导数应用的题型与方法

合集下载

高考:导数题型归类,分类解题方法举例,如极值点偏移、隐零点运用

高考:导数题型归类,分类解题方法举例,如极值点偏移、隐零点运用

高考:导数题型归类,分类解题方法举例,如极值点偏移、隐零点运用高考压轴题:导数题型及解题方法一、切线问题题型1:求曲线y=f(x)在x=x处的切线方程。

方法:f'(x)为在x=x处的切线的斜率。

题型2:过点(a,b)的直线与曲线y=f(x)的相切问题。

方法:设曲线y=f(x)的切点(x,f(x)),由(x-a)f'(x)=f(x)-b求出x,进而解决相关问题。

注意:曲线在某点处的切线若有则只有一条,曲线过某点的切线往往不止一条。

例题:已知函数f(x)=x-3x。

1)求曲线y=f(x)在点x=2处的切线方程;(答案:9x-y-16=0)2)若过点A(1,m)(m≠-2)可作曲线y=f(x)的三条切线,求实数m的取值范围。

提示:设曲线y=f(x)上的切点(x,f(x)),建立x,f(x)的等式关系。

将问题转化为关于x,m的方程有三个不同实数根问题。

答案:m的范围是(-3,-2))练1:已知曲线y=x-3x。

1)求过点(1,-3)与曲线y=x-3x相切的直线方程。

(答案:3x+y=0或15x-4y-27=0)2)证明:过点(-2,5)与曲线y=x-3x相切的直线有三条。

题型3:求两个曲线y=f(x)、y=g(x)的公切线。

方法:设曲线y=f(x)、y=g(x)的切点分别为(x1,f(x1))、(x2,g(x2)),建立x1,x2的等式关系,(x2-x1)f'(x1)=g(x2)-f(x1),(x2-x1)f'(x2)=g(x2)-f(x1);求出x1,x2,进而求出切线方程。

解决问题的方法是设切点,用导数求斜率,建立等式关系。

例题:求曲线y=x与曲线y=2elnx的公切线方程。

(答案:2ex-y-e=0)练1:求曲线y=x与曲线y=-(x-1)的公切线方程。

(答案:2x-y-1=0或y=0)2.设函数f(x)=p(x-2)-2lnx,g(x)=x,直线l与函数f(x),g(x)的图象都相切,且与函数f(x)的图象相切于(1,0),求实数p的值。

导数知识点各种题型归纳方法总结

导数知识点各种题型归纳方法总结

导数知识点各种题型归纳方法总结导数知识点和题型总结一、导数的定义:1.函数y=f(x)在x=x处的导数为f'(x)=y'|x=x=lim(Δy/Δx),其中Δy=f(x+Δx)-f(x)。

2.求导数的步骤:①求函数的增量:Δy=f(x+Δx)-f(x);②求平均变化率:Δy/Δx;③取极限得导数:f'(x)=lim(Δy/Δx),其中Δx→0.二、导数的运算:1.基本初等函数的导数公式及常用导数运算公式:① C'=0(C为常数);② (xn)'=nxn-1;③ (1/x)'=-1/x^2;④ (ex)'=ex;⑤ (sinx)'=cosx;⑥ (cosx)'=-sinx;⑦ (ax)'=axlna(a>0,且a≠1);⑧ (lnx)'=1/x;⑨ (loga x)'=1/(xlna)(a>0,且a≠1)。

2.导数的运算法则:法则1:[f(x)±g(x)]'=f'(x)±g'(x)(和与差的导数等于导数的和与差);法则2:[f(x)g(x)]'=f'(x)g(x)+f(x)g'(x)(前导后不导相乘+后导前不导相乘);法则3:[f(x)/g(x)]'=[f'(x)g(x)-f(x)g'(x)]/[g(x)]^2(分母平方要记牢,上导下不导相乘,下导上不导相乘,中间是负号)。

3.复合函数y=f(g(x))的导数求法:①换元,令u=g(x),则y=f(u);②分别求导再相乘,y'=g'(x)·f'(u);③回代u=g(x)。

题型:1.已知f(x)=1/x,则lim(Δy/Δx),其中Δx→0,且x=2+Δx,f(2)=1/2.答案:C。

2.设f'(3)=4,则lim(f(3-h)-f(3))/h,其中h→0.答案:A。

导数题型总结(12种题型)

导数题型总结(12种题型)

导数题型总结1.导数的几何意义2.导数四则运算构造新函数3.利用导数研究函数单调性4.利用导数研究函数极值和最值5.①知零点个数求参数范围②含参数讨论零点个数6.函数极值点偏移问题7.导函数零点不可求问题8.双变量的处理策略9.不等式恒成立求参数范围10.不等式证明策略11.双量词的处理策略12.绝对值与导数结合问题导数专题一导数几何意义一.知识点睛导数的几何意义:函数y=f(x)在点x=x0 处的导数f’(x0)的几何意义是曲线在点x=x0 处切线的斜率。

二.方法点拨:1.求切线①若点是切点:(1)切点横坐标x0 代入曲线方程求出y0(2)求出导数f′(x),把x0代入导数求得函数y =f(x)在点x=x 0处的导数f ′(x 0)(3)根据直线点斜式方程,得切线方程:y -y 0=f ′(x 0)(x -x 0).②点(x 0,y 0)不是切点求切线:(1)设曲线上的切点为(x 1,y 1); (2)根据切点写出切线方程y -y 1=f ′(x 1)(x -x 1) (3)利用点(x 0,y 0)在切线上求出(x 1,y 1); (4)把(x 1,y 1)代入切线方程求得切线。

2.求参数,需要根据切线斜率,切线方程,切点的关系列方程:①切线斜率k=f ′(x 0) ②切点在曲线上③切点在切线上三.常考题型:(1)求切线(2)求切点(3)求参数⑷求曲线上的点到直线的最大距离或最小距离(5)利用切线放缩法证不等式 四.跟踪练习1.(2016全国卷Ⅲ)已知f(x)为偶函数,当x <0时,f(x)=f (-x )+3x ,则曲线y=f (x )在点(1,-3)处的切线方程是2.(2014新课标全国Ⅱ)设曲线y=ax-ln (x+1)在点(0,0)处的切线方程为y=2x ,则a= A. 0 B.1 C.2 D.33.(2016全国卷Ⅱ)若直线y=kx+b 是曲线y=lnx+2的切线,也是曲线y=ln (x+1)的切线,则b=4.(2014江西)若曲线y=e -x上点P 处的切线平行于直线2x+y+1=0,则点P 的坐标是5.(2014江苏)在平面直角坐标系中,若曲线y=ax 2+xb(a ,b 为常数)过点P (2,-5),且该曲线在点P 处的切线与直线7x+2y+3=0平行,则a+b= 6.(2012新课标全国)设点P 在曲线y=21e x上,点Q 在曲线y=ln (2x )上,则▕PQ ▏的最小值为 A.1-ln2 B.2(1-ln2) C.1+ln2 D.2(1+ln2)7.若存在过点(1,0)的直线与曲线y=x 3和y=ax 2+415x-9都相切,则a 等于 8.抛物线y=x 2上的点到直线x-y-2=0的最短距离为 A.2B.827C. 22D. 19.已知点P 在曲线y=14+x e 上,α为曲线在点P 处的切线的倾斜角,则α的取值范围是 10.已知函数f (x )=2x 3-3x.(1)求f (x )在区间[-2,1]上的最大值;(2) 若过点P (1,t )存在3条直线与曲线y=f (x )相切,求t 的取值范围. 11. 已知函数f (x )=4x-x 4,x ∈R. (1) 求f (x )的单调区间(2) 设曲线y=f (x )与x 轴正半轴的交点为P ,曲线在点P 处的切线方程为y=g (x ),求证: 对于任意的实数x ,都有f (x )≤g (x )(3) 若方程f (x )=a (a 为实数)有两个实数根x 1,x 2,且x 1<x 2,求证:x 2-x 1≤-3a+431.导数专题二 利用导数四则运算构造新函数 一.知识点睛 导数四则运算法则:[f(x)±g (x )]’=f ′(x)±g ′(x) [f(x)·g (x )]’=f ′(x)·g(x) +f(x)·g ′(x)[ )()(x g x f ]′=2[g(x)](x)f(x)g'(x)g(x)f'- 二.方法点拨在解抽象不等式或比较大小时原函数的单调性对解题没有任何帮助,此时我们就要构造新函数,研究新函数的单调性来解抽象不等式或比较大小。

导数各类题型方法总结(含答案)

导数各类题型方法总结(含答案)

导数各类题型⽅法总结(含答案)导数各种题型⽅法总结⼀、基础题型:函数的单调区间、极值、最值;不等式恒成⽴; 1此类问题提倡按以下三个步骤进⾏解决:第⼀步:令f '(x)0得到两个根;第⼆步:画两图或列表;第三步:由图表可知;其中不等式恒成⽴问题的实质是函数的最值问题, 2、常见处理⽅法有三种:第⼀种:分离变量求最值 -----⽤分离变量时要特别注意是否需分类讨论( >0,=0,<0)第⼆种:变更主元 (即关于某字母的⼀次函数)-----(已知谁的范围就把谁作为主元);例1:设函数y f (x)在区间D 上的导数为f (x), f (x)在区间D 上的导数为g(x),若在区间D4…、 x3mx 3x 2f (x)126 2(1 )若y f (x)在区间0,3上为“凸函数”,求m 的取值范围;(2)若对满⾜ m 2的任何⼀个实数 m ,函数f (x)在区间a,b 上都为“凸函数”,求b值?4 3^23 2x mx 3xx mx o解:由函数f (x)得f (x)3x12 6 23 2g (x) x 2 mx 3(1) Q y f (x)在区间0,3上为“凸函数”,贝V g(x) x 2 mx 30在区间[0,3]上恒成⽴解法⼀:从⼆次函数的区间最值⼊⼿:等价于g max (x)2x x 3 0 2 1 x 12x x 3 0上,g(x) 0恒成⽴,则称函数y f (x)在区间D 上为“凸函数”,已知实数 m 是常数, a 的最⼤g(0) g(3)3 0 9 3m 3 0解法⼆:分离变量法:0 时,g(x)x 3时,g(x) x 2 3 2x2 x mx mx3 0恒成⽴, 0恒成⽴等价于m -—3x由 3门⽽ h(x) x ( 0 xm 23的最⼤值x(0x3 )恒成⽴, 3 )是增函数,贝 y h max (x) h(3) 2(2) v 当 m 2时f (x)在区间a,b 上都为“凸函数”则等价于当m 2时g(x)2x mx 3 0恒成⽴变更主元法2再等价于F(m) mx x 32恒成⽴ (视为关于 m 的⼀次函数最值问题)F( 2) 0 F(2)例2:设函数f(x) 〔x3 2ax2 3a2x b(0 a 1,b R)3(I)求函数f (x)的单调区间和极值;(⼆次函数区间最值的例⼦)g(x) x2 4ax 3a2在[a 1,a 2]上是增函数.g(x)max g(a 2) 2a 1.g(x)min g(a 1) 4a 4.于是,对任意x [a 1,a 2],不等式①恒成⽴,等价于a 1.4⼜0 a 1, a 1.5点评:重视⼆次函数区间最值求法:对称轴(重视单调区间)与定义域的关系第三种:构造函数求最值题型特征:f(x) g(x)恒成⽴h(x) f (x) g(x) 0恒成⽴;从⽽转化为第⼀、⼆种题型(n)若对任意的x [a 1,a 2],不等式f (x) a恒成⽴,求a的取值范围.x 3a x a3 3x=a 时,f(x)4b;由| f (x) |< a,得:对任意的[a 1,a 2], x2 4 ax 3a2 a恒成⽴①则等价于g(x)这个⼆次函数gmax(x) ag min(x) a2g(x) x24ax 3a的对称轴x 2a Q 0 a 1, a 1 2a (放缩法)g(x)这个⼆次函数的最值问题:单调增函数的最值问题。

导数大题20种主要题型总结及解题方法

导数大题20种主要题型总结及解题方法

导数大题20种主要题型总结及解题方法导数是微积分中的一个重要概念,用于描述函数在某一点处的变化率。

掌握导数的计算和应用方法对于解决各种实际问题具有重要意义。

下面将对导数的20种主要题型进行总结并给出解题方法。

1.求函数在某点的导数。

对于给定的函数,要求在某一点处的导数,可以使用导数的定义或者基本求导法则。

导数的定义是取极限,计算函数在这一点的变化率。

基本求导法则包括常数、幂函数、指数函数、对数函数、三角函数的求导法则。

2.求函数的导数表达式。

已知函数表达式,要求其导数表达式。

可以使用基本求导法则,并注意链式法则和乘积法则的应用。

3.求高阶导数。

如果已知函数的导数表达式,要求其高阶导数表达式。

可以反复应用求导法则,每次对函数求导一次得到导数表达式。

4.求导数的导函数。

导数的导函数是指对导数再进行求导的过程。

要求导函数时,可以反复应用求导法则,迭代求取导数的导数。

5.利用导数计算函数极值。

当函数的导数为0或不存在时,可能是函数的极值点。

可以利用导数求函数的极值。

6.利用导数判定函数的增减性。

根据函数的导数正负性可以判定函数的增减性。

如果导数大于0,则函数在该区间上递增;如果导数小于0,则函数在该区间上递减。

7.利用导数求函数的最大最小值。

当函数在某一区间内递增时,在区间的左端点处取得最小值;当函数在某一区间内递减时,在区间的右端点处取得最小值。

要求函数全局最大最小值时,可以使用导数判定。

当导数从正数变为负数时,可能是函数取得最大值的点。

8.利用导数求函数的拐点。

如果函数的导数在某一点发生变号,该点可能是函数的拐点。

可以使用导数的二阶导数判定。

9.利用导数求函数的弧长。

曲线的弧长可以通过积分求取,而曲线的弧长元素是由导数表示的。

通过导数求取弧长元素,并积累求和得到曲线的弧长。

10.利用导数求函数的曲率。

曲率表示曲线弯曲程度的大小,可以通过导数求取。

曲率的求取公式是曲线的二阶导数与一阶导数的比值。

11.利用导数求函数的速度和加速度。

导数题型总结

导数题型总结

导数题型总结导数题型总结导数及其应用题型总结题型一:切线问题①求曲线在点(xo,yo)处的切线方程②求过曲线外一点的切线方程③求已知斜率的切线方程④切线条数问题例题1:已知函数f(x)=x+x-16,求:(1)曲线y=f(x)在点(2,-6)处的切线方程(2)过原点的直线L是曲线y=f(x)的切线,求它的方程及切点坐标(3)如果曲线y=f(x)的某一切线与直线y=-(1/4)x+3垂直,求切线方程及切点坐标例题2:已知函数f(x)=ax+2bx+cx在xo处去的极小值-4.使其导数f”(x)>0的x的取值范围为(1,3),求:(1)f(x)的解析式;(2)若过点P (-1,m)的曲线y=f(x)有三条切线,求实数m的取值范围。

题型二:复合函数与导数的运算法则的综合问题例题3:求函数y=xcos (x+x-1)sin(x+x-1)的导数题型三:利用导数研究函数的单调区间①求函数的单调区间(定义域优先法则)②求已知单调性的含参函数的参数的取值范围③证明或判断函数的单调性例题4:设函数f(x)=x+bx+cx,已知g(x)=f(x)-f”(x)是奇函数,求y=g (x)的单调区间例题5:已知函数f(x)=x3-ax-1,(1)若f(x)在实数集R上单调递增,求实数a的取值范围(2)是否存在实数a,使f(x)在(-1,1)上单调递减?若存在,求出a的范围;若不存在,说明理由。

例题6:证明函数f(x)=lnx/x2在区间(0,2)上是减函数。

题型四:导数与函数图像问题例1:若函数y=f(x)的导函数在区间[a,b]上是增函数,则函数y=f(x)在[a,b]上的图象可能是y题型五:利用导数研究函数的极值和最值例题7:已知函数f(x)=-x3+ax2+bx在区间(-2,1)上x=-1时取得极小值,x=2/3时取得极yy32323oaoobxoabxbxabxaA.B.C.D.大值。

求(1)函数y=f(x)在x=-2时的对应点的切线方程(2)函数y=f(x)在[-2,1]上的最大值和最小值。

高考导数题型分析及解题方法

高考导数题型分析及解题方法

高考导数题型分析及解题方法一、考试内容导数的概念,导数的几何意义,几种常见函数的导数;两个函数的和、差、基本导数公式,利用导数研究函数的单调性和极值,函数的最大值和最小值。

二、热点题型分析题型一:利用导数研究函数的极值、最值。

1. 32()32f x x x =-+在区间[]1,1-上的最大值是 2 2.已知函数2)()(2=-==x c x x x f y 在处有极大值,则常数c = 6 ; 3.函数331x x y -+=有极小值 -1 ,极大值 3 题型二:利用导数几何意义求切线方程1.曲线34y x x =-在点()1,3--处的切线方程是 2y x =-2.若曲线x x x f -=4)(在P 点处的切线平行于直线03=-y x ,则P 点的坐标为 (1,0) 3.若曲线4y x =的一条切线l 与直线480x y +-=垂直,则l 的方程为 430x y --= 4.求下列直线的方程:(1)曲线123++=x x y 在P(-1,1)处的切线; (2)曲线2x y =过点P(3,5)的切线; 解:(1) 123|y k 23 1)1,1(1x /2/23===∴+=∴++=-=-上,在曲线点-x x y x x y P所以切线方程为02 11=+-+=-y x x y 即,(2)显然点P (3,5)不在曲线上,所以可设切点为),(00y x A ,则200x y =①又函数的导数为x y 2/=,所以过),(00y x A 点的切线的斜率为0/2|0x y k x x ===,又切线过),(00y x A 、P(3,5)点,所以有352000--=x y x ②,由①②联立方程组得,⎩⎨⎧⎩⎨⎧====255110000y x y x 或,即切点为(1,1)时,切线斜率为;2201==x k ;当切点为(5,25)时,切线斜率为10202==x k ;所以所求的切线有两条,方程分别为2510 12 )5(1025)1(21-=-=-=--=-x y x y x y x y 或即,或题型三:利用导数研究函数的单调性,极值、最值1.已知函数))1(,1()(,)(23f P x f y c bx ax x x f 上的点过曲线=+++=的切线方程为y=3x+1 (Ⅰ)若函数2)(-=x x f 在处有极值,求)(x f 的表达式; (Ⅱ)在(Ⅰ)的条件下,求函数)(x f y =在[-3,1]上的最大值; (Ⅲ)若函数)(x f y =在区间[-2,1]上单调递增,求实数b 的取值范围 解:(1)由.23)(,)(223b ax x x f c bx ax x x f ++='+++=求导数得过))1(,1()(f P x f y 上点=的切线方程为:).1)(23()1(),1)(1()1(-++=+++--'=-x b a c b a y x f f y 即而过.13)]1(,1[)(+==x y f P x f y 的切线方程为上故⎩⎨⎧-=-=+⎩⎨⎧-=-=++3023323c a b a c a b a 即 ∵124,0)2(,2)(-=+-∴=-'-==b a f x x f y 故时有极值在 ③ 由①②③得 a=2,b=-4,c=5 ∴.542)(23+-+=x x x x f (2)).2)(23(443)(2+-=-+='x x x x x f当;0)(,322;0)(,23<'<≤->'-<≤-x f x x f x 时当时13)2()(.0)(,132=-=∴>'≤<f x f x f x 极大时当 又)(,4)1(x f f ∴=在[-3,1]上最大值是13。

高中导数题所有题型及解题方法

高中导数题所有题型及解题方法

高中导数题所有题型及解题方法一、导数的概念1.1 导数的定义•导数的定义公式:f′(x)=limℎ→0f(x+ℎ)−f(x)ℎ•导数表示函数在某一点的变化率1.2 导数的几何意义•函数图象在某一点的切线斜率•函数图象在某一点的局部线性近似二、导数的基本运算法则2.1 基本导数公式•常数函数:d dx (C)=0•幂函数:d dx (x n)=nx n−1•指数函数:ddx(a x)=a x ln(a)2.2 函数和、差、积、商的导数•和的导数:(u+v)′=u′+v′•差的导数:(u−v)′=u′−v′•积的导数:(uv)′=u′v+uv′•商的导数:(uv)′=u′v−uv′v2,其中v≠02.3 复合函数的导数•复合函数的求导公式:如果y=f(u)及u=g(x), 则dy dx =dy dududx三、导数的应用3.1 函数的单调性•若f′(x)>0,则函数f(x)在该区间上单调递增•若f′(x)<0,则函数f(x)在该区间上单调递减3.2 函数的极值与最值•极大值:若f′(x0)=0,且f″(x0)<0,则f(x0)是函数f(x)在x0处的极大值•极小值:若f′(x0)=0,且f″(x0)>0,则f(x0)是函数f(x)在x0处的极小值3.3 函数的拐点•拐点:若f″(x0)=0,则f(x)在x0处的图像有拐点3.4 函数的图像•函数图象的基本性质–若f′(x)>0,则函数的图像上的点随x的增大而上升–若f′(x)<0,则函数的图像上的点随x的增大而下降–若f″(x)>0,则函数的图像在该区间上凹–若f″(x)<0,则函数的图像在该区间上凸四、基础导数题型4.1 求导数•题型1:求函数的导数y=f(x)•题型2:求函数的高阶导数y(n)=f(x)4.2 高阶导数应用•题型1:求函数的极值和拐点•题型2:求函数在某点的切线方程•题型3:求函数的图像4.3 求解极值问题•题型1:求一定范围内函数的极大值和极小值•题型2:求满足一定条件的函数极值4.4 函数的单调性•题型1:判断函数的单调区间•题型2:填空题,填写使函数单调递增或递减的区间五、综合题型5.1 数学建模•题型1:利用导数求解实际生活中的问题5.2 物理应用•题型1:利用导数求解物理问题,如速度、加速度等5.3 函数的变化率•题型1:求函数在某点的变化率•题型2:求函数在某段区间的平均变化率六、总结本篇文章主要介绍了高中阶段导数相关的内容,包括导数的基本定义、几何意义、基本运算法则,以及导数在函数的单调性、极值与最值、图像以及物理应用中的运用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
文科培优资料
作者:谢立荣
导数应用的题型与方法
一、考试内容
撰写人:谢立荣
导数的概念,导数的几何意义,几种常见函数的导数;
两个函数的和、差、基本导数公式,利用导数研究函数的单调性和极值,函数的最大值和
最小值。
二、考试要求
⑴了解导数概念的某些实际背景(如瞬时速度、加速度、光滑曲线切线的斜率等),掌握函
数在一点处的导数的定义和导数的几何意义,理解导函数的概念。
函数 f (x) 的极大值是 f (1) 0 ,极小值是 f (1) 4 .
(3) 函数 g(x) 的图象是由 f (x) 的图象向右平移 m 个单位,向上平移 4 m 个单位得到的,
所以,函数 f (x) 在区间[3, n m] 上的值域为[4 4m, 16 4m] ( m 0 ).
而 f (3) 20 ,∴ 4 4m 20 ,即 m 4 .
3
益阳市箴言中学
4(共 15 页)
文科培优资料
作者:谢立荣
当2 3
x
1时,
f
( x)
0.
f
( x) 极大
f (2)
13
又 f (1) 4, f (x) 在[-3,1]上最大值是
13。
(3)y=f(x)在[-2,1]上单调递增,又 f (x) 3x 2 2ax b, 由①知 2a+b=0。
h0
2h
h0
2h
lim f (a 3h) f (a) lim f (a) f (a h)
h0
2h
h0
2h
3 lim f (a 3h) f (a) 1 lim f (a h) f (a)
2 h0
3h
2 h0
h
3 f '(a) 1 f '(a) 2b
2
2
(2) lim h0
P(x0 , y0 ) 为曲线上一点,过 P(x0 , y0 ) 点的切线方程为: y y0 f (x0 )(x x0 )
4.瞬时速度
用物体在一段时间运动的平均速度的极限来定义瞬时速度,
v lim y S(t t) S(t)
t0 t
t
5.导数的定义
对导数的定义,我们应注意以下三点:
(1)△x 是自变量 x 在 x0 处的增量(或改变量). y
又 y1 x12 y2 (x2 2)2 x12 y1
k
y2 x2
y1 x1
2y1 (2 x1)
x1
2x12 2 2x1
x12 x1 1
2x1
x1 0或 x1 2, k 0或k 4 l 的方程为: y 0 或 y4 4(x2)。
题型三:利用导数研究函数的单调性、极值、最值。
例 3 已知函数 f (x) x3 ax2 bx c,过曲线y f (x)上的点P(1, f (1)) 的切线方程为
8、已知 y f (x) x [a , b] (1)若 f (x) 0 恒成立 ∴ y f (x) 为 (a , b) 上 ∴ 对任意 x (a , b) 不等式 f (a) f (x) f (b) 恒成立 (2)若 f (x) 0 恒成立 ∴ y f (x) 在 (a , b) 上 ∴ 对任意 x (a , b) 不等式 f (a) f (x) f (b) 恒成立
① ②
∵ y f (x)在x 2时有极值,故f (2) 0, 4a b 12 ③
由①②③得 a=2,b=-4,c=5
∴ f (x) x3 2x2 4x 5.
(2) f (x) 3x2 4x 4 (3x 2)(x 2). 当 3 x 2时, f (x) 0;当 2 x 2 时, f (x) 0;
y=3x+1
(Ⅰ)若函数 f (x)在x 2 处有极值,求 f (x) 的表达式;
(Ⅱ)在(Ⅰ)的条件下,求函数 y f (x) 在[-3,1]上的最大值;
(Ⅲ)若函数 y f (x) 在区间[-2,1]上单调递增,求实数 b 的取值范围
解:(1)由 f (x) x3 ax2 bx c,求导数得f (x) 3x2 2ax b.
据切线定义,可得切线方程为 x x0
7、 导数与函数的单调性的关系
㈠ f (x) 0 与 f (x) 为增函数的关系。
f (x) 0 能推出 f (x) 为增函数,但反之不一定。如函数 f (x) x3 在 (,) 上单调递 增,但 f (x) 0 ,∴ f (x) 0 是 f (x) 为增函数的充分不必要条件。 ㈡ f (x) 0 时, f (x) 0 与 f (x) 为增函数的关系。 若将 f (x) 0 的根作为分界点,因为规定 f (x) 0 ,即抠去了分界点,此时 f (x) 为增函 数,就一定有 f (x) 0 。∴当 f (x) 0 时, f (x) 0 是 f (x) 为增函数的充分必要条件。 ㈢ f (x) 0 与 f (x) 为增函数的关系。 f (x) 为增函数,一定可以推出 f (x) 0 ,但反之不一定,因为 f (x) 0 ,即为 f (x) 0 或 f (x) 0 。当函数在某个区间内恒有 f (x) 0 ,则 f (x) 为常数,函数不具有单调性。∴ f (x) 0 是 f (x) 为增函数的必要不充分条件。
于是,函数 f (x) 在区间[3, n 4] 上的值域为[20, 0] .
令 f (x) 0 得 x 1 或 x 2 .由 f (x) 的单调性知, 1„ n 4 „ 2 ,即 3 „ n „ 6 .
综上所述, m 、 n 应满足的条件是: m 4 ,且 3 „ n „ 6 .
函数的单调性是函数一条重要性质,也是高中阶段研究的重点,我们一定要把握好以上三
个关系,用导数判断好函数的单调性。因此新教材为解决单调区间的端点问题,都一律用
开区间作为单调区间,避免讨论以上问题,也简化了问题。但在实际应用中还会遇到端点
的讨论问题,要谨慎处理。
㈣单调区间的求解过程,已知 y f (x) (1)分析 y f (x) 的定义域; (2)求导数 y f (x) (3)解不等式 f (x) 0 ,解集在定义域内的部分为增区间 (4)解不等式 f (x) 0 ,解集在定义域内的部分为减区间
(1)求出函数 y=f(x)在点 x0 处的导数,即曲线 y=f(x)在点 P(x0 , f (x0 )) 处的切线的斜率; (2)在已知切点坐标和切线斜率的条件下,求得切线方程为 y y0 f '(x0 )(x x0 ) 特别地,如果曲线 y=f(x)在点 P(x0 , f (x0 )) 处的切线平行于 y 轴,这时导数不存在,根
四、热点题型分析
题型一:利用导数定义求极限 例 1.已知 f(x)在 x=a 处可导,且 f′(a)=b,求下列极限:
f (a 3h) f (a h)
f (a h2 ) f (a)
(1) lim
; (2) lim
h0
2h
h0
h 3h) f (a) f (a) f (a h)
㈤函数单调区间的合并
函数单调区间的合并主要依据是函数 f (x) 在 (a, b) 单调递增,在 (b, c) 单调递增,又知函数
益阳市箴言中学
2(共 15 页)
文科培优资料
作者:谢立荣
在 f (x) b 处连续,因此 f (x) 在 (a, c) 单调递增。同理减区间的合并也是如此,即相邻区
间的单调性相同,且在公共点处函数连续,则二区间就可以合并为一个区间。
(3)应用问题(初等方法往往技巧性要求较高,而导数方法显得简便)等关于 n 次多项式
的导数问题属于较难类型。 2.导数与解析几何或函数图象的混合问题是一种重要类型,也是高考中考察综合能力的一
个方向,应引起注意。 3.曲线的切线 用割线的极限位置来定义了曲线的切线.切线方程由曲线上的切点坐标确定,设
12b b2 12
0,则0 b
6.
综上所述,参数 b 的取值范围是[0,)
例 4:已知三次函数 f (x) x3 ax2 bx c 在 x 1 和 x 1 时取极值,且 f (2) 4 .
(1) 求函数 y f (x) 的表达式;
(2) 求函数 y f (x) 的单调区间和极值;
y
(b)求平均变化率
f (x0 x)
f (x0 ) ;
x
x
(c)取极限,得导数
f
'(x0
)
lim
x0
y x

6.导数的几何意义
函数 y=f(x)在点 x0 处的导数,就是曲线 y=(x)在点 P(x0 , f (x0 )) 处的切线的斜率.由此,
可以利用导数求曲线的切线方程.具体求法分两步:
当 1 x 1 时, f (x) 0 ;当 x 1 时, f (x) 0 ;
当 x 1 时, f (x) 0 .∴函数 f (x) 在区间 (, 1] 上是增函数;
在区间[1,、 ] 上是减函数;在区间[1, ) 上是增函数.
益阳市箴言中学
5(共 15 页)
文科培优资料
作者:谢立荣
依题意 f (x) 在[-2,1]上恒有 f (x) ≥0,即 3x 2 bx b 0.
①当 x
b 6
1时,
f (x)min
f (1) 3 b b 0,b 6 ;
②当 x
b 6
2时,
f (x)min
f (2) 12 2b b 0,b ;
③当 2
6 b
1时,
f
( x) min
⑵熟记基本导数公式(c,x m (m 为有理数),的导数)。掌握两个函数四则运算的求导法则会
求某些简单函数的导数。 ⑶了解可导函数的单调性与其导数的关系,了解可导函数在某点取得极值的必要条件和充 分条件(导数要极值点两侧异号),会求一些实际问题(一般指单峰函数)的最大值和最小 值。 三、双基透视 导数是微积分的初步知识,是研究函数,解决实际问题的有力工具。在高中阶段对于导数 的学习,主要是以下几个方面: 1.导数的常规问题: (1)刻画函数(比初等方法精确细微); (2)同几何中切线联系(导数方法可用于研究平面曲线的切线);
相关文档
最新文档