四年级奥数题练习及答案解析
小学四年级奥数题及答案解析(三篇)

小学四年级奥数题及答案解析(三篇)1、计算:1234+2341+3412+41231234+2341+3412+4123=(1000+200+30+4)+(2000+300+40+1)+(3000+400+10+2)+(4000+100+20+3)=(1000+2000+3000+4000)+(200+300+400+100)+(30+40+10+20)+(4+1+2+3)=10000+1000+100+10=111102、计算:123+234+345-456+567-678+789-890123+234+345-456+567-678+789-890=123+234+345+(567-456)+(789-678)-890=123+234+345+111+111-890=234+(123+567)-890=234+690-890=34+890-890=34【篇二】小学四年级奥数题及答案解析在一起抢劫案中,法官对涉案的四名犯罪嫌疑人赵达人,钱多多、孙上相、李拐铁四人实行了审问。
赵说:“罪犯在他们三个当中”钱说:“是孙干的。
”孙说:“在赵和李中间有一个人是罪犯。
”李说:“钱说的是事实。
”经多次查证,四人之中有两人说了假话,另外两个人说了真话,你能协助找出真正的罪犯吗?答案与解析:(假设法)已知四句话中只有两句是真话,且不能一下子看出真假,那么我们能够假定某句话是真的来实行推理,并以此作为本题的突破口。
假设赵说的是真话,根据两个人说了真话,则钱、孙、李三人中还有一个说了真话。
如果是钱说了真话,那么李说的也一定是真话,这样就变为三个人说了真话,这与题目给的。
条件不符。
所以钱说的不是真话,从而得到李说的也不是真话,孙说的是真话,于是在这种情况下,赵和孙说了真话,所以李是罪犯。
如果赵说的是假话,那么钱、孙、李都不是罪犯,这时只有赵是罪犯。
但是这样就得到了赵、钱、李三个人都说了假话,这也与题意不符。
所以这情况不可能出现。
(完整)小学四年级奥数题100道带答案有解题过程

(完整)小学四年级奥数题100道带答案有解题过程姓名:__________ 班级:__________ 学号:__________1.甲、乙两人同时从相距36千米的A、B两地相向而行,4小时后相遇。
已知甲每小时行5千米,乙每小时行多少千米?解:先根据“速度和=路程÷相遇时间”,求出甲、乙的速度和为36÷4=9(千米/小时)。
再用速度和减去甲的速度,即9-5=4(千米/小时),所以乙每小时行4千米。
2.有一堆苹果,平均分给5个小朋友余2个,平均分给7个小朋友也余2个,这堆苹果最少有多少个?解:先求出5和7的最小公倍数,5×7=35。
再加上余数2,35+2=37(个),所以这堆苹果最少有37个。
3.一个长方形的周长是24厘米,长是宽的2倍,求这个长方形的面积。
解:设宽为x厘米,则长为2x厘米。
根据“长方形周长=(长+宽)×2”,可列出方程:(x+2x)×2=24,3x×2=24,6x=24,x=4。
那么长为2×4=8(厘米),面积=长×宽=8×4=32(平方厘米)。
4.在一个除法算式中,被除数、除数、商和余数的和是100,已知商是8,余数是3,求被除数和除数各是多少?解:设除数为x,则被除数为8x+3。
根据题意可列出方程:(8x+3)+x+8+3=100,9x+14=100,9x=86,x=9.56(此处若考虑除数应为整数,则需要检查题目数据是否有误,但按照题目要求继续计算)。
被除数为8×9.56+3=79.48(同样,此处数据也因除数非整数而带有小数)。
5.小明有一些邮票,他送给小红12张后,还比小红多8张,原来小明比小红多多少张邮票?解:小明送给小红12张后还多8张,那么原来多的数量是12×2+8=32(张)。
6.有一个等差数列:3,8,13,18,…,这个数列的第20项是多少?解:先求公差为8-3=5。
小学四年级数学奥数题100题(附答案)

⼩学四年级数学奥数题100题(附答案)1.765×213÷27+765×327÷27解:原式=765÷27×(213+327)= 765÷27×540=765×20=153002.(9999+9997+...+9001)-(1+3+ (999)解:原式=(9999-999)+(9997-997)+(9995-995)+……+(9001-1)=9000+9000+…….+9000(500个9000)=100004.(873×477-198)÷(476×874+199)解:873×477-198=476×874+199因此原式=15.2000×1999-1999×1998+1998×1997-1997×1996+…+2×1解:原式=1999×(2000-1998)+1997×(1998-1996)+…+3×(4-2)+2×16.297+293+289+…+209解:(209+297)*23/2=58197.计算:解:原式=(3/2)*(4/3)*(5/4)*…*(100/99)*(1/2)*(2/3)*(3/4)*…*(98/99)=50*(1/99)=50/998.解:原式=(1*2*3)/(2*3*4)=1/49.有7个数,它们的平均数是18。
去掉⼀个数后,剩下6个数的平均数是19;再去掉⼀个数后,剩下的5个数的平均数是20。
求去掉的两个数的乘积。
解:7*18-6*19=126-114=126*19-5*20=114-100=14去掉的两个数是12和14它们的乘积是12*14=16810.有七个排成⼀列的数,它们的平均数是 30,前三个数的平均数是28,后五个数的平均数是33。
(完整)精选四年级奥数题和答案

优质解答1.一条路长100米,从头到尾每隔10米栽1棵梧桐树,共栽多少棵树?路分成100÷10=10段,共栽树10+1=11棵.12棵柳树排成一排,在每两棵柳树中间种3棵桃树,共种多少棵桃树?3×(12-1)=33棵.一根200厘米长的木条,要锯成10厘米长的小段,需要锯几次?200÷10=20段,20-1=19次.4.蚂蚁爬树枝,每上一节需要10秒钟,从第一节爬到第13节需要多少分钟?从第一节到第13节需10×(13-1)=120秒,120÷60=2分.5.在花圃的周围方式菊花,每隔1米放1盆花.花圃周围共20米长.需放多少盆菊花?20÷1×1=20盆6.从发电厂到闹市区一共有250根电线杆,每相邻两根电线杆之间是30米.从发电厂到闹市区有多远?30×(250-1)=7470米.7.王老师把月收入的一半又20元留做生活费,又把剩余钱的一半又50元储蓄起来,这时还剩40元给孩子交学费书本费.他这个月收入多少元?[(40+50) ×2+20] ×2=400(元)答:他这个月收入400元.8.一个人沿着大提走了全长的一半后,又走了剩下的一半,还剩下1千米,问:大提全长多少千米?1×2×2=4千米9.甲在加工一批零件,第一天加工了这堆零件的一半又10个,第二天又加工了剩下的一半又10个,还剩下25个没有加工.问:这批零件有多少个?(25+10)×2=70个,(70+10)×2=160个.综合算式:【(25+10)×2+10】×2=160个10.一条毛毛虫由幼虫长到成虫,每天长一倍,16天能长到16厘米.问它几天可以长到4厘米? 16÷2÷2=4(厘米),16-1-1=14(天)11.一桶水,第一次倒出一半,然后倒回桶里30千克,第二次倒出桶中剩下水的一半,第三次倒出180千克,桶中还剩下80千克.桶里原来有水多少千克?180+80=260(千克),260×2-30=490(千克),490×2=980(千克).12.甲、乙两书架共有图书200本,甲书架的图书数比乙书架的3倍少16本.甲、乙两书架上各有图书多少本?答案:乙:(200+16)÷(3+1)=54(本);甲:54×3-16=146(本).13.小燕买一套衣服用去185元,上衣比裤子的2倍价格多5元,问上衣和裤子各多少元?裤子:(185-5)÷(2+1)=60(元);上衣:60×2+5=125(元).14.甲、乙、丙三人年龄之和是94岁,且甲的2倍比丙多5岁,乙2倍比丙多19岁,问:甲、乙、丙三人各多大?如果每个人的年龄都扩大到2倍,那么三人年龄的和是94×2=188.如果甲再减少5岁,乙再减少19岁,那么三人的年龄的和是188-5-19=164(岁),这时甲的年龄是丙的一半,即丙的年龄是甲的两倍.同样,这时丙的年龄也是乙两倍.所以这时甲、乙的年龄都是164÷(1+1+2)=41(岁),即原来丙的年龄是41岁.甲原来的年龄是(41+5)÷2=23(岁),乙原来的年龄是(41+19)÷2=30(岁).15.小明、小华捉完鱼.小明说:“如果你把你捉的鱼给我1条,我的鱼就是你的2倍.如果我给你1条,咱们就一样多了.“请算出两个各捉了多少条鱼.小明比小华多1×2=2(条).如果小华给小明1条鱼,那么小明比小华多2+1×2=4(条),这时小华有鱼4÷(2-1)=4(条).原来小华有鱼4+1=5(条),原来小明有鱼5+2=7(条). 16.小芳去文具店买了13本语文书,8本算术书,共用去10元.已知6本语文本的价钱与4本算术本的价钱相等.问:1本语文本、1本算术本各多少钱?8÷4×6=12,即8本算术本与12本语文体价钱相等.所以1本语文本值10×100÷(13+12)=40(分),1本算术本值40×6÷4=60(分),即1本语文本4角,1本算术本6角.17.找规律,在括号内填入适当的数. 75,3,74,3,73,3,(),().答案:72,3.18找规律,在括号内填入适当的数. 1,4,5,4,9,4,(),().奇数项构成数列1,5,9……,每一项比前一项多4;偶数项都是4,所以应填13,419.找规律,在括号内填入适当的数. 3,2,6,2,12,2,(),().24,2.20.找规律,在括号内填入适当的数. 76,2,75,3,74,4,(),().答案:将原数列拆分成两列,应填:73,5.21.找规律,在括号内填入适当的数. 2,3,4,5,8,7,(),().答案:将原数列拆分成两列,应填:16,9.22.找规律,在括号内填入适当的数. 3,6,8,16,18,(),().答案:6=3×2,16=8×2,即偶数项是它前面的奇数项的2倍;又8=6+2,18=16+2,即从第三项起,奇数项比它前面的偶数项多2.所以应填:36,38.23.找规律,在括号内填入适当的数. 1,6,7,12,13,18,19,(),().答案:将原数列拆分成两列,应填:24,25.24.找规律,在括号内填入适当的数. 1,4,3,8,5,12,7,().答案:奇数项构成数列1,3,5,7,…,每一项比前一项多2;偶数项构成数列4,8,12,…,每一项比前一项多4,所以应填:16.25.找规律,在括号内填入适当的数. 0,1,3,8,21,55,(),().答案:144,377.26.A、B、C、D四人在一场比赛中得了前4名.已知D的名次不是最高,但它比B、C都高,而C的名次也不比B高.问:他们各是第几名?答案:D名次不是最高,但比B、C高,所以它是第2名,A是第1名.C的名次不比B高,所以B 是第3名,C是第4名.27.一头象的重量等于4头牛的重量,一头牛的重量等于3匹小马的重量,一匹小马的重量等于3头小猪的重量.问:一头象的重量等于几头小猪的重量?答案:4×3×3=36,所以一头象的重量等于36头小猪的重量.28.甲、乙、丙三人,一个人喜欢看足球,一个人喜欢看拳击,一个人喜欢看篮球.已知甲不爱看篮球,丙既不喜欢看篮球又不喜欢看足球.现有足球、拳击、篮球比赛的入场券各一张.请根据他们的爱好,把票分给他们.答案:丙不喜欢看篮球与足球,应将拳击入场券给丙.甲不喜欢看篮球,应将足球入场券给甲.最后,应将篮球入场券给乙.29.有一堆铁块和铜块,每块铁块重量完全一样,每块铜块的重量也完全一样.3块铁快和5块铜块共重210克.4块铁块和10块铜块共重380克.问:每一块铁块、每一块铜块各重多少?答案:4块铁块和10块铜块共重380克,所以2块铁块和5块铜块共重380÷2=190(克).而3块铁块和5块铜块共重210克,所以1块铁块重210-190=20(克).1铜块重(190-20×2)÷5=30(克).30.甲、乙、丙三人中有一人做了一件好事.他们各自都说了一句话,而其中只有一句是真的.甲说:“是乙做的.”乙说:“不是我做的.”丙说:“也不是我做的.”问:到底是谁做的好事?答案:如果是甲做的好事,那么乙、丙的话都是真的,与只有一句是真的矛盾.如果是乙做的好事,那么甲、丙的话都是真的,也产生矛盾.好事是丙做的,这时甲、丙的话都是错的,只有乙的话是真的,所以好事是丙做的.31.一张长8分米、宽3分米的长方形纸板,在四个角落上各截去一个边长为2分米的正方形,所剩下的部分的周长是多少?答:(8+3)×2=22(分米)32.计算:18+19+20+21+22+23原式=(18+23)×6÷2=12333.计算:100+102+104+106+108+110+112+114原式=(100+114) ×8÷2=85634.995+996+997+998+999原式=(995+999) ×5÷2=498535.:(1999+1997+1995+…+13+11)-(12+14+16+…+1996+1998)第一个括号内的项数为(1999-11)÷2+1=995,所以原式=(1999-1998)+(1997-1996)+…+(13-12)+11=1×994+11=10051.1993年的元旦是星期五,请你算一算,1997年的元旦是星期几?2000年的元旦是星期几?答:星期三、星期六2.某年的10月有5的星期六,4个星期日,问这一年的十月一日是星期几?答:星期一3.第一列第二列第三列第四列第五列614......27101518 38111619 49121720 (51321)问:(1)300排在第几列?(2)1000排在第几列?答:第四列、第三列4.用5÷14,商的小数点后面第1997位上数字是几?答:45.1÷7的商小数点后面2001个数字之和是多少?答:2001÷6=333……3,(1+4+2+8+5+7)×333+1+4+2=89986.数列1,3,4,7,11,18……,从第三项开始,每项均为它前面相邻两项之和,数列中第2001个数被4除余几?答:07、将1----100的自然数按下面的顺序排列:答:正方形里的9个数和是90,能否照这样框出9个数,使它们的和分别是170、216、630?分析与首先先观察9个数的特点.上下两个数的平均数是10,左右两个数的平均数也是10,对角线的平均数还是10.说明10是这九个数的平均数,它们的和就是90.从这里可以看出,用3×3的正方形框出来的9个数的和一定是9的倍数.170不是9的倍数,所以不可能和是170.225和630都是9的倍数,是不是这两个数都可以呢?可以发现,排在最左边一列和最右边一列上的数,不能做这9个数的平均数,因为画不出正方形.216和630÷9分别等于24和70,这两个数分别在哪一列呢?8个一循环,24÷8=3,正好在最右边一列,所以画不出来.而70÷8=8……6,余数是6,排在第6列,所以能画出来.8、有一个数列:1,2,3,5,8,13,…….(从第3个数起,每个数恰好等于它前面相邻两个数的和)求第1993个数被6除余几?(这道题需要你耐心解答呦)分析:如果能知道第1993个数是哪个数,问题很容易解决.可是要做到这一点不容易.由于我们所研究的是“余数”,如能构造出数列各项被6除,余数构成的数列,问题也可以得到解决.根据“如果一个数等于几个数的和,那么这个数被a除的余数,等于各个加数被a除的余数的和再被a除的余数”.得到数列各项被6除,余数组成的数列是:1,2,3,5,2,1,3,4,1,5,0,5,5,4,3,1,4,5,3,2,5,1,0,1,1,2,3,5,…….观察规律,发现到第25项以后又重复出现前24项.呈现周期性变化规律.一个周期内排有24个数.(余数数列的前24项)1993÷24=83……1.第1993个数是第84个周期的第1个数.因此被6除是余1.。
完整word版小学四年级奥数50题附含答案解析,文档

word格式整理版小学四年级奥数精选50题一张桌子的价钱是一把椅子的10倍,又知一张桌子比一把椅子多288元,一张桌子和一把椅子各多少元?2、3箱苹果重45千克。
一箱梨比一箱苹果多 5千克,3箱梨重多少千克?3.甲乙二人从两地同时相对而行,经过4小时,在距离中点4千4.米处相遇。
甲比乙速度快,甲每小时比乙快多少千米?李军和张强付同样多的钱买了同一种铅笔,李军要了13支,张强要了7支,李军又给张强元钱。
每支铅笔多少钱?范文范例学习指导word格式整理版甲乙两辆客车上午8时同时从两个车站出发,相向而行,经过一段时间,两车同时到达一条河的两岸。
由于河上的桥正在维修,车辆禁止通行,两车需交换乘客,然后按原路返回各自出发的车站,到站时已是下午2点。
甲车每小时行40千米,乙车每小时行千米,两地相距多少千米?〔交换乘客的时间略去不计〕学校组织两个课外兴趣小组去郊外活动。
第一小组每小时走千米,第二小组每小时行千米。
两组同时出发 1小时后,第一小组停下来参观一个果园,用了1小时,再去追第二小组。
多长时间能追上第二小组?有甲乙两个仓库,每个仓库平均储存粮食吨。
甲仓的存粮吨数比乙仓的4倍少5吨,甲、乙两仓各储存粮食多少吨?7.甲、乙两队共同修一条长400米的公路,甲队从东往西修4天,乙队从西往东修5天,正好修完,甲队比乙队每天多修10米。
甲、乙两队每天共修多少米?范文范例学习指导word格式整理版学校买来6张桌子和5把椅子共付455元,每张桌子比每把椅子贵30元,桌子和椅子的单价各是多少元?一列火车和一列慢车,同时分别从甲乙两地相对开出。
快车每小时行75千米,慢车每小时行65千米,相遇时快车比慢车多行了40千米,甲乙两地相距多少千米?某玻璃厂托运玻璃250箱,合同规定每箱运费20元,如果损坏一箱,不但不付运费还要赔偿100元。
运后结算时,共付运费4400元。
托运中损坏了多少箱玻璃?五年级一中队和二中队要到距学校20千米的地方去春游。
小学四年级奥数题及答案[五篇]
![小学四年级奥数题及答案[五篇]](https://img.taocdn.com/s3/m/9fb297c0aff8941ea76e58fafab069dc502247bc.png)
小学四年级奥数题及答案[五篇]1.小学四年级奥数题及答案篇一1、有四个数,其中每三个数的和分别是45,46,49,52,那么这四个数中最小的一个数是多少?解析:把4个数全加起来就是每个数都加了3遍,所以,这四个数的和等于(45+46+49+52)÷3=64。
用总数减去最大的三数之和,就是这四个数中的最小数,即64-52=12。
2、电车公司维修站有7辆电车需要维修,如果用一名工人维修这7辆电车的修复时间分别为12,17,8,18,23,30,14分钟。
每辆电车每停开1分钟的经济损失是11元。
现在由3名工作效率相同的维修工人各自单独工作,要是经济损失减到最小程度,那么最小的损失是多少元?答案与解析:由题可知,要使经济损失最小,3名工人的工作时间尽量均等,缤纷接每个人要先维修时间短的,故有:12+17+8+18+23+30+14=122122÷3=40余2①12+30=42②17+23=40③8+14+18=40这7辆车最少共停开的时间为:(12+12+30)+(17+17+23)+(8+8+8+14+14+18)=181(分钟)最小损失为11×181=1991(元)2.小学四年级奥数题及答案篇二1、一块平行四边形地,如果只把底增加8米,或只把高增加5米,它的面积都增加40平方米。
求这块平行四边形地原来的面积?解析:根据只把底增加8米,面积就增加40平方米,可求出原来平行四边形的高。
根据只把高增加5米,面积就增加40平方米,可求出原来平行四边形的底。
再用原来的底乘以原来的高就是要求的面积。
解:(40÷5)×(40÷8)=40(平方米)答:平行四边形地原来的面积是40平方米。
2、上午6时从汽车站同时发出1路和2路公共汽车,1路车每隔12分钟发一次,2路车每隔18分钟发一次,求下次同时发车时间。
分析:1路和2路下次同时发车时,所经过的时间必须既是12分的倍数,又是18分的倍数。
小学四年级奥数题和答案

小学四年级奥数题和答案小学四年级奥数题和答案小学四年级奥数题和答案1地理老师在黑板上挂了一张世界地图,并给五大洲的每一个洲都标上一个代号,让学生认出五个洲,五个学生分别回答如下甲:3号是欧洲,2号是美洲;乙:4号是亚洲,2号是大洋洲;丙:1号是亚洲,5号是非洲;丁:4号是非洲,3号是大洋洲;戊:2号是欧洲,5号是美洲。
老师说他们每人都只说对了一半,1号_______,2号_______,3号_______,4号________,5号_________。
答案与解析:1号是亚洲;2号是大洋洲;3号是欧洲;4号是非洲;5号是美洲。
假设甲说的前半句是对的,则3号是欧洲,由此推出丁说的3号是大洋洲是错误的。
由于每个人都只说对了一半,可知丁说的4号是非洲是对的,由此推出乙说的4号是亚洲是错的,2号是大洋洲是对的。
又可知戊说的2号是欧洲是错的,5号是美洲是对的,由此推出丙说的5号是非洲是错的,1号是亚洲是对的,最后得到正确的结论是:1号是亚洲;2号是大洋洲;3号是欧洲;4号是非洲;5号是美洲。
小学四年级奥数题和答案21.难度:你能不能将自然数2到10分别填入3×3 的方格中,使得每个横行中的三个数之和都是奇数?2.难度:A 、B 两人买了相同张数的信纸.A在每个信封里装1张信纸,最后用完所有的信封还剩40张信纸:B 在每个信封里装3张信纸,最后用完所有的信纸还剩40个信封.他们都买了张信纸1.难度:你能不能将自然数2到10分别填入3×3 的.方格中,使得每个横行中的三个数之和都是奇数?不能.如果能,我们把三个横行的和相加,其和就是三个奇数之和必为奇数数,然而它也恰是九个数之和,即2+3+4+……+10=54 ,根据任何一个奇数一定不等于任何一个偶数,所以不能做到.2.难度:A 、B 两人买了相同张数的信纸.A在每个信封里装1张信纸,最后用完所有的信封还剩40张信纸:B 在每个信封里装3张信纸,最后用完所有的信纸还剩40个信封.他们都买了张信纸.解析如下:第二个条件实际意味着“每个信封三张纸,则少120张纸”根据盈亏问题基本方法,信封有(120+40)÷(3-1)=80个,纸有80+40=120张这种类型的题目不能直接计算,要将其中的一个条件转化,使之转化为基本的盈亏问题.小学四年级奥数题和答案3_____年级 _____班姓名_____ 得分_____1. 加工一批39600件的大衣,30个人10天完成了13200件,其余的要求在15天内完成,要增加_____人.2. 54人12天修水渠1944米,如果人数增加18人,天数缩到原来的一半,可修水渠_____米.3. 一批产品,28人25天可以收割完,生产5天后,此项任务要提前10天完成,应增加_____人.4. 某食堂存有16人可吃15天的米,16人吃了5天后,走了6人,余下的可吃_____天.5. 某生产小组12个人,9天完成,零件1620个.现在有一批任务,零件数为2520个,问14个人要_____天完成.6. 一项工程预计15人每天做4小时,18天可以完成,后来增加3人,并且工作时间增加1小时,这项工程_____天完成.7. 某机床厂第一车间的职工,用18台车床,2小时生产机器零件720件,20台这样的车床3小时可生产机器零件_____件.8. 4辆大卡车5次运煤80吨,3辆小卡车8次运煤36吨.现在有煤77吨,用一辆大卡车和小卡车同时运_____次运完.9. 某车间接到任务,要在15天制造12000个零件.后来任务增加28%日产量也提高 .这样_____天完成.10. 8个人10天修路840米,照这样算,20人修4200米,要_____天.解答题:11. 某工程队施工时,欲将一个池塘的水排完,若用15台抽水机,并且每天抽水8小时,则7日可排水1260吨;若每天抽水12小时,要求14天排水7560吨,则应需几台抽水机?12. 光华机械厂一个车间,原计划15人3天做900个零件,生产开始后,又增加一批任务,在工作效率相同下,要10个人8天完成,问增加了几个零件?13. 光明小学有50个学生帮学校搬砖,要搬20xx块,4次搬了一半,照这样算,再增加50个学生,还要几次运完?14. 一根木料,锯成2段,要3分钟,如果锯成6段要多少分钟?---------------答案----------------------1. 10人.解: (39600-13200)÷(13200÷30÷10×15)-30=10(人).2. 1296米.解: 1944÷54÷12×(18+54)×(12÷2)=1296(米).3. 28人.解: (28×25-28×5)÷(25-5-10)-28=28(人).4. 16天.解: (15×16-5×16)÷(16-6)=16(天).5. 12天.解: 2520÷(1620÷9÷12×14)=12(天).6. 12天.解: 15×4×18÷[(15+3)×(4+1)]=12(天).7. 1200件.解: 720÷18÷2×20×3=1200(件).8. 14次.解: 77÷[(80÷4÷5)+(36÷3÷8)]=14(次).9. 16天.解: (12000+12000×0.28)÷(12000÷15+12000÷15× )=16(天).10. 20天.解: 4200÷(840÷10÷8×20)=20(天).11. 先求出1台机器1小时排水的吨数: 1260÷7÷8÷15=1.5(吨).再求出1台机器每天排12小时排足14天的水的吨数: 1.5×12×14=252(吨).最后求出所需要的台数: 7560÷252=30(台).综合式: 7560÷[1260÷15÷(8×7)×(12×14)]=30(台).12. 先求出每个人每天做的个数: 900÷15÷3=20(个).再求出共做的个数: 20×10×8=1600(个).最后求出增加的个数: 1600-900=700(个).13. 先求出每个学生每次运的砖数: 20xx× ÷4÷50=5(块).再求出现在的学生一次过运的砖数: (50+50)×5=500(块).最后求出还要运的次数: 20xx× ÷500=2(次).简便方法: 4÷[(50+50)÷50]=2(次).14. 先求出锯一下用的时间: 3÷(2-1)=1.5(分钟).再求出锯6段用的次数: 6-1=5(次).最后求出共用的时间: 1.5×5=7.5(分钟).。
小学四年级奥数题100道及答案(完整版)

小学四年级奥数题100道及答案(完整版)1. 计算:25×4÷25×4 = ()A. 1B. 16C. 100D. 625答案:B解析:25×4÷25×4 = 100÷25×4 = 4×4 = 162. 小明在计算除法时,把除数65 写成了56,结果得到商是13,余数是52,正确的商应该是()A. 10B. 11C. 12D. 13答案:C解析:先求出被除数为56×13 + 52 = 780,780÷65 = 123. 用简便方法计算99×88 + 88 = ()A. 8800B. 8888C. 9688D. 8088答案:A解析:99×88 + 88 = 88×(99 + 1) = 88×100 = 88004. 一个数除以18,商是15,余数是12,这个数是()A. 270B. 282C. 288D. 292答案:B解析:18×15 + 12 = 2825. 两个数相乘,如果一个因数扩大10 倍,另一个因数缩小10 倍,积()A. 扩大10 倍B. 缩小10 倍C. 不变D. 无法确定答案:C6. 3700÷900 = ()A. 4......1 B. 4......10 C. 4......100 D. 40 (100)答案:C7. 与480÷18 结果不同的是()A. 480÷6÷3B. 480÷(6×3)C. 480÷9÷2D. 480÷2÷9答案:D8. 25×(8 + 4) = ()A. 25×8×25×4B. 25×8 + 25×4C. 25×8 + 4D. 25×4 + 8答案:B9. 下面三道算式中,商最小的算式是()A. 256÷16B. 512÷8C. 512÷16答案:A10. 小明从家到学校,如果每分钟走60 米,要走10 分钟,如果每分钟多走15 米,需要几分钟?()A. 8B. 9C. 7D. 6答案:A解析:路程为60×10 = 600 米,速度变为60 + 15 = 75 米/分钟,时间为600÷75 = 8 分钟11. 9□8765000 最接近9 亿,□里可以填()A. 0B. 0 - 4C. 5 - 9D. 4答案:B12. 下面各数,只读一个零的是()A. 6008800B. 6000880C. 6080800D. 6880000答案:B13. 用一个放大100 倍的放大镜看一个30°的角,看到的角的度数是()A. 300°B. 30°C. 3000°D. 3°答案:B14. 过直线外一点可以画()条已知直线的垂线。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
四年级奥数题练习及答案解析统筹规划问题(一)【试题】1、烧水沏茶时,洗水壶要用1分钟,烧开水要用10分钟,洗茶壶要用2分钟,洗茶杯用2分钟,拿茶叶要用1分钟,如何安排才能尽早喝上茶。
【分析】:先洗水壶然后烧开水,在烧水的时候去洗茶壶、洗茶杯、拿茶叶。
共需要1+10=11分钟。
【试题】2、有137吨货物要从甲地运往乙地,大卡车的载重量是5吨,小卡车的载重量是2吨,大卡车与小卡车每车次的耗油量分别是10公升和5公升,问如何选派车辆才能使运输耗油量最少?这时共需耗油多少升?【分析】:依题意,大卡车每吨耗油量为10÷5=2(公升);小卡车每吨耗油量为5÷2=2.5(公升)。
为了节省汽油应尽量选派大卡车运货,又由于137=5×27+2,因此,最优调运方案是:选派27车次大卡车及1车次小卡车即可将货物全部运完,且这时耗油量最少,只需用油10×27+5×1=275(公升)【试题】3、用一只平底锅烙饼,锅上只能放两个饼,烙熟饼的一面需要2分钟,两面共需4分钟,现在需要烙熟三个饼,最少需要几分钟?【分析】:一般的做法是先同时烙两张饼,需要4分钟,之后再烙第三张饼,还要用4分钟,共需8分钟,但我们注意到,在单独烙第三张饼的时候,另外一个烙饼的位置是空的,这说明可能浪费了时间,怎么解决这个问题呢?我们可以先烙第一、二两张饼的第一面,2分钟后,拿下第一张饼,放上第三张饼,并给第二张饼翻面,再过两分钟,第二张饼烙好了,这时取下第二张饼,并将第三张饼翻过来,同时把第一张饼未烙的一面放上。
两分钟后,第一张和第三张饼也烙好了,整个过程用了6分钟。
统筹规划问题(二)【试题】4、甲、乙、丙、丁四人同时到一个小水龙头处用水,甲洗拖布需要3分钟,乙洗抹布需要2分钟,丙用桶接水需要1分钟,丁洗衣服需要10分钟,怎样安排四人的用水顺序,才能使他们所花的总时间最少,并求出这个总时间。
【分析】:所花的总时间是指这四人各自所用时间与等待时间的总和,由于各自用水时间是固定的,所以只能想办法减少等待的时间,即应该安排用水时间少的人先用。
解:应按丙,乙,甲,丁顺序用水。
丙等待时间为0,用水时间1分钟,总计1分钟乙等待时间为丙用水时间1分钟,乙用水时间2分钟,总计3分钟甲等待时间为丙和乙用水时间3分钟,甲用水时间3分钟,总计6分钟丁等待时间为丙、乙和甲用水时间共6分钟,丁用水时间10分钟,总计16分钟,总时间为1+3+6+16=26分钟。
统筹规划问题(三)【试题】5、甲、乙、丙、丁四个人过桥,分别需要1分钟,2分钟,5分钟,10分钟。
因为天黑,必须借助于手电筒过桥,可是他们总共只有一个手电筒,并且桥的载重能力有限,最多只能承受两个人的重量,也就是说,每次最多过两个人。
现在希望可以用最短的时间过桥,怎样才能做到最短呢?你来帮他们安排一下吧。
最短时间是多少分钟呢?【分析】:大家都很容易想到,让甲、乙搭配,丙、丁搭配应该比较节省时间。
而他们只有一个手电筒,每次又只能过两个人,所以每次过桥后,还得有一个人返回送手电筒。
为了节省时间,肯定是尽可能让速度快的人承担往返送手电筒的任务。
那么就应该让甲和乙先过桥,用时2分钟,再由甲返回送手电筒,需要1分钟,然后丙、丁搭配过桥,用时10分钟。
接下来乙返回,送手电筒,用时2分钟,再和甲一起过桥,又用时2分钟。
所以花费的总时间为:2+1+10+2+2=17分钟。
解:2+1+10+2+2=17分钟【试题】6、小明骑在牛背上赶牛过河,共有甲乙丙丁四头牛,甲牛过河需1分钟,乙牛需2分钟,丙牛需5分钟,丁牛需6分钟,每次只能骑一头牛,赶一头牛过河。
【分析】:要使过河时间最少,应抓住以下两点:(1)同时过河的两头牛过河时间差要尽可能小(2)过河后应骑用时最少的牛回来。
解:小明骑在甲牛背上赶乙牛过河后,再骑甲牛返回,用时2+1=3分钟然后骑在丙牛背上赶丁牛过河后,再骑乙牛返回,用时6+2=8分钟最后骑在甲牛背上赶乙牛过河,不用返回,用时2分钟。
总共用时(2+1)+(6+2)+2=13分钟。
速算与巧算(一)【试题】计算9+99+999+9999+99999【解析】在涉及所有数字都是9的计算中,常使用凑整法。
例如将999化成1000—1去计算。
这是小学数学中常用的一种技巧。
9+99+999+9999+99999=(10-1)+(100-1)+(1000-1)+(10000-1)+(100000-1)=10+100+1000+10000+100000-5=111110-5=111105速算与巧算(二)【试题】计算199999+19999+1999+199+19【解析】此题各数字中,除最高位是1外,其余都是9,仍使用凑整法。
不过这里是加1凑整。
(如 199+1=200)199999+19999+1999+199+19=(19999+1)+(19999+1)+(1999+1)+(199+1)+(19+1)-5=200000+20000+2000+200+20-5=222220-5=22225速算与巧算(三)【试题】计算(2+4+6+…+996+998+1000)--(1+3+5+…+995+997+999)【分析】:题目要求的是从2到1000的偶数之和减去从1到999的奇数之和的差,如果按照常规的运算法则去求解,需要计算两个等差数列之和,比较麻烦。
但是观察两个扩号内的对应项,可以发现2-1=4-3=6-5=…1000-999=1,因此可以对算式进行分组运算。
解:解法一、分组法(2+4+6+…+996+998+1000)-(1+3+5+…+995+997+999)=(2-1)+(4-3)+(6-5)+…+(996-995)+(998-997)+(1000-999)=1+1+1+…+1+1+1(500个1) =500解法二、等差数列求和(2+4+6+…+996+998+1000)-(1+3+5+…+995+997+999)=(2+1000)×500÷2-(1+999)×500÷2=1002×250-1000×250 =(1002-1000)×250=500速算与巧算(四)【试题】计算9999×2222+3333×3334【分析】此题如果直接乘,数字较大,容易出错。
如果将9999变为3333×3,规律就出现了。
9999×2222+3333×3334=3333×3×2222+3333×3334=3333×6666+3333×3334=3333×(6666+3334)=3333×10000=33330000。
速算与巧算(五)【试题】56×3+56×27+56×96-56×57+56【分析】:乘法分配律同样适合于多个乘法算式相加减的情况,在计算加减混合运算时要特别注意,提走公共乘数后乘数前面的符号。
同样的,乘法分配率也可以反着用,即将一个乘数凑成一个整数,再补上他们的和或是差。
56×3+56×27+56×96-56×57+56=56×(32+27+96-57+1)=56×99 =56×(100-1)=56×100-56×1=5600-56=5544速算与巧算(六)【试题】计算98766×98768-98765×98769【分析】:将乘数进行拆分后可以利用乘法分配律,将98766拆成(98765+1),将98766拆成(98765+1),将98769拆成(98768+1),这样就保证了减号两边都有相同的项。
解:98766×98768-98765×98769=(98765+1)×98768-98765×(98768+1)=98765×98768+98768-(98765×98768+98765)=98765×98768+98768-98765×98768-98765=98768-98765=3年龄问题【试题】: 1、父亲45岁,儿子23岁。
问几年前父亲年龄是儿子的2倍?(设未知数)2、李老师的年龄比刘红的2倍多8岁,李老师10年前的年龄和王刚8年后的年龄相等。
问李老师和王刚各多少岁?3、姐妹两人三年后年龄之和为27岁,妹妹现在的年龄恰好等于姐姐年龄的一半,求姐妹二人年龄各为多少。
(设未知数)4、小象问大象妈妈:“妈妈,我长到您现在这么大时,你有多少岁了?”妈妈回答说:“我有28岁了”。
小象又问:“您像我这么大时,我有几岁呢?”妈妈回答:“你才1岁。
”问大象妈妈有多少岁了?5、大熊猫的年龄是小熊猫的3倍,再过4年,大熊猫的年龄与小熊猫年龄的和为28岁。
问大、小熊猫各几岁?6、15年前父亲年龄是儿子的7倍,10年后,父亲年龄是儿子的2倍。
求父亲、儿子各多少岁。
7、王涛的爷爷比奶奶大2岁,爸爸比妈妈大2岁,全家五口人共200岁。
已知爷爷年龄是王涛的5 倍,爸爸年龄在四年前是王涛的4 倍,问王涛全家人各是多少岁?答案:1、一年前。
2、刘红10 岁,李老师28 岁。
(10+8-8)+(2- 1)=10(岁)。
3、妹妹7岁。
姐姐14岁。
[27-(3x2)]+(2+ l)=7( 岁)。
4、小象10 岁,妈妈19 岁。
28-1)-3+1=10(岁)。
5、大熊猫15 岁,小熊猫5 岁。
(28-4x2)+(3+1)=5(岁)。
6、父亲50岁,儿子20岁。
(15+10)-(7-2)+15=20(岁)7、王涛12 岁,妈妈34岁。
爸爸36岁,奶奶58岁,爷爷60岁。
提示: 爸爸年龄四年前是王涛的4 倍,那么现在的年龄是王涛的4 倍少12 岁。
(200+2+12+12+2)-( 1+5+5+4+4)- 12( 岁)。
牛吃草问题解析解决牛吃草问题的多种算法历史起源: 英国数学家牛顿(1642-1727)说过:“在学习科学的时候,题目比规则还有用些”因此在他的著作中,每当阐述理论时,总是把许多实例放在一起。
在牛顿的《普遍的算术》一书中,有一个关于求牛和头数的题目,人们称之为牛顿的牛吃草问题。
主要类型:1、求时间2、求头数除了总结这两种类型问题相应的解法,在实践中还要有培养运用“牛吃草问题”的解题思想解决实际问题的能力。
基本思路:①在求出“每天新生长的草量”和“原有草量”后,已知头数求时间时,我们用“原有草量÷每天实际减少的草量(即头数与每日生长量的差)”求出天数。