的页数的,问题是,这本书共有多少页?”【答案】280【解析】首先,可以直接运算得出,第一天小明读了全书的,而前二天小明一共读了全书的,所以第二天比第一天多读的页对应全书的。
所以整本书一共有(页)。
此外,如果对分数的掌握还不是很熟练的话,那么这道题可以采用设份数的方法:把这本书看作份,那么昨天他看了份,而今天他看了份还多页,两天一共看了份还多页,或者可以表示成(份)。
那么每份是(页),这本书共(页)。
两种方法都可以得到相同的结果。
4.某校四年级原有两个班,现在要重新编为三个班,将原一班的与原二班的组成新一班,将原一班的与原二班的组成新二班,余下的人组成新三班.如果新一班的人数比新二班的人数多,那么原一班有多少人?【答案】48【解析】新三班人数占原来两班人数之和的,所以,原来两班总人数为:(人),新一班与新二班人数之和为:(人),新二班人数是:(人),新一班人数为:(人),新一班与新二班人数之差为,而新一班与新二班人数之差为(原一班人数原二班人数),故:原一班人数原二班人数(人),原一班人数(人).5.四只小猴吃桃,第一只小猴吃的是另外三只的总数的,第二只小猴吃的是另外三只吃的总数的,第三只小猴吃的是另外三只的总数的,第四只小猴将剩下的个桃全吃了.问四只小猴共吃了多少个桃?【答案】120【解析】根据题意知前三只小猴分别吃了总数的,,,所以四只小猴共吃了(个)6.甲、乙两厂共同完成一批机床的生产任务,已知甲厂比乙厂少生产8台机床,并且甲厂的生产量是乙厂的,那么甲、乙两厂一共生产了机床多少台?【答案】200【解析】因为甲厂生产的是乙厂的,也就是甲厂为12份,乙厂为13份,那么甲厂比乙厂少1份=8台.总共=8×(12+13)=200台.7.李刚给军属王奶奶运蜂窝煤,第一次运了全部的,第二次运了50块.这时,已运来的恰好是没运来的.问还有多少块蜂窝煤没有运来?【答案】700【解析】已经运来的是没有运来的,则运来的是5份,没有运来的是7份,也就是运来的占总数的.则共有=50÷=1200块,还剩下1200×=700块.8.为挖通300米长的隧道,甲、乙两个施工队分别从隧道两端同时相对施工.第一天甲、乙两队各掘进了10米,从第二天起,甲队每天的工作效率总是前一天的2倍,乙队每天的工作效率总是前一天的倍.那么,两队挖通这条隧道需要多少天?【答案】【解析】见下表:说明在第五天没有全天干活,那么第四天干完以后剩下:300-231.25=68.75米,那么共用时间为4+68.75÷210.625=天.天数123459.有一块菜地和一块麦地.菜地的一半和麦地的三分之一放在一起是13公顷.麦地的一半和菜地的三分之一放在一起是12公顷.那么菜地是多少公顷?【答案】18【解析】13公顷菜地麦地12公顷菜地麦地即菜地的加上麦地的,为12+13=25(公顷),那么菜地与麦地共有25÷=30(公顷).而菜地的减去麦地的,为13-12=1(公顷),那么菜地与麦地的差为1÷=6(公顷).所以菜地有(30+6)÷2=18(公顷).10.春风小学原计划栽种杨树、柳树和槐树共1500棵.植树开始后,当栽种了杨树总数的和30棵柳树以后,又临时运来15棵槐树,这时剩下的3种树的棵数恰好相等.问原计划要栽植这3种树各多少棵?【答案】825,360,315【解析】将杨树分为5份,以这样的一份为一个单位,则:杨树=5份;柳树=2份+30棵;槐树=2份—15棵,则一份为(1500-30+15)÷(2+2+5)=165棵,有:杨树=5×165=825棵;柳树=165×2+30=360棵;槐树=165×2-15=315棵.11.一批工人到甲、乙两个工地进行清理工作,甲工地的工作量是乙工地的工作量的倍.上午去甲工地的人数是去乙工地人数的3倍,下午这批工人中有的人去甲工地,其他人到乙工地.到傍晚时,甲工地的工作已做完,乙工地的工作还需4名工人再做l天.那么这批工人共有多少名?【答案】36【解析】设这批工人为12份,以一分工人半天的工作量为工作总量的一个单位,那么甲地=12×+12×=16,所以乙地的工作量为:16÷1=,而实际上已经完成的工作量=12×+12×=8,那么剩下的工作量为:-8=,实际上剩下的是4人干1天相当与8人干半天,所以一份为:8÷=3人,原来有3×12=36人.12.有一个分数,如果分子加l,这个分数就等于;如果分母加l,这个分数就等于.问原来的分数是多少?【答案】【解析】如果分子加1,则分数为,设这时的分数为:,则原来的分数为,分母加1后为:,交叉相乘得:3(x-1)=2x+1,解的:x=4,则原分数为:.13.一种商品先降价,后又提价,现在的价格和原来的价格相比( )A. 提高了B.降低了C.没有变【答案】B【解析】略14.为了学生的卫生安全,学校给每个住宿生配一只水杯,每只水杯3元。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分数应用题例题分析以及常用公式
解题详细步骤解读
一、正确的找单位“1”是解决分数应用题的前提。
不管什么样的分数应用题,题中必有单位“1”。
正确的找到单位“1”是解答分数应用题的前提和首要任务。
分数应用题中的单位“1”分两种形式出现:
1、有明显标志的:
(1)男生人数占全班人数的4/7 (2)杨树棵树是柳树的3/5
(3)小明的体重相当于爸爸的1/2 (4)苹果树比梨树多1/5
条件中“占”“是”“相当于”“比”后面,分率前面的量是本题中的单位“1”。
2、无明显标志的:
(1)一条路修了200米,还剩2/3没修。
这条路全长多少千米?
(2)有200张纸,第一次用去1/4,第二次用去1/5。
两次共用去多少张?
(3)打字员打一部5000字的书稿,打了3/10,还剩多少字没打?
这3道题中的单位“1”没有明显标志,要根据问题和条件综合判断。
(1)中应把“一条路的总长”看作单位“1”(2)题中应把“200张纸”看作单位“1”(3)题中应把“5000个字”看作单位“1”。
二、正确的找对应关系是解分数应用题的关键。
每道分数应用题都有数量和分率的对应关系,正确的找到所求数量(或分率)和哪个分率(或数量)对应是解分数应用题的关键。
方法:
分率对应量÷单位“1”的量=分率
单位“1”的量×分率=分率对应量
分率对应量÷分率=单位“1”的量
三、根据数量关系式解答分数应用题“三步法”
掌握以上关系和数量关系式,解分数应用题可以按以下三步进行:
1、找准单位“1”的量;
2、找准对应关系
3、根据数量关系式列式解答
四、有效练习,建立模型,提升解分数应用题的能力。
要想正确、迅速地解答分数应用题,必须多加练习,把基本型的、稍复杂型的和复杂型的结构特征理解清楚,才能熟练快速地解答分数应用题。
基础理论
(一)分数应用题的构建
分数应用题主要讨论的是以下三者之间的关系:
(1)、分率:表示一个数是另一个数的几分之几,这几分之几通常称为分率。
(2)、标准量:解答分数应用题时,通常把题目中作为单位“1”的那个数,称为标准量。
(3)、比较量:解答分数应用题时,通常把题目中同标准量比较的那个数,称为比较量。
(二)分数应用题的分类
1、求一个数的几分之几是多少。
2、求一个数比另一个数的多或少几分之几。
3、已知两个数的和或差,及两个数的关系,求其中一个数。
(三)常用数学公式:
1、几何图形
长方形:面积=长×宽周长=(长+宽)×2 长方体体积=长×宽×高
正方形:面积=边长×边长周长=边长×4 正方体体积=边长×边长×边长三角形:面积=底×高÷2
梯形:面积=(上底+下底)×高÷2 平行四边形:面积=底×高
2、相遇问题
相遇路程=速度和×相遇时间相遇时间=相遇路程÷速度和
速度和=相遇路程÷相遇时间
3、追及问题
追及距离=速度差×追及时间追及时间=追及距离÷速度差
速度差=追及距离÷追及时间
4、其他常用公式(一条可以化成三条)
A、速度×时间=路程
B、工作效率×工作时间=工作总量
C、单价×数量=总价
D、加数+加数=和和-一个加数=另一个加数
E、被减数-减数=差被减数-差=减数差+减数=被减数
F、因数×因数=积积÷一个因数=另一个因数
G、被除数÷除数=商被除数÷商=除数商×除数=被除数
【例题解析】
1、求一个数的几分之几是多少。
(反映整体与部分之间的关系。
) 例1:(求比较量)学校买来100千克白菜,吃了4
5 ,吃了多少千克?
标准量×
几
几
(分率)=比较量 100 ×4
5 = 80 (千克) 答:吃了80千克。
例2:(求标准量)学校买来一些白菜,吃了80千克,刚好是这些白菜的4
5 ,学
校买来多少千克白菜?
比较量÷几
几
(分率)= 标准量
80÷4
5 = 100(千克) 答:学校买来100千克白菜.
例3:(求分率)学校买来100千克白菜,吃了80千克,吃了几分之几?
比较量÷标准量=
几
几
(分率) 80÷100= 45 答:吃了4
5 。
2、求一个数比另一个数多几分之几:
例1:(求比较量)学校有20个足球,篮球比足球多4
5 ,篮球有多少个?
标准量×(1 +
几
几
)(分率)=比较量 20×(1+4
5
)=36(个) 答:篮球有36个.
例2:(求标准量)学校有36个篮球,篮球比足球多4
5 ,足球有多少个?
比较量÷(1 +
几
几
)(分率)=标准量 36÷(1+4
5
)=20(个) 答:足球有20个.
例3:(求多几
几
)学校有36个篮球,足球20个,篮球比足球多几分之几?
(大数-小数)÷标准量=多几
几
(36-20)÷20=45 答:篮球比足球多4
5 .
3、求一个数比另一个数少几分之几:
例1:(求比较量)学校有36个篮球,足球比篮球少4
9,足球有多少个?
标准量×(1 - 几
几 )(分率)=比较量
36×(1- 4
9)= 20(个) 答:足球有20个.
例2:(求标准量)学校有20个足球,足球比篮球少4
9
,篮球有多少个?
比较量 ÷(1 -
几
几
)(分率)= 标准量 20÷(1 - 4
9)= 36(个) 答:篮球有36个.
例3:(求少几
几 )学校有36个篮球,足球20个,足球比篮球少几分之几?
(大数-小数)÷ 标准量 = 少几
几
(36-20)÷36 = 49 答:篮球比足球少4
9 .
4、“和”的问题:
例1:(求比较量)学校有足球和篮球共56个,足球是篮球5
9,篮球有多少个?
数量和 ÷(1+
几
几
)(分率)=标准量 56 ÷(1+ 5
9)=36(个) 答:篮球有36个.
5、“差”的问题:
例1:(求比较量)学校足球比篮球少16个,足球是篮球5
9,篮球有多少个?
数量差 ÷(1 - 几
几 )(分率)=标准量
16 ÷(1 - 5
9)=36(个) 答:篮球有36个.
思考题:
1、某班原有54名学生,男生占5/9,转来几名女生后,女生占全班的9/19,转来了几名女生?
2、明明看一本书。
第一天看了全书的1/4,第二天看了余下的2/5,第二天比第一 天多看了15页。
这本书共有多少页?
3、某工厂有三个车间。
第一个车间的人数占三个车间总人数的1/4,第二个车间人数是第三个车间的3/4。
已知第一车间比第二车间少40人。
三个车间共有多少人?
4、水结成冰体积增加1/10,冰化成水体积减少几分之几?
5、甲数是乙数的2/3,乙数是丙数的3/4,甲乙丙的和是216。
甲乙丙各是多少?
6、某班共有学生51人。
男生人数的3/4等于女生人数的2/3。
这个班男生、女生各有多少人?
7、某厂男职工比全厂职工总人数的3/5多60人,女职工人数是男职工的1/3,这个 厂共有职工多少人?
8、客车从甲地开往乙地,第一小时行了全程的2/7,第二小时行了余下的2/5,第三小时又行了余下的2/3,这时距乙地还有21千米,甲乙两地相距多少千米? 9、纺织厂一车间有男工120人,男工占女工人数的5/6,已知一车间人数占全厂人数的1/4,这个厂有多少人? 10、甲乙两个仓库各有一批大米,已知甲仓库的大米比乙仓库多18吨,若乙仓库给甲仓库6吨,这时乙仓库的大米是甲仓库4/7,甲仓库原有大米多少吨?。