HMSIW定向耦合器的仿真设计解析
电磁场与电磁波实验10设计仿真微带线分支线定向耦合器

电磁场与电磁波实验实验报告姓名:学号:班级:上课时间:周二10-12节实验名称: 设计仿真微带线分支线定向耦合器一、 实验目的掌握微带分支线定向耦合器的设计方法;掌握用VOLTAIRE 进行仿真;二、 实验原理在一些电桥电路及平衡混频器等元件中,常用到分支线定向耦合器,微带二分支定向耦合器如下图所示,图中的字母G 、H 和数字1是各线段特性导纳的归一化值(对50欧姆阻抗对应的导纳值归一化),因各端口的导纳值相同,所以又称为等阻二分支定向耦合器。
H当功率由(1)臂输入时,(3)、(4)两臂有输出;理想情况下,(2)臂无功率输出,故(2)臂是隔离臂,(3)、(4)两臂的输出可按一定的比例分配,若(3)、(4)两臂的输出功率相同,都等于输入功率的一半,则成为3dB 定向耦合器或3dB 分支电桥。
利用奇偶模分析法,将上述电路在中心线A -A1处切开,此时可将两条线(1)-(4)及(2)-(3)从A -A1面分开来考虑,这样将四端口网络转换为二端口网络,上下是对称的。
所以利用各端口理想的匹配及(1)、(2)端口之间理想的隔离条件,得出下列公式:2221(1)3(2)41120lg 20lg (3)3G H u jG u u G C u GH +==-+==其中C称为定向耦合器的耦合度,u1、u3、u4分别为(1)口输入电压和(3)、(4)口输出电压,可见(3)口和(4)口的输出电压相位差90度,对与3dB 定向耦合器(C=3dB)代入上式得:==G H1,三、实验要求设计3dB微带分支定向耦合器已知条件:微带线介质基片厚度h=1mm,εr=9.6,中心频率f0=3GHz,输入输出端口的通信的阻抗为50 欧姆。
指标要求:1)根据所给的已知条件计算出各段微带线的宽度和长度,画出电路原理图2)对电路原理图进行仿真并对各线段调谐,达到指标如下:当频偏臂f/f0=1.06(即频率范围2.8~3.2GHz)时:在中心频率处耦合度(S31模值)为2.9~3.1dBρ≤,方向性或隔离度(即S21的模值)≥17.5dB,两臂输入驻波比 1.3的不平衡度(即S31与S41的模值dB差)≤0.26dB。
HFSS中仿真设计3.4Ghz分支线耦合器

HFSS中仿真设计3.4Ghz分支线耦合器
时间:2015-08-16 来源:天线设计网作者:admin TAGS:hfss耦合器定
向耦合器
定向耦合器是一种有方向性的功率耦合器件,在射频系统中有着广泛的应用,如功率监控系统、测试系统、功率分配系统等。
定向耦合器是一个四端口网络,它有输入端(端口1)、直通端(端口2)、耦合端(端口3)和隔离端(端口4)。
当信号从输入端输入时,除了一部分功率直接从直通端输出外,[天线设计网同时还有一部分功率耦合到耦合端输出,但不会从隔离端输出。
小编今天带给大家的是在[天线设计网]hfss中仿真设计频率为3.4GHz的分支线耦合器。
step1:首先根据设计频率以及介电常数,确定分支线长度。
step2:端口一般都选用标准的50欧姆微带线。
step3:设置端口顺序,可以按照上图的顺序。
step4:仿真设计,查看结果,优化方案。
(a)在hfss中建立模型
(b)设置端口顺序。
(1是数输入端,2是直通端口,3是耦合端口,4是隔离端口)
(c)一些重要参数
(d)仿真结果S11
s12
S13
S14
(e)场分布图
(f)模型下载
耦合器模型
(34.78 KB)
下载提示:有模型附件下载的,请将文件后缀格式“.txsjw”改为“.rar”即可正常打开。
温馨提示:如有转载请注明出处-天线设计网-HFSS中仿真设计3.4Ghz分支线耦合器。
如何设计定向耦合器电路

如何设计定向耦合器电路汽车雷达、5G 蜂窝、物联网等射频 (RF) 应用中,电子系统对射频源的使用量与日俱增。
所有这些射频源都需要设法监测和控制射频功率水平,同时又不能造成传输线和负载的损耗。
此外,某些应用需要大功率发射器输出,因此设计人员需要设法监测输出信号,而非直接连接敏感仪器,以免受高信号电平影响导致损坏。
另外还有诸多其他挑战:在较宽的频率范围内如何确定射频负载(如天线)的特性;在发射器处于广播状态时如何监测负载变化和驻波比,以防止大反射功率和放大器损坏等。
只需将定向耦合器接入传输线,这些要求和挑战便可迎刃而解。
此方法可精确监测线路中的射频能量流,同时将功率水平降低已知的固定量。
在采样过程中,定向耦合器对主线信号的干扰极小。
此外,还能分离正向和反射功率,允许监测回波损耗或驻波比,从而在广播时提供负载变化反馈。
什么是定向耦合器?定向耦合器是一种测量设备,可接入信号发生器、矢量网络分析仪和发射器等射频源与负载之间的传输线,用于测量从射频源到负载的射频功率(正向分量),以及从负载反射回射频源的功率(反射分量)。
若测得正向和反射分量,即可计算总功率、负载的回波损耗和驻波比。
定向耦合器的四端口电路可配置为三端子或四端子设备(图 1)。
图 1:三端口(左)和四端口定向耦合器(右)的原理图符号。
(图片来源:Digi-Key Electronics)通常情况下,电源连接耦合器的输入端口,负载则连接输出或传输端口。
耦合端口输出是衰减后的正向信号。
衰减值如三端口设备原理图中所示。
在三端口设备中,隔离端口已在内部端接;而在四端口设备中,该端口输出与反射信号成正比。
原理图符号内的箭头表示分量路径。
例如,在四端口配置中,输入端口指向耦合端口,表明它接收了正向分量,而输出端口连接隔离端口,后者用于读取反射信号。
端口号并未标准化,因制造商不同而有所差异。
不过,各个供应商的端口命名相对统一。
耦合器是对称设备,各端口连接可互换。
(整理)微带线定向耦合器的设计

微带线定向耦合器的设计一、数学模型1、耦合度和传输系数图12所示,是平行耦合微带线定向耦合器的示意图。
当①端口信号激励时,③端口为隔离端无输出、而耦合端口②及直通端口④有输出。
根据奇、偶模分析方法可知,耦合端口②及直通端口④的输出电压分别为,θθθθθθθθsin )(cos 2sin cos sin )(cos 2sin cos 20200000020000002020000200002Z Z j Z Z jZ Z Z Z Z j Z Z jZ Z Z U e e e e +++-+++=θθθθsin )(cos 2sin )(cos 22020000000002020000002Z Z j Z Z Z Z Z Z j Z Z Z Z U e e e ++-++=式中:e Z 0和00Z 分别为耦合微带线的偶模和奇模特性阻抗,e θ和0θ分别是耦合微带线的偶模和奇模的电长度,0Z 是端口的端接阻抗。
根据(1)式可知定向耦合器的耦合度为,)dB (||lg 202U C ='而根据(2)式可得传输系数为,)dB (||lg 204U T =但需要满足以下条件,即:)1()2()3()4(eO e e e e Z Z Z Z Z Z Z θθθθsin sin sin sin 000000000020++==如果假设耦合微带线中传输的是TEM 波(而不是准TEM 波),则可忽略奇、偶模相速的差别而认为:θθθ==0e,此时(1)~(4)式可以改写成以下形式,即:θθθsin cos 1sin 2002j C jC U +-=θθsin cos 112204j C C U +--=式中:0000000Z Z Z Z C e e +-=2f f ⨯=πθ但需要满足以下条件,即:00020Z Z Z e =根据(5)~(9)式可知,此时的耦合度和传输系数分别变为,)dB ()cos 1sin lg(10220220θθC C C -=' )dB ()cos 11lg(1022020θC C T --=而中心频率的耦合度为,)dB ()lg(20lg 200000000Z Z Z Z C C e e +-=='2、耦合区的长度 )5()6()7()8()9()10()11()12()13(根据(11)式可知,当耦合区的电长度090=θ时,耦合度C '最大,耦合器获得最大的耦合输出。
复合材料定向器热力耦合仿真研究

式中:ρ 是材料密度ꎻc 是材料比热容ꎻt 是时间ꎻk 是沿物
������信息技术������
谭继宇ꎬ等������复合材料定向器热力耦合仿真研究
DOI:10.19344 / j.cnki.issn1671-5276.2018.02.042
复合材料定向器热力耦合仿真研究
谭继宇ꎬ沙金龙
( 兵器工业第二〇八研究所ꎬ北京 102202)
摘 要:复合材料热力耦合分析变形形式复杂多样ꎬ不易控制ꎬ近年来成为研究的热点ꎮ 针对 火箭定向器热力耦合问题ꎬ通过施加边界约束和载荷ꎬ创建了温度与压力共同作用下的热力耦 合有限元模型ꎬ并得到了定向器在工作状况下的应力场和温度场的变形仿真结果ꎮ 与只有压 力作用下的模型进行对比ꎬ证明了考虑温度场对定向器强度的必要性及该定向器的安全可靠ꎬ 能够满足该工况下的强度ꎮ 关键词: 定向器ꎻ各向异性ꎻ有限元ꎻ热力耦合 中图分类号:TJ711+ .1 文献标志码:B 文章编号:1671 ̄5276(2018)02 ̄0153 ̄03ຫໍສະໝຸດ 1 定向器热力耦合有限元理论
在一般三维问题中ꎬ瞬态温度场的场变量:
( ) ( ) ( ) ρc
Əϕ- Ət
Ə Əx
kx
Əϕ Əx
-Ə Əy
ky
Əϕ Əy
-Ə Əz
kz
Əϕ Əz
-ρQ = 0 (1)
边界条件:
—
ϕ=ϕ
(2)
( ) ( ) ( ) kx
Əϕ Əx
nx -
ky
Əϕ Əy
ny -
kz
Əϕ Əz
nz = q
(3)
( ) ( ) ( ) kx
Əϕ Əx
nx -
ky
Əϕ Əy
hfss耦合器仿真设计范例-概述说明以及解释

hfss耦合器仿真设计范例-概述说明以及解释1.引言1.1 概述在HFSS耦合器仿真设计范例这篇文章中,我们将介绍HFSS耦合器的原理和仿真设计步骤。
HFSS(High Frequency Structure Simulator)是一种电磁场仿真软件,广泛应用于高频电磁场仿真领域。
耦合器作为一种重要的电路元件,在无线通信和微波领域具有广泛的应用。
通过仿真设计,我们可以模拟和优化耦合器的性能,以满足实际工程需求。
本篇文章的主要目的是通过以HFSS为工具,详细介绍耦合器的仿真设计过程。
首先,我们将在理论背景部分介绍一些基本的电磁场理论知识,包括电磁波的传输和耦合原理。
随后,在HFSS耦合器的原理部分,我们将重点讲解HFSS软件在耦合器仿真中的应用。
接下来,我们将详细介绍HFSS耦合器的仿真设计步骤。
这包括建立仿真模型、设置边界条件和材料属性、定义仿真参数等。
我们还将介绍如何通过改变耦合器的几何参数来优化性能,如改变耦合间隙、调整导体尺寸等。
通过仿真结果的分析和对比,我们可以评估不同设计参数对耦合器性能的影响,并提出设计优化建议。
最后,在结论部分,我们将对实验结果进行分析和总结。
通过对仿真数据的分析,我们可以得出一些结论,如耦合器的带宽、传输损耗等。
同时,我们也会给出一些建议,如如何改善耦合器性能或进一步优化仿真设计。
通过本文的学习,读者将了解到HFSS耦合器的原理和仿真设计步骤,并能够利用HFSS软件进行仿真设计。
这不仅对于从事无线通信和微波领域研究的工程师和学者有重要意义,同时也对于对电磁场仿真感兴趣的读者有一定的参考价值。
在实际工程应用中,通过仿真设计可以节省成本和时间,同时提高产品性能和可靠性。
因此,熟练掌握HFSS耦合器的仿真设计方法对于工程实践具有重要的指导意义。
1.2 文章结构文章结构部分的内容可以包括以下信息:文章结构部分的主要目的是介绍整篇文章的组织方式,以及各个章节的内容概述。
通过对文章结构的明确介绍,读者可以更好地理解整篇文章的逻辑架构,有助于他们更好地理解和接受文章的内容。
利用HFSS进行波导单孔定向耦合器的仿真设计

-138-/2013.02/PLAY:CLR P3.4 ;存储器片选信号MOV A,#81H ;选择播放段落MOV DPTR, #0A900H ;选通语音芯片MOVX @DPTR, A ;送指令第一个字节MOV A,#10H ;指令第二个字节MOVX @DPTR,A ;送第二个字节SWAP A ;取忙碌状态ANL A,#0FHMOV B,A MOV A,#28H DJNZ ACC,$ ;等待L23: MOVX A,@DPTR ;是否播放完毕ANL A,B JNZ L23NOPLJMP PLAY参考文献[1]MSM6295.Data .2005-7.[2]楼然苗,李光飞.51系列单片机设计实例[M].北京航空航天大学出版社,2003.[3]何希才.常用集成电路简明速查手册[M].国防工业出版社,2006.[4]百度百科.利用HFSS进行波导单孔定向耦合器的仿真设计陕西黄河集团有限公司12车间 郭宏博 盛利利 杨 辉【摘要】本文介绍了单孔定向耦合器的仿真设计方法,该定向耦合器在一定条件下的方向性可以达到20dB以上,并具有结构简单、驻波小、方向性强等特点。
【关键词】单孔;定向耦合器;HFSS仿真1.前言定向耦合器是一种具有一定方向性的分功率器,在微波系统中较为常见,它能从主传输系统的正向波中按一定比例分出部分功率,而不从反向波中输出功率,因此可以利用定向耦合器对主传输系统中的入射波进行取样。
较为常见的波导定向耦合器有:单孔定向耦合器、双孔(槽)定向耦合器、多孔(槽)定向耦合器、十字孔定向耦合器等。
虽然单孔定向耦合器结构简单、性能良好,但在以前一段时间里,由于缺少仿真措施,单孔定向耦合器等微波器件的设计需要公式的近似计算来解决,实际效果不理想,因此单孔定向耦合器被采用的较少。
但随着科技的发展,仿真软件的出现和完善,单孔定向耦合器的设计出现了可能。
本文现就利用HFSS仿真软件针对于单孔定向耦合器进行了仿真设计,发现在一定条件下,单孔定向耦合器的方向性可以做到20dB以上,满足工程设计要求。
HFSS环形定向耦合器设计实例

实验二:环形定向耦合器仿真场分析实验目的:掌握带状线的设置、理解和分析环形定向耦合器的结构和原理。
实验内容:利用HFSS软件设计一个环形定向耦合器,此环形耦合器使用带状线结构。
耦合器的工作频率为4GHz,带状线介质层厚度为2.286mm,介质材料的相对介电常数和损耗正切分别为2.33和0.000429;带状线的金属层位于介质层的中央;端口负载皆为标准的50Ω。
实验原理:此环形耦合器使用带状线结构,HFSS工程可以采用终端驱动求解类型。
4个端口都与背景相接触,所以采用波端口激励,且端口负载阻抗设置为50欧姆。
为了简化建模操作以及节省计算时间,带状线的金属层使用理想薄导体来实现,即通过创建二维平面然后给二维平面指定理想导体边界条件来模拟带状线的金属层;带状线的金属层位于介质层的中央。
在 HFSS 中,与背景相接触的表面会自动设置为理想导体边界,因此带状线上下两边的参考地无须额外指定,直接使用默认的理想导体边界即可。
实验步骤及结果:一、新建工程设置1.插入HFSS设计2.设置求解类型3.设置默认的长度单位从主菜单栏选择【Modeler】→【Units】命令4.建模相关选项设置(使得建立三维模型之后弹出属性窗口)从主菜单栏中选择【Tools】→【Options】→【Modeler Options】5.定义变量 length从主菜单栏中选择【HFSS】→【Design Properties】命令点击Add按图填入相应的值然后点击OK点击‘确定’6.添加新材料从主菜单栏中选择【Tools】→【Edit Configured Libraries】→【Materials】命令点击按图填入相应的值,然后点击ok选择My_Sub,点击‘确定’,就把My_Sub设置成默认的选用材料7.创建带状线介质层模型随便设置一个圆 , 按图输入,创建一个正六边形柱体,点击OK跳出属性界面,按图输入,点击‘确定’缩放到合适的大小,可以得到下图8.创建带状线金属层模型随便画一个矩形,按下图设置属性双击,打开矩形属性界面,按下图设置属性,然后点击‘确定’单击选择Trace单击Duplicate Around Axis按下图设置,然后点击OK,就可复制粘贴Trace,跳出界面,直接点击‘确定’这样就复制粘贴创建成功,随便画一个画圆,按图选择及设置属性,点击‘确定’合并,按住ctrl,依次选择Trace, Trace1, Trace2, Trace3,Outer,点击Unite得到下图减去,随便画一个圆,按下图设置属性按下ctrl依次选择Trace和Circle1,点击Subtract点击OK,得到下图9.设置环形带状线 Trace 为理想导体边界,直接点击OK10.设置耦合器四个端口为波端口激励,按下F键进入面选模式选择这个面,右键进行下面操作按左图修改属性,点击OK按图上顺序依次对其他三个端口进行同样操作。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
HMSIW 定向耦合器的仿真设计解析1.引言
基片集成波导(SIW)是一种新型的高Q 值、低损耗集成导波结构,易于设计和加工,并易集成在平板电路上,且成本低,可以广泛应用于微波毫米波集成电路中[1-4]。
由于与传统矩形波导的相似性,很多设计概念可以借用,比如波导功分器、滤波器、天线等。
在本文中,我们用这种导波结构宽边开缝实现了定向耦合器,且本文采用的是半膜结构,这样可以减小近一半的尺寸但不会影响其性能,最后仿真结果也符合理论分析与研究,达到了预期的目的。
基片集成波导工作在主模时,在沿着波传播方向的波导对称面上,电场的场值达到最大值而磁场的值却几乎为零,因此此对称面可以等效为一磁壁。
这样基片集成波导就可以用一假想的磁壁分隔成两半,每一半就变成了半膜结构的基片集成波导,且能量几乎全部束缚在内部,从分割面泄露的能量忽略不计。
图1 就是HMSIW 与SIW 中主膜的对比情况。
2.HMSIW 定向耦合器的设计
本文中我们所研究的HMSIW 定向耦合器,主要受波导定向耦合器的启发,运用波导宽边开缝耦合理论,在两波导公共宽壁上的适当位置开一细长。